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Preface

This volume contains the proceedings of the International Conference on Com-
puter Aided Verification (CAV), held in Seattle, Washington, USA, July 16–20,
2006. CAV 2006 was the 18th in a series of conferences dedicated to the ad-
vancement of the theory and practice of computer-assisted formal analysis meth-
ods for software and hardware systems. The conference covers the spectrum
from theoretical results to concrete applications, with an emphasis on practical
verification tools and the algorithms and techniques that are needed for their
implementation.

We received 121 regular paper submissions and 23 tool paper submissions.
Of these, the Program Committee selected 35 regular papers and 10 tool papers.
Each submission was reviewed by three members of the Program Committee. In
addition, each regular paper was reviewed by at least one expert external to the
Program Committee.

The CAV 2006 program included five invited talks:

– Manuvir Das (Microsoft) on “Formal Specifications on Industrial-Strength
Code—From Myth to Reality”

– David Dill (Stanford University) on “I Think I Voted: E-voting vs. Democ-
racy”

– David Harel (Weizmann Institute) on “Playing with Verification, Planning
and Aspects: Unusual Methods for Running Scenario-Based Programs”

– Tony Hoare (Microsoft) on “The Ideal of Verified Software”
– Joe Stoy (Bluespec) on “Verification? Getting it Right the First Time”

The traditional CAV tutorial was replaced by a special symposium, “25 Years
of Model Checking,” organized by Orna Grumberg (Technion) and Helmut Veith
(Technical University of Munich). The symposium consisted of 12 invited lectures
delivered by leading researchers in the field of model checking.

This year, CAV was part of the Federated Logic Conference (FLoC 2006), and
was jointly organized with ICLP (International Conference on Logic Program-
ming), IJCAR (International Joint Conference on Automated Reasoning), LICS
(Logic in Computer Science), RTA (Rewriting Techniques and Applications),
and SAT (Theory and Applications of Satisfiability Testing). In particular, the
invited talk by David Dill was a FLoC plenary talk, and the invited talk by
David Harel was a FLoC keynote talk.

CAV 2006 had nine affiliated workshops:

– ACL2: 6th International Workshop on the ACL2 Theorem Prover and Its
Applications (joint with IJCAR)

– BMC: 4th International Workshop on Bounded Model Checking
– CFV: Workshop on Constraints in Formal Verification
– FATES/FV: Formal Approaches to Testing and Runtime Verification (joint

with IJCAR)



VI Preface

– GDV: Third Workshop on Games in Design and Verification
– SMT-COMP: Second Satisfiability Modulo Theories Competition
– TV: First Workshop on Multithreading in Hardware and Software: Formal

Approaches to Design and Verification
– V&D: First International Workshop on Verification and Debugging
– VSTTE: Workshop on Verified Software: Theory, Tools, and Experiments

We gratefully acknowledge financial support for CAV 2006 from Cadence
Design Systems, IBM, Intel Corporation, Microsoft Research, and NEC.

We thank the Program Committee members and the sub-referees for their
work in evaluating the submissions. We appreciate the efforts of the Program
Committee to attend the first physical PC meeting in the history of CAV. We
thank Rance Cleveland and the University of Maryland for hosting the CAV PC
meeting. We also thank the Steering Committee and the Chairs of CAV 2005
for their help and advice. Finally, we thank Andrei Voronkov for creating and
supporting the outstanding EasyChair conference management system.

June 2006 Thomas Ball
Robert B. Jones
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Minimizing Generalized Büchi Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Sudeep Juvekar, Nir Piterman

Session 2. Tools Papers

Ticc: A Tool for Interface Compatibility and Composition . . . . . . . . . . . . 59
B. Thomas Adler, Luca de Alfaro, Leandro Dias Da Silva,
Marco Faella, Axel Legay, Vishwanath Raman, Pritam Roy

FAST Extended Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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Formal Specifications on Industrial-Strength

Code—From Myth to Reality

(Invited Talk)

Manuvir Das

Center for Software Excellence
Microsoft Corporation
manuvir@microsoft.com

Abstract. The research community has long understood the value of
formal specifications in building robust software. However, the adoption
of any specifications beyond run-time assertions in industrial software
has been limited. All of this has changed at Microsoft in the last few
years. Today, formal specifications are a mandated part of the software
development process in the largest Microsoft product groups. Millions of
specifications have been added, and tens of thousands of bugs have been
exposed and fixed in future versions of products under development. In
addition, Windows public interfaces are formally specified and the Visual
Studio compiler understands and enforces these specifications, meaning
that programmers anywhere can now use formal specifications to make
their software more robust.

How did this happen? The key ingredients of success were picking
a critical programming error that costs software companies real money
(buffer overruns), and building an incremental solution in which pro-
grammers obtain value proportional to their specification effort. The key
technical aspects of this incremental approach include SAL, a lightweight
specification language for describing memory access behaviour of C/C++
programs; espX, a heavyweight modular checker that enforces consis-
tency between the code and the specification and validates memory ac-
cesses; and SALinfer, a lightweight global analysis that infers and inserts
a large fraction of the memory specifications automatically.

The goal of this talk is to share the technical story of the insights
that enabled SAL, espX and SALinfer, as well as the social and practical
story of how we were able to move organizations with thousands of pro-
grammers to an environment where the use of specifications is routine.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



I Think I Voted: E-Voting vs. Democracy

(FLoC Plenary Talk)

David Dill

Stanford University
dill@cs.stanford.edu

Abstract. Touch-screen voting machines store records of cast votes in
internal memory, where the voter cannot check them. Because of our
system of secret ballots, once the voter leaves the polls there is no way
anyone can determine whether the vote captured was what the voter
intended. Why should voters trust these machines?

In January 2003, I drafted a “Resolution on Electronic Voting” stating
that every voting system should have a “voter verifiable audit trail,”
which is a permanent record of the vote that can be checked for accuracy
by the voter, and which is saved for a recount if it is required. I posted
the page with endorsements from many prominent computer scientists.
At that point, I became embroiled in a nationwide battle for voting
transparency that has continued now for three years.

In this talk, I’ll explain the basic problems and solutions in electronic
voting.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Playing with Verification, Planning and Aspects:

Unusual Methods for Running Scenario-Based
Programs

(Abstract of FLoC Keynote Talk)

David Harel

The Weizmann Institute of Science
dharel@weizmann.ac.il

The talk first describes briefly the inter-object, scenario-based approach to pro-
gramming that I’ve been working on with colleagues and students for the last
eight years. It starts with the 1998 advent of the language of live sequence charts,
or LSCs, jointly with Werner Damm. LSCs extend message sequence charts, or
sequence diagrams with modalities, and thus can express possible, mandatory,
forbidden and fragmented scenarios of behavior. Following this, together with
my ex-PhD student Rami Marelly, we extended the language quite significantly,
adding time, symbolic instances, forbidden elements and more. We also devel-
oped a convenient method for programming LSCs directly from a GUI, called
play-in. The highlight of the work with Marelly, however, is play-out, a method
for executing LSC specifications, and it is play-out that serves to turn the entire
approach into a means for actually programming a system, and not just one for
eliciting requirements. The entire approach we then implemented in a tool called
the Play-Engine.

There is something very declarative about LSCs, and something akin to the
execution mechanisms of constraint programming and logic programming in the
play-out method, but for various reasons it is more subtle and therefore was
considerably difficult to work out. Still, the basic play-out mechanism deals with
the nondeterminism inherent in the LSC language in a naive way, just like the
way most software development tools that execute models deal with racing con-
ditions: it simply chooses one of the possible next things to do and does it. Of
course, this may lead to violations of the constraints present in the LSC specifi-
cation. Had another path been taken this could perhaps have been avoided.

The present talk discusses three more sophisticated ways to run LSCs, or,
more generally, to execute scenario based models and programs. Interestingly,
and somewhat unusually, the three methods use ideas from three quite separate
fields of computer science: verification, AI and programming methods.

The first method, smart play-out, which was developed with ex-PhD student
Hillel Kugler, translates the problem of finding a full non-violating superstep
(i.e., a sequence of actions that the system takes in response to an external
event) into a verification problem, and then employs model-checking to solve it.
The resulting superstep is then promptly executed in a way that is transparent to

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 3–4, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



4 D. Harel

the user. We thus, surprisingly, use hard-core verification not to prove properties
of programs or check consistency, etc., but to run programs.

The second method, planned play-out, under development with MSc student
Itai Segall, uses AI-style planning algorithms (we use one called Graphplan) to
do essentially the same. The advantage over smart play-out is in the fact that
we can find more than one possible superstep, and we have set-up a sort of user-
guided exploration mechanism to allow the user to navigate among possibilities
during execution.

While both these methods follow the original play-out mechanism in being an
interpreter approach to execution, the third method is a compilation one. With
PhD student Shahar Maoz, we exploit the similarities between aspect-oriented
programming and the inter-object nature of LSCs, and have worked out a scheme
for compiling LSCs directly into AspectJ. We use what we call scenario aspects
to coordinate the simultaneous monitoring and direct execution of the LSCs.

All three methods still require lots of work. None work yet on the full extended
LSC language, with time and symbolic instances being the main features that
cause difficulties. There is also a lot of research still to be done in refining and
strengthening the methods to scale up to large systems, and of course the jury is
still not in on which of these will serve to be the best, and on whether there are
other ideas for executing inter-object scenario-based programs. However, given
our own excitement about the general approach, and the feedback we have been
receiving, the topic seems to be deserving of the efforts needed.
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Abstract. The ideal of verified software has long been the goal of re-
search in Computer Science. This paper argues that the time is ripe to
embark on a Grand Challenge project to construct a program verifier,
based on a sound and complete theory of programming, and evaluated by
experimental application to a large and representative sample of useful
computer software.

1 Introduction

Computer Science owes its existence to the invention of the stored-program dig-
ital computer. It derives continuously renewed inspiration from the constant
stream of new computer applications, which are still being opened up by half
a century of continuous reduction in the cost of computer chips, and by spec-
tacular increases in their reliability, performance and capacity. The Science of
Programming has made comparable advances by the discovery of faster and
more general algorithms, and by the development of a wide range of specific ap-
plication programs, spreading previously unimaginable benefits into almost all
aspects of human life.

These amazing advances in computer application can distract attention from
the fact that Computer Science also has a central core of fundamental discoveries
which are particular to itself as an independent intellectual discipline. Comput-
ing Research is driven, like research in other mature branches of pure science,
by natural curiosity, exploring the basic foundations and limitations of the pro-
grammable computer, independent of any particular area of application. Because
of its effective combination of pure knowledge and applied invention, Computer
Science can reasonably be classified as a branch of Engineering Science.

Like all scientists, we are faced with the problem of complexity, both of com-
puters and of the programs that control them. Many software systems in wide-
spread and productive use today have grown and evolved over several decades.
Although they are human artefacts, they are now comparable in complexity with
the most complex known natural phenomena, for example the Human Genome,
whose raw binary code (nearly a gigabyte) has recently been laboriously decoded
and published. Geneticists are now engaged in the even more challenging task
of understanding the complexity of this code. They too are driven by curiosity
about the fundamental questions about the role of the genome as a blueprint
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for an entire human being. They want to find out firstly what the genes do, and
secondly how they do it. They want to discover the basic chemical principles
which govern genetic activity, and so to understand not only how but why the
genome works as it does. And finally, they wish to support all their discoveries
and generalisations by accumulation of sound scientific evidence. Even when the
scientist has accomplished all these objectives, it remains for the engineer and
the industrialist to find out how to exploit enlarged scientific understanding for
commercial profit.

The challenge facing Computer Science is very similar to that facing genet-
ics. Our first and entirely non-trivial task is to understand what a computer
program does. As for other engineering artefacts, the externally visible aspects
of program behaviour can be codified as a formal engineering specification, ex-
pressed in the relevant technical terminology. An explanation of how a program
works can be formally expressed in terms of types, assertions, and other re-
dundant annotations. They serve as internal specifications, attached at all the
major and minor program interfaces. The correctness of the explanation can in
principle be checked by a program analysis tool known as a program verifier. It
uses automated logical and mathematical proof techniques to check consistency
between a program and its internal and external specifications. A program ver-
ifier can play the same role in Software Engineering research as the automatic
tools that are now essential or even obligatory in other branches of Engineering,
to check the soundness and safety of engineering designs, long before they start
construction. An adequately specified and annotated program, which has passed
the scrutiny of an automatic program verifier, is said to be a verified program.
It offers highly credible evidence that the program will work in accordance with
its specification.

The ideal of verified software has been a long-standing inspiration to research
in basic Computer Science, and has driven the development of a number of
advanced tools performing many of the functions of a program verifier. The most
widely used tools concentrate on the detection of programming errors, widely
known as bugs. Foremost among these are modern compilers for strongly typed
languages, which give warnings of potential anomalies in a program, insofar
as those bugs that can be diagnosed without any knowledge of the program’s
specification. More advanced program analysers begin to take specifications into
account. These have been applied by the computer hardware industry to verify
programs that simulate the behaviour of computer chips, and they have averted
expensive hardware design errors. Other program analysers are routinely used
in the software industry to detect security risks and other errors in large-scale
legacy code and in modifications to it.

It is expected that normal commercially motivated development of these tools
will increase their power to detect more and more errors. This could be an
unending task. There is evidence that in large-scale software there will always
be more errors to detect, especially since correction of each error is itself prone
to error. Eventually only the rarest errors will remain: each one that occurs
in practice is extremely unlikely ever to occur again. Such errors are often not
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worth correcting, unless there is a risk that the error can be exploited by viruses,
bugs, or worms. Unfortunately the analysis of each error is both expensive and
error-prone. Like insects that carry disease, the least efficient way of eradicating
program bugs is by squashing them one by one. A completely different approach
is needed. The only sure safeguard against attack is to pursue the ideal of not
making the errors in the first place.

That is the goal of more advanced program verification tools. They have been
used in the design of critical embedded software applications, often to assist
human reasoning in achievement of correctness by construction. They have also
been used in support of academic teaching of the principles of programming. But
program verification tools of the present day are a long way from the original
vision of a program verifier described by Jim King in his Doctoral thesis in 1969.
The more practical analysers in use today have made significant compromises,
affecting the soundness of their guarantee of correctness as well as the expressive
power of the language in which specifications and programs are written. The
more idealistic tools are restricted in application by problems of scale, both in
the size of the programs treated and in the complexity of the programming
language accepted for analysis.

I suggest that the construction of a program verifier, with capabilities close
to the original ideal, may be achieved in the foreseeable future by a co-ordinated
long-term program of multi-national research, with three strands:

1. Theories: development and unification of the relevant general theories of
programming, to cover programming languages in use today. It would have
to include features of object orientation, inheritance, concurrency, etc.

2. Tools: incorporation of the theories into a coherent and co-ordinated toolset
for program analysis, with evolving capabilities for program verification by
a variety of techniques of constraint solving, model checking, and automatic
theorem proving.

3. Experiments: evaluation of the tools by experimental application to a large
and representative collection of real computer programs and their specifica-
tions, which are accumulated together with their specifications and proofs
in a scientific repository. As a long-term target, we may hope to accumulate
a million lines of verified code.

The project would employ computer scientists with varied specialist skills
and experience drawn from around the world. We must combine long-term co-
operation on strategic development with short-term scientific competition on
methods and tactics. We must co-ordinate long-term planning of the eventual
product with the setting of a hierarchy of intermediate goals. We must organise
a division of labour to construct each of the tools of the verification toolset,
and to verify each program in the expanding repository. We must ensure that
intermediate results are accumulated in the repository, so that experiments can
be repeated, and further research can build on their results. The broad scale,
the long duration, and the high scientific ideals of this project are comparable
to those of the Human Genome project; and maybe we too would be justified in
appropriating the title of a Grand Challenge.
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The methodology of the project derives its inspiration from the traditional
practices of pure scientific research—the construction of theories, the exploration
of their applicability by experiment, and (increasingly in the present day) the
development and use of computer tools to confirm the match between theory
and experimental result. The scientific understanding and technological advances
arising from successful completion of the project will afford the opportunity for
significant reduction in the direct and indirect costs currently associated with
programming error.

2 The Ideals of Pure Science

Traditionally, the pure science of Physics claims the crown as the most advanced
of the natural sciences. It satisfies a basic human curiosity by exploring the fun-
damental components and the structures of the material universe, and by giving
an account of its origin and history and even its future. The most sophisticated
mathematical concepts and theories have been developed, not just to describe
but also to explain the behaviour and mutual interactions of all material objects,
ranging is scale from quarks and elementary particles to clusters of galaxies and
super-clusters. Like other branches of pure science, Physics invents its own lan-
guage to ask its own abstruse questions, it sets its own agenda of investigation,
and it engages in massive long-term collaborative projects to confirm its most
general theories; a current example is the construction of high-energy particle
accelerators, by which it is hoped to confirm existence of the theoretically pre-
dicted Higgs boson.

Computer Science is better known as an applied science, having more in com-
mon with other branches of Engineering Science than with a pure science like
Physics. Its value has been fully demonstrated by the enormous contributions
that have been made by computers and their software to almost every aspect of
the modern technological world. And new opportunities for beneficial application
are still repeatedly opened up by continuing improvements in the versatility and
power and ubiquity and cheapness of computer hardware, reinforced by increases
in the speed of computer-mediated communications. The success of any particu-
lar software product or project requires an understanding not only of computers
and of their general-purpose software, but also of the domain in which they are to
be applied. In this respect, applied Computer Science, like applied Mathematics
and Statistics, is an inherently multi-disciplinary discipline.

Again like Mathematics and Statistics, Computer Science has a pure branch,
in which research is motivated by curiosity and high scientific idealism. We pur-
sue scientific ideals in the same way that Physicists to pursue the utmost ac-
curacy of measurement, or chemists seek the utmost purity of their materials.
For the computer scientist, the total correctness of computer programs is just
such an ideal. Scientists seek such ideals for their own sake, going far beyond the
current needs of the practicing engineer. The main daily concern of the engineer
is to accommodate unavoidable impurities in materials and inaccuracies in mea-
surement, just as computer users have to find workarounds for discovered errors
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in computer programs. Practical engineering is all about compromises that take
into account the particular circumstances and timescales of the current project,
and the particular interests of the current customer. For the engineer, good
enough is always good enough; and fixed budgets and delivery dates are always
an adequate excuse for imperfection. The scientist knows that only perfection
will protect his work from being superseded by later work of other scientists.

In contrast to the particularities exploited by the good engineer, the pure
scientist pursues generality of theory for its own sake. Although the success of
any particular experiment may demand skilful compromise, the long-term goals
are to transcend the particular circumstances of the current experiment, and to
extend the boundaries of application of the current theory. The ultimate accolade
goes to those who discover the most general concepts, explaining by the laws of
a unified theory such highly disparate phenomena as the fall of an apple and the
motion of the planets and moon.

Another ideal pursued by the scientist is certainty of knowledge, gained by
accumulation of scientific evidence from widely varied sources. For the engineer,
certainty is an irrelevance. His main concern is to make good decisions in the
face of prevailing uncertainties that would take far too much time and money to
remove.

Nevertheless, the scientist pursuing more abstract ideals, and accumulating
knowledge in collaboration with the scientific community, will often make totally
unexpected and unplanned contributions to the later success of the engineer and
even to the monetary profits sought by the commercial entrepreneur. One day,
the engineer realises that the purity and accuracy, which the pure scientist has
shown to be achievable in the laboratory, can be exploited on an industrial scale
in a deliverable product of a completely new kind. For example the silicon chip
is now manufactured in a fabrication line that achieves levels of environmen-
tal purity that were only dreamed of in the scientific laboratories of twenty
years ago. One day, the entrepreneur realises that a completely new market
can be found for the product, and money can be made from it. Amazingly, the
roles of scientist, engineer and entrepreneur are sometimes concentrated in a
single person. But only because that person recognises how different the roles
actually are.

The extra generality of theory sought by the pure scientist also offers long-term
benefits for the engineer. It is a more general theory that allows the practical
experience gained by the engineer on one project to be transferred to a later
project which is not identical to it. It is generality of theory that allows the
engineer to explore a range of product designs, and select the one that most
fully satisfies the needs of a broad market of potential customers. Experience of
modern technology reveals again and again the benefits of an understanding of
general theories: initially, they seem to go far beyond the needs of any partic-
ular case, but in the long run they lead to continuous stream of new products
which are more functional, more economic, and more reliable than anything that
preceded them.



10 T. Hoare

In summary, in the advancement of Engineering Science, the engineer and the
pure scientist play distinct but closely related roles; their contributions are com-
plementary to each other, and equally necessary. The role of the software engineer
in extending the benefits of computer application can be immediately recognised
and financially rewarded. But Computer Science also has a pure branch, which
deserves equal recognition. It seeks answers to the same basic questions that
inspire all branches of engineering science, no matter what their particular area
of application.

3 The Five Basic Questions of an Engineering Science

There are five basic questions that are common to all branches of Engineering
Science, whether the objects of study are ships, bridges, motor cars, genes or
computer software. In summary, they are

1. What does it do?
2. How does it work?
3. Why does it work?
4. How do we know?
5. How can we exploit the knowledge to improve the product?

The third and fourth questions are primarily the domain of pure science,
and the rest have more to do with engineering. The first engineering question is
“Precisely what is the product for, and exactly what does it do to meet its goals?”
The answer to this question is given in the form of an engineering specification
of the product. Such a specification is usually drafted as a guide to design as well
as the use of the product; it is therefore formulated at a high level of precision
and detail.

Secondly, the engineer wants to understand exactly how the product works.
This is described at varying levels of granularity and detail by the specifications
of the internal interfaces of the product. These explain the functions of each
component of the product, and how they interact. Often, the interface specifica-
tions are sufficiently complete and precise to permit mathematical calculations,
guaranteeing that the joint working of all the components will lead to the cor-
rect operation of the product as a whole. In a mature branch of engineering,
these calculations are implemented in a computer program, whose use is often
obligated by standards of professional practice, and in some cases even by law.

The pure scientist asks two further questions, perhaps even more basic, about
an engineering product. The first is the question “Why does the product work?”
The explanation must appeal to general scientific principles that apply not just
to a particular product, but to a general range of similar products, actual or
hypothetical. The answers are found in the basic laws and fundamental theory
of the relevant branches of pure Science. And finally, the scientist asks the most
important question of all: “How do we know that the answers to the previous
questions are actually right? How do we know that the theory corresponds to
reality in general, as well as in each particular case?”
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The answer is given by the experimental method, as recommended by Francis
Bacon; it is on experiment that our confidence in the whole of modern Science is
based. The desired connection between the theory and the observable experimen-
tal results often involves a long chain of mathematical reasoning and calculation.
In earlier times, these calculations were performed by hand; but now the essence
of the scientific theories is built into computer programs which analyse high
volumes of experimental data, and check its conformity with theory.

The last engineering question, on how to exploit the accumulated knowledge
for commercial advantage, is one which the scientist, pursuing knowledge for
its own sake, should not be required to answer in advance. Pure knowledge
is independent of application. That is why it is so valuable. There is plenty
of experience that the first and most important application of new knowledge
will be to meet needs that are entirely unpredicted when the research starts.
Knowledge is what prepares us to meet the problems of an unknown future. So
the fifth question is one that should not be answered until after the knowledge
has been accumulated.

The general scientific questions described above are applied by Computer
Scientists, to computer programs. The first question is “What does the program
do?”; it is answered by a functional specification of the system, expressed as
a formal description of the observable properties of its intended behaviour in
action. The second question “How does it work?” is answered by specifications
of the internal interfaces between components of the system, often expressed by
technically redundant declarations and assertions sprinkled in the text of the
program. The third question “Why does the program work?” is answered by
the theory of programming, which formalises the semantics of the programming
language in which the program is written: this provides a basis for the rules
which define the correctness or conformity relation between a program and its
accompanying documentation.

And the final question is “How do we know that the program is in fact
correct?” The theory of programming tells us that this final assurance can in
principle be given by mathematical reasoning and proof, guaranteeing that the
specifications are a logical consequence of the text of the program. This theory
has already been put into practice. Since the earliest times, proofs for small
and critical programs have been constructed manually, and checked by human
eye. In some cases, the proofs have been constructed as part of the development
process for the software. More recently, the reliability and effectiveness of the
verification has been increased by automation of the construction or the check-
ing of the proofs. In analogy with other branches of science, consider the text of
the program as the experimental data; consider the specifications of the external
and internal interfaces of the program as a theory of how and why the program
works. Now an automatic tool for program verification is one that checks the
consistency of the theory with the actual text of the program, just like the anal-
ysis tools of other branches of science and engineering. Its application greatly
increased confidence that the verified program when executed will conform to
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specification. That is the dream that has for over thirty years driven research in
basic Computing Science.

The tool that realises this dream is called a program verifier. Unfortunately
it does not yet exist.

4 Proposal for a Grand Challenge Project

A project to construct a program verifier will require the general support from
the entire computer science research community, and especially from those who
have the background, the skills and the experience to make a substantial con-
tribution to its progress. The relevant topics of research include programming
language semantics, programming principles, type theory, compiler construction,
program analysis and optimisation, test case generation, mathematical mod-
elling, programming methodology, design patterns, dependability, software evo-
lution, and construction of programmer productivity tools. In addition there are
various approaches to mechanical theorem proving, which include proof search,
decision procedures, SAT solving, first-order induction, higher order logic, alge-
braic reduction, resolution, constraint solving, model checking, invariant abstrac-
tion, and abstract interpretation. These lists are not intended to be complete;
new ideas are very necessary, and will be welcomed from any quarter.

The main challenge of a verification project will be to bring this wide range of
skills to bear on the evolution of a coherent toolset. At least an equal effort must
be devoted to exercise and evaluate the prototype tools on a realistic selection
of actual computer programs and their specifications. The history of computing
gives examples of amazing progress that can be made in the evolution of tools by
their repeated application to a series of agreed challenges. And the success of the
project would have an amazing impact on professional practice of programming,
on the justified confidence which Society places in computers, and on the further
progress of scientific research in consolidating and extending these benefits.

It is hoped that the majority of specialists in all these fields will welcome the
prospect that a program verifier will exploit the results of their research, for
the ultimate benefit of all programmers and users of computers. But most of
them will not wish to commit their own efforts to such a long-term and labori-
ous collaborative project. And rightly so. Most of scientific progress, and nearly
all breakthroughs, are made by individual scientists, working by themselves or
in a small local team; they need to preserve their freedom to pursue their own
bright ideas in their own directions, and to communicate their research results by
publication in the research literature. Other excellent engineering scientists may
be discouraged by the long timescales of the project. They will prefer to grasp
ever expanding opportunities for transfer of software verification technology into
direct industrial and commercial exploitation, and they will enjoy the more sig-
nificant and immediate benefits that can be achieved. The transfer of verification
technology to the computer chip industry took just such a course. A balance be-
tween short-term opportunistic researches and a long-term co-ordinated research
programme is essential. There should be a fruitful interchange of research skills,
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prototype tools and theoretical understanding between one style of research and
another. Indeed, even after completion of the long-term project, the practical
exploitation of a program verifier will be critically dependent on the continuing
progress of research in such areas as system dependability and software evolu-
tion, programming methodology and software engineering.

In conclusion, we should not expect more than a small percentage of the
relevant research communities to be engaged in a Grand Challenge project at
any one time. Success of the project is far from a foregone conclusion, and to
commit more than a small proportion of the world’s scarce resources of scientific
talent in any particular specialist area would be simply too great a risk.

The success of a Grand Challenge project depends on the agreement of a
substantial community of the world’s scientists, not only that the project is
worth while, but also that the time is ripe to start it now. The project can
hardly start without a measure of agreement on the following points:

1. Selection of an initial set of complementary tools, and allocation of respon-
sibility for their development.

2. Establishment of a repository of representative programs and specifications,
together with assertions, test cases, development histories, and other relevant
formal material.

3. Planning for adaptation of the tools and representative programs, so that
each tool applies to all programs.

4. Division of responsibility for supply of missing specifications, incomplete
assertions or missing code for specifications and programs in the repository.

5. Experimental application of tools to the material in the repository.
6. Accumulation of the results of experiment for exploitation in subsequent

research and development.
7. Identification of opportunities for improvement in the tools, and a planned

programme for their implementation.
8. Design of internal interfaces behind which specialised tools can be combined,

while preserving their freedom to evolve independently.
9. Election of an international guidance committee to oversee the progress and

direction of the research.

In later phases, the project would develop by expanding the range and ambi-
tion of the representative programs in the repository, by implementation of new
tools that combine technologies previously found successful on separate tests.

There is plenty of experience of large-scale, long-term collaborative projects in
other branches of science. For example, in Astronomy and in Nuclear Physics, all
new particle accelerators, satellites and telescopes are planned as long-term na-
tional or international collaborations. But such projects have so far been rare in
Computer Science, and this may be a symptom of the immaturity of our subject.
To embark on such a project now will need a fairly radical change to the culture
and the daily practice of our research. We will have to accept that a worthy
method of publication of new theoretical results will be to incorporate them in
a set of tools that has been designed by others. We will have to accept that the
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best progress will be made by combining the technologies currently promoted
in rival tools, each of which has hitherto aimed at universal applicability. And
above all, we will have to give the highest scientific rewards to those who apply
other peoples’ theories and other peoples’ toolsets to programs that have been
written by yet some-one else. It is the users of telescopes and particle accelerators
that win the Nobel prizes, not their builders. A broad division of labour among
specialists is commonplace in all mature branches of science: no-one expected
Einstein to test his own theories, and no-one expected Eddington to devise his
own theories for experiment. But in our subject such division of labour would
be a novelty. It is likely that successful conduct of a Grand Challenge project
may require radical changes in current modes of refereeing, publication prac-
tices, administration of research funding, and even the criteria for promotion of
academic researchers.

5 Costs and Benefits

Although the main goal of a Grand Challenge project is the advancement of
Science, it would be unrealistic to embark on the project without some consid-
eration of the costs and benefits for society as a whole.

The costs may be roughly estimated as between one and two thousand man-
years of scientific effort, expended throughout the world over a period of ten to
twenty years. This could be approaching ten percent of the world-wide availabil-
ity of research skills of those currently engaged in the relevant areas of formally
based research in Computer Science.

The benefits of program verification will be delivered in the form of reduc-
tion of the phenomenon of programming error, and a consequential increase of
confidence in the dependability of software systems in widespread use. Fortu-
nately, an estimate of the cost of programming errors is already available from
an independent source, which attributes them to an inadequate infrastructure
for program testing. Here is an extract from a recent report.

Based on the software developer and user surveys, the national [US]
annual costs of an inadequate infrastructure for software testing is esti-
mated to range from $22.2 to $59.5 billion. Over half of these costs are
borne by software users in the form of error avoidance and mitigation
activities. The remaining costs are borne by software developers [The
Economic Impacts of Inadequate Infrastructure for Software Testing,
US Dept. of Commerce Planning Report 02-03, May 2002].

This figure should probably be doubled to cover the world-wide costs of pro-
gramming error, and doubled again, if nothing is done about it, to cover the
growth in computer usage in the next decade. The prospect of saving just one
percent of this waste of resource for just one year would justify the allocation of
more funds to a Grand Challenge project in program verification than it could
ever find productive ways of spending. The limitation on the rate of progress will
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be the availability of researchers with the necessary background, skills and en-
thusiasm. Each year’s delay in the delivery and exploitation of the results of the
research will cost far more than the entire cost of the research project. Howevert,
the project is a risky one and there is no guarantee of return on investment.

Of course, full exploitation of the ultimate benefits arising from the project
will require more than simply the availability of a scientific prototype of a pro-
gram verifier. It will require that software engineers as a profession must adopt
a more scientific approach to the whole task of program development and evolu-
tion, from the elucidation of requirements and formalisation of specifications, to
the design and testing of program changes to be installed in running software. It
will require the development of re-usable libraries of useful concepts and speci-
fications, covering all the major application areas for computers. It will require
that the technology of verification developed in the project (though probably not
the prototype verifier itself) should be incorporated into commercially marketed
tool-sets. It will require the training and motivation of software engineers in the
use of the tools; and when the technology is widely available, its use may be
mandated, as in other branches of engineering, by official codes of engineering
practice, reinforced perhaps by professional, legal or commercial sanctions. It
is not the role of the scientist to predict or recommend such changes in law or
society—only to make them possible. And without a program verifier, they will
not be possible. In summary, the cost of technology transfer will be at least ten
times the cost of the basic research. Fortunately, success in the original research
project will greatly reduce the risk of this later and larger investment.

6 Public Esteem

In the present day, it must be admitted that the general public holds the profes-
sion of programming in rather low esteem. The newspapers delight in reporting
examples of major projects that are over budget, late, and sometimes even can-
celled before delivery. One of the many causes for these failures is the inadequacy,
the instability, or even the total absence of timely specifications, agreed in ad-
vance with the informed consent of the customer. And even after delivery, the
programs are full of annoying bugs, in some cases affecting many millions of
users throughout the world. Sometimes these bugs provide a target for the entry
and spread of viruses and worms in the computer network, which cause billions
of dollars of damage to those whose business relies on the web.

The low esteem of the programming profession is confirmed by an examination
of our normal every-day mode of working. Surely we are the only profession in
the world that expends half of its working life detecting and removing mistakes
committed in the other half. Our excuse is that without massive debugging
efforts, the software delivered to customers would be even less reliable. But other
professions have learnt that it pays to devote their main efforts to preventing
the errors from occurring in the first place. If a program verifier can help us to
do that, perhaps we can begin to earn the trust and respect of the public, and
even our own self-respect. In the recognised professions such as medicine and
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law, as well as in established branches of engineering, professional practitioners
strengthen their claim to the trust of the public, because they owe allegiance
to principles and ideals that transcend considerations of personal, political, or
financial advantage. It is important that Computer Scientists should insist on
their right to pursue similar impersonal ideals.

One of the beneficial side-effects of the announcement of a Grand Challenge
project is to raise public awareness and interest in the progress, the methods
and the results of scientific research. Astronomy has gained enormous visibility
from the spectacular achievements of the manned space programme, and the
human genome project has attracted many clever and enthusiastic students into
a scientific career in branches of biology. In general, young people are attracted
to science and engineering by their idealism and their innate curiosity about the
real world, or the workings of the products of engineering. A Grand Challenge in
verified software may not have the same glamour as those in Genetics or Physics,
but it makes the same kind of appeal to students who really want to understand
how things work and why.

7 Conclusion

The long-term benefits of an improved understanding of the relationship between
programs and their specifications are expressible as a vision of a future world in
which

1. The education and training of software engineers is based on scientific prin-
ciples.

2. Software engineers can be relied on to deliver new products on time, on
budget, and to specification.

3. No design or implementation errors are found in delivered software.
4. Changes and improvements to working software are undertaken with equal

confidence in their serviceability.
5. Computer software is always the most reliable component in any system

which it controls.

These goals will be achieved by basic advances in our understanding of Com-
puter Science. The advances are made by the normal scientific method of de-
velopment of a comprehensive theory, the conduct of experiment to confirm its
range of application, and the development of sophisticated computer programs
to check the match between experiment and theory.
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Abstract. We propose and evaluate a new algorithm for checking the
universality of nondeterministic finite automata. In contrast to the stan-
dard algorithm, which uses the subset construction to explicitly deter-
minize the automaton, we keep the determinization step implicit. Our
algorithm computes the least fixed point of a monotone function on the
lattice of antichains of state sets. We evaluate the performance of our
algorithm experimentally using the random automaton model recently
proposed by Tabakov and Vardi. We show that on the difficult instances
of this probabilistic model, the antichain algorithm outperforms the stan-
dard one by several orders of magnitude. We also show how variations
of the antichain method can be used for solving the language-inclusion
problem for nondeterministic finite automata, and the emptiness prob-
lem for alternating finite automata.

1 Introduction

The universality problem asks, given a nondeterministic finite automaton A over
the alphabet Σ, if the language of A contains all finite words over Σ, that is,
if Lang(A) = Σ∗. This problem is fundamental in automata theory, and several
important problems in verification reduce polynomially to this problem. The
standard algorithm for universality is to first determinize the automaton using
the subset construction, and then check for the reachability of a set containing
only nonaccepting states. The subset construction may construct a deterministic
automaton that is exponentially larger than the original automaton. This explo-
sion is in some sense unavoidable, as the universality problem is known to be
PSpace-complete [MS72]. Explicit determinization via the subset construction
is also useful to solve a wide range of other problems, such as checking the empti-
ness of alternating finite automata [CKS81, KV01], checking language inclusion
and language equivalence for two nondeterministic finite automata [HMU01],
and solving two-player safety games of incomplete information [Rei84].
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Recently, we showed that explicit determinization via the subset construction
can be avoided when solving two-player safety games of incomplete information.
To avoid the subset construction, we proposed in [DDR06] a lattice-theoretic so-
lution that comes in the form of a monotone function on the lattice of antichains
of state sets (an antichain is a set of ⊆-incomparable sets). The greatest fixed
point of this monotone function contains the solution to the strategy synthesis
problem. The three main advantages of the antichain method over the subset
construction are as follows. First, the new algorithm keeps determinization im-
plicit. Second, the antichain algorithm takes into account the safety objective of
the game and computes only what is necessary to establish the existence of a win-
ning strategy for that particular objective. Third, antichains of state sets allow
us to store only maximal subsets of states for which a winning strategy exists.
This is because if Player I has a strategy to keep the game in safe states starting
from a set s of states, then she also has such a strategy for all starting sets
s′ ⊆ s. We show in this paper that the idea of keeping determinization implicit
using antichains can also be applied to important problems of automata theory,
such as universality and language inclusion for nondeterministic automata, and
emptiness for alternating automata.

First, we show that the universality problem for nondeterministic finite au-
tomata can be solved on the lattice of antichains of state sets using a variation
of the monotone function proposed in our previous work. We reduce the uni-
versality problem to a two-player reachability game of incomplete information,
which can be solved by computing the least fixed point of this monotone func-
tion. We implemented this solution using NuSMV [CCGR99] and the CUDD
library [Som98]. To compare the performance of the antichain algorithm to the
performance of various implementations of subset-construction based algorithms,
we used a large set of examples generated in the probabilistic framework by
Tabakov and Vardi [TV05]. This framework was proposed with the express pur-
pose of comparing the performances of algorithms on finite automata. In their
experiments, the authors conclude that explicit determinization as implemented
in [Mø04] outperforms the algorithm of Brzozowski [BL80] as well as newer im-
plementations, which use symbolic methods for the subset construction. Our
experimental results show that our implementation of the antichain algorithm is
considerably faster, on the entire parameter space of the probabilistic framework,
than the most efficient implementation of the standard algorithm. In particular,
on the most difficult instances of the probabilistic framework, the antichain al-
gorithm outperforms [Mø04] by two orders of magnitude. For this comparison,
we are limited to automata with approximately 175 states, which is the limit
that the explicit-determinization approach can handle on the most expensive in-
stances of the probabilistic framework. On these difficult instances, the antichain
approach scales much better: we are able to successfully check universality for
automata with several thousands of states in less than 10 seconds.

Second, to show the generality of the antichain approach, we also give
new algorithmic solutions to the language-inclusion problem for nondeterminis-
tic automata, and to the emptiness problem for alternating automata. Again, no
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explicit determinization is performed. To solve the emptiness problem for alter-
nating automata, we use the same lattice as for universality and only change the
monotone function that operates on the lattice. To solve the language-inclusion
problem for nondeterministic automata, we need a slightly richer lattice.

Structure of the Paper. In Section 2, we review some basic notions about finite
automata. In Section 3, we introduce the lattice of antichains of state sets, and we
present the antichain algorithm for the universality problem for nondeterministic
automata. In Section 4, we report on two different symbolic implementations of
the antichain algorithm, and we compare their performances with the classical al-
gorithm that uses explicit determinization. In Section 5, we give antichain-based
solutions for nondeterministic language inclusion and alternating emptiness.

2 Finite Automata

Definitions. A (nondeterministic) finite automaton, NFA for short, is a tu-
ple A = 〈Loc, Init,Fin, Σ, δ〉, where Loc is a finite set of states (or locations),
Init ⊆ Loc is the set of initial states, Fin ⊆ Loc is the set of accepting (or
final) states, Σ is a finite alphabet, and δ ⊆ Loc × Σ × Loc is a (nondeter-
ministic) transition relation. A deterministic finite automaton, DFA for short,
is an NFA A = 〈Loc, Init,Fin, Σ, δ〉 such that for all states � ∈ Loc and all let-
ters σ ∈ Σ, there exists a unique state �′ ∈ Loc such that δ(�, σ, �′). A run of
the NFA A = 〈Loc, Init,Fin, Σ, δ〉 over a finite word w = σ1 . . . σn is a sequence
r = �0�1 . . . �n of states such that (1) �0 ∈ Init and (2) δ(�i, σi+1, �i+1) for all
0 ≤ i < n. The run r is accepting iff �n ∈ Fin. The language Lang(A) accepted
by A is the set of words w ∈ Σ∗ such that A has an accepting run over w.

Notations. Given a finite word w = σ1 . . . σn of size |w| = n, we write w(i) = σi

for the i-th letter of w, and w(0) = ε for the empty word. Given an NFA
A = 〈Loc, Init,Fin, Σ, δ〉, a state set s ⊆ Loc, and a letter σ ∈ Σ, we define
postAσ (s) = {�′ ∈ Loc | ∃� ∈ s : δ(�, σ, �′)}, preA

σ (s) = {� ∈ Loc | ∃�′ ∈ s :
δ(�, σ, �′)}, and cpreA

σ (s) = {� ∈ Loc | ∀�′ ∈ Loc : δ(�, σ, �′) → �′ ∈ s}. Note that
Loc \ cpreA

σ (s) = preA
σ (Loc \ s).

Operations. Given two NFAs A and B, we denote by A⊗ B the synchronous
product of the two automata, and by A ⊕ B the sum of the automata. The
language accepted by the product is Lang(A ⊗ B) = Lang(A) ∩ Lang(B) and
the language accepted by the sum is Lang(A⊕ B) = Lang(A) ∪ Lang(B). Given
a DFA A, we denote by A the complement of A, which accepts the language
Lang(A) = Σ∗ \ Lang(A).

Problems. The emptiness problem for NFAs is to decide, given an NFA A,
if Lang(A) = ∅. This problem is solvable in time linear in the size of A. The
universality problem for NFAs is to decide, given an NFA A, if Lang(A) = Σ∗.
This problem is much harder than emptiness: it is complete for PSpace [MS72].
The classical algorithm for deciding universality first determinizes A, and then
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checks emptiness of the complement. The difficult step is the determinization, as
it may cause an exponential blow-up in the number of states of the automaton.
The language-inclusion problem for NFAs is to decide, given two NFAs A and B,
if Lang(A) ⊆ Lang(B). This problem is also complete for PSpace. The classical
algorithm for deciding language inclusion checks emptiness of the product of A
with the complement of B. In the next section, we propose a new approach to
solve the universality problem, which does not involve explicit determinization,
and later we extend the approach to solve also language inclusion.

3 A Fixed Point to Solve Universality

Two Lattices of Antichains. Let Loc be a set (in our case, a set of states of
some automaton). An antichain over Loc is a set q ⊆ 2Loc such that ∀s, s′ ∈ q :
s �⊂ s′. Thus q is a set of pairwise incomparable subsets of Loc (with regard to set
inclusion). We denote by L the set of antichains over Loc. We define the following
partial orders: for two antichains q, q′ ∈ L, let q � q′ iff ∀s ∈ q · ∃s′ ∈ q′ : s ⊆ s′,
and let q �̃ q′ iff ∀s′ ∈ q′ · ∃s ∈ q : s ⊆ s′. The two partial orders � and �̃
yield complete lattices on the set L of antichains. This can be seen as follows.
Given a set q ⊆ 2Loc (not necessarily an antichain), a set s ∈ q is maximal
in q iff ∀s′ ∈ q : s �⊂ s′. Similarly, s ∈ q is minimal in q iff ∀s′ ∈ q : s′ �⊂ s.
We write �q� (resp. �q�) for the set of maximal (resp. minimal) elements of q.
Given two antichains q, q′ ∈ L, the �-lub (least upper bound) of q and q′ is
the antichain q � q′ = �{s | s ∈ q ∨ s ∈ q′}�; the �-glb (greatest lower bound)
is the antichain q � q′ = �{s ∩ s′ | s ∈ q ∧ s′ ∈ q′}�. Similarly, the �̃-lub is q �̃
q′ = �{s ∪ s′ | s ∈ q ∧ s′ ∈ q′}�, and the �̃-glb is q �̃ q′ = �{s | s ∈ q ∨ s ∈ q′}�.
These definitions can be extended to lub’s and glb’s of arbitrary (nonbinary)
sets in the obvious way, yielding the operators

⊔
,
�

,
⊔̃

, and
�̃

. Adding suitable
bottom and top elements, we obtain the following lemma.

Lemma 1. 〈L,�,
⊔
,
�
, ∅, {Loc}〉 and 〈L, �̃,

⊔̃
,
�̃
, {∅}, ∅〉 are complete lattices.

We call these two lattices the lattice of antichains and the dual lattice of an-
tichains, respectively. We show how to solve the universality problem for nonde-
terministic finite automata using either lattice.

Game Interpretation of Universality. Consider the following game played
by a protagonist and an antagonist. The protagonist wants to establish that a
given NFA A does not accept the language Σ∗. The protagonist has to provide a
finite word w such that, no matter which run of A over w the antagonist chooses,
the run does not end in an accepting state. This game is a one-shot game.
However, to obtain a fixed point solution to the universality problem, we can
consider a multi-round game interpretation of this problem: in each round of the
game, the protagonist provides a single letter σ, and the antagonist decides how
to update the state of A on input σ according to the nondeterministic transition
relation. To be equivalent to the one-shot game, the protagonist must not be able
to observe the state of the automaton, which is chosen by the antagonist. So,
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we have to consider a game where the protagonist cannot distinguish between
states of the automaton: this is a game of imperfect information. We can solve
the universality problem by looking for the existence of winning strategies in such
games. In a recent paper, we showed that safety games of imperfect information
can be solved by computing the greatest fixed point of a monotone function
on the lattice of antichains [DDR06]. We show here that reachability games of
imperfect information can be solved by computing a least fixed point on this
lattice. This gives a new algorithm for checking universality.

Using the Lattice of Antichains to Solve Universality. Given an NFA
A = 〈Loc, Init,Fin, Σ, δ〉, we define the following monotone function on the lattice
L of antichains over Loc. For an antichain q ∈ L, let

CPreA(q) = �{s | ∃s′ ∈ q · ∃σ ∈ Σ : s = cpreA
σ (s′)}�.

So, a set s of states belongs to the antichain CPreA(q) iff it is maximal and there
exist a state set s′ ∈ q and a letter σ ∈ Σ such that for all states � ∈ s, the set
of states �′ with δ(�, σ, �′) is in s′. This monotone function can be used to solve
the universality problem for NFAs. This is formalized in the next theorem.

Theorem 2. Let A = 〈Loc, Init,Fin, Σ, δ〉 be an NFA, and let F =
�{

q | q =
CPreA(q) � {Fin}

}
. Then Lang(A) �= Σ∗ iff {Init} � F .

Proof. First, assume that Lang(A) is not universal. Let w ∈ Σ∗ \ Lang(A) be
a word of size |w| = n. Consider the sequence s0, s1, . . . , sn of state sets such
that (1) s0 = Init, (2) si = postAw(i)(si−1) for all 1 ≤ i ≤ n, and (3) sn ⊆ Fin
(recall that A has no accepting run over w). We prove by induction on k that
{sn−k} � F . For k = 0, since sn ⊆ Fin, we obtain immediately {sn} � F .
For the inductive case, assume that {sn−k} � F for all 0 ≤ k < i, and let us
show that {sn−i} � F . Observe that by definition, for σ = w(n − i + 1) we
have postAσ (sn−i) = sn−i+1. Therefore {sn−i} � CPreA({sn+1−i}), and by the
monotonicity of CPreA and the induction hypothesis, we get {sn−i} � CPreA(F)
and {sn−i} � CPreA(F) � {Fin}, which is equivalent to {sn−i} � F , as F is a
fixed point. In particular, we have {s0} � F , that is, {Init} � F .

Second, assume that {Init} � F . We construct a word w �∈ Lang(A). Consider
the infinite sequence q0, q1, q2, . . . of antichains defined by (1) q0 = ∅ and (2) qi =
CPreA(qi−1)�{Fin} for all i ≥ 1. By Tarski’s fixed point theorem, we know that
F = qn for some n ∈ N. We construct an integer k < n, a sequence s0, s1, . . . , sk

of k + 1 state sets, and a word w of size k such that {si} � CPreA(qn−i−1) and
postAw(i+1)(si) ⊆ si+1 for all 0 ≤ i < k. We start with s0 = Init so that {s0} � qn.

Then, we have either {s0} � {Fin} or {s0} � CPreA(qn−1) (because {s0} is a
singleton). In the first case, we stop the construction with k = 0 and w = ε. In
the second case, we continue the construction inductively. Assume that we have
constructed {si−1} � CPreA(qn−i) for some i ≥ 1. By the definition of CPreA, we
know that there are σi ∈ Σ and si ∈ qn−i such that postAσi

(si−1) ⊆ si. We choose
w(i) = σi. Then {si} � qn−i, and thus either {si} � {Fin} and we stop with
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k = i and w = σ1 . . . σi, or {si} � CPreA(qn−i−1). This construction stops for
some k < n, as q1 = {Fin} and {sk} � {Fin}. The sequence s0, s1, . . . , sk shows
that A has no accepting run over w, because (1) s0 = Init, (2) postAw(i)(si−1) ⊆ si

for all 1 ≤ i ≤ k, and (3) sk ⊆ Fin. Hence w �∈ Lang(A). �

The algorithm that consists in computing the least fixed point F from Theorem 2
through the successive approximation sequence q0 � q1 � q2 � · · · (as defined in
the proof) is called the backward antichain algorithm. The computation is similar
to the subset construction used in the backward determinization of A, with the
essential difference that it maintains only sets of states that are maximal in the
subset-inclusion order.

Using the Dual Lattice of Antichains to Solve Universality. In the
previous algorithm, the automaton is traversed backward starting from the set
of nonaccepting states. Using the dual lattice of antichains, we can formulate
a solution that traverses the automaton forward starting from the set of initial
states. Given an NFA A = 〈Loc, Init,Fin, Σ, δ〉 and an antichain q ∈ L, let

PostA(q) = �{s | ∃s′ ∈ q · ∃σ ∈ Σ : s = postAσ (s′)}�.

This function is monotone on the dual lattice of antichains. We can solve the
universality problem for NFAs by iterating Post as follows, defining a forward
antichain algorithm.

Theorem 3. Let A = 〈Loc, Init,Fin, Σ, δ〉 be an NFA, and let F̃ =
�̃ {

q | q =
PostA(q) �̃ {Init}

}
. Then Lang(A) �= Σ∗ iff F̃ �̃ {Fin}.

The computation of the least fixed point F̃ is similar to the standard, forward
subset construction used in the determinization of A, with the essential difference
that it maintains only minimal sets of states.

Relationship Between Forward and Backward Algorithms. Given an
NFA A = 〈Loc, Init,Fin, Σ, δ〉, the reverse of A is the NFA B = 〈Loc,Fin, Init, Σ,
δ′〉, where for all states �, �′ ∈ Loc and all letters σ ∈ Σ, we have δ′(�, σ, �′) iff
δ(�′, σ, �). Note that for all σ ∈ Σ and all s ⊆ Loc, we have preA

σ (s) = postBσ (s).
For a set s ⊆ Loc, let s be the complement of s relative to Loc, that is, s = Loc\s.
For a set q ⊆ 2Loc, let q̃ = {s | s ∈ q}. Note that q̃ is an antichain iff q is an
antichain, and �̃q� = �q̃�.

Lemma 4. Let A = (Loc, Init,Fin, Σ, δ) be an NFA, let B be its reverse, and let
q be an antichain over Loc. Then q′ = CPreA(q) iff q̃′ = PostB(q̃).

From this lemma, it follows that the forward and backward approaches are equiv-
alent in the following sense: for every instance A of the universality problem that
is difficult for the forward antichain algorithm, there is an equally difficult in-
stance (namely, the reverse of A) for the backward antichain algorithm, and
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�0 �1 �2 �k−1 �k

0, 1 0, 1

1 0, 1 0, 1 0, 1
. . .

0, 1

Fig. 1. A family of NFAs Ak, k ≥ 2, for Theorem 5

vice versa. Indeed, let q0 � q1 � q2 � · · · be the sequence of antichains that
are constructed when computing the least fixed point F from Theorem 2 (as
defined in the proof of the theorem); and let q′0 �̃ q′1 �̃ q′2 �̃ · · · be the se-
quence of antichains that are constructed when computing the least fixed point F̃
from Theorem 3, defined as follows: (1) q′0 = ∅ and (2) q′i = PostB(q′i−1) �̃ {Fin}
for all i ≥ 1. Using Lemma 4 and induction, we can prove that qi = q̃′i for all
i ≥ 0.

Comparison with Explicit Determinization. We call the classical algo-
rithm for solving the universality problem for NFAs the subset algorithm: it
first determinizes the NFA using a subset construction, and then checks if every
reachable state in the resulting DFA is accepting. The determinization is stopped
whenever a rejecting state is encountered. Usually, the DFA is constructed in a
breadth-first forward search, but it can also be done in a backward fashion.

Theorem 5. For checking universality, there exists an infinite family of NFAs
Ak, with k ≥ 2 states, for which the forward subset algorithm is exponential,
and the (forward and backward) antichain algorithms are polynomial. There also
exists an infinite family of NFAs Bk for which the backward subset algorithm is
exponential, and the antichain algorithms are polynomial.

Proof. Consider the family of NFAs Ak, k ≥ 2, over the alphabet Σ = {0, 1}
shown in Fig. 1. The automaton Ak has k + 1 states, �0, . . . , �k, all accepting
except �k. There is only one initial state: Init = {�0}. Every Ak is universal,
as the initial state has a self-loop labeled with Σ. The forward determinization
of Ak has 2k states. Hence the forward subset algorithm is exponential on the
family Ak, k ≥ 2. However, the backward antichain algorithm terminates in
polynomial time, as the sequence q0 = {{�k}}, and qi+1 = CPreAk(qi) � {{�k}}
for i ≥ 0, stabilizes after k iterations with qi = {{�k−i, . . . , �k}} for i < k, and
qk = qk−1. The test {Init} � qi requires linear time. The forward antichain
algorithm terminates after a single iteration with F̃ = {Init}, and the test F̃ �̃
{{�k}} is done in constant time.

A similar proof holds for the second part of the theorem: for the family Bk,
k ≥ 2, choose each Bk to be the reverse of Ak. �
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Algorithm 1. Backward antichain algorithm for testing universality
Data : a nondeterministic finite automaton A = 〈Loc, Init, Fin, Σ, δ〉.
begin

1 Start← {Init};
2 F ← {Fin};
3 Frontier ← F ;
4 while (Frontier �= ∅) ∧ (Start �� Frontier) do

5 Frontier ← {q ∈ CPreA(Frontier) | q �� F};
6 F ← F 
 Frontier ;

7 return (Start �� Frontier);
end

4 Implementation and Practical Evaluation

Two Symbolic Implementations of Antichains. We implemented our new
algorithm for testing universality on top of NuSMV [CCGR99] and the BDD
library CUDD [Som98]. We considered two encodings of NFAs in NuSMV, and
correspondingly, two encodings of antichains of state sets using BDDs.

Fully Symbolic Encoding. In the first encoding, we associate a boolean variable
with each state of an NFA. A valuation of the variables corresponds to a state
set, and a BDD represents a set of state sets. Two valuations v1 and v2 for a set
X of variables are incomparable iff there exist x, y ∈ X such that v1(x) > v2(x)
and v1(y) < v2(y). If the BDD contains only valuations that are incomparable,
then it symbolically represents an antichain of state sets. We call this encoding
fully symbolic.

Semi-symbolic Encoding. In the second encoding, we associate an integer with
each state of the automaton. Then a single integer counter is used to encode the
current state. A BDD represents a set of integer values and so a set of states.
An antichain of state sets is represented by a set of BDDs that are incomparable
for valuation inclusion. We call this encoding semi-symbolic.

Algorithm. For both encodings, we use the backward Algorithm 1 to check uni-
versality. To avoid computing CPre twice for the same set, the algorithm com-
putes iteratively CPre only on the frontier sets, which are the sets that were
added to the approximation F of the least fixed point F in the previous it-
eration. When the automaton is not universal, then F is not fully computed,
because we stop the computation as soon as one of the sets in F contains all
initial states.

The Randomized Model. To evaluate the antichain algorithm and compare
with the subset algorithm, we use a random model to generate NFAs. This
model was recently proposed by Tabakov and Vardi to compare the efficiency
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of some algorithms for automata [TV05]. In the model, the input alphabet is
fixed to Σ = {0, 1}, and for each letter σ ∈ Σ, a number kσ of different state
pairs (�, �′) ∈ Loc×Loc are chosen uniformly at random before the corresponding
transitions (�, σ, �′) are added to the automaton. The ratio rσ = kσ

|Loc| is called the
transition density for σ. This ratio represents the average outdegree of each state
for σ. In all experiments, we choose r0 = r1, and denote the transition density
by r. The model contains a second parameter: the density f of accepting states.
There is only one initial state, and the number m of accepting states is linear
in the total number of states, as determined by f = m

|Loc| . The accepting states
themselves are chosen uniformly at random. Observe that since the transition
relation is not always total, automata with f = 1 are not necessarily universal.

Tabakov and Vardi have studied the space of parameter values for this model
and argue that “interesting” automata are generated by the model as the two
parameters r and f vary. They have run large tests to evaluate the probability
for an automaton to be universal as a function of the parameters. We reproduced
those experiments for a greater space of parameter values and obtained a similar
distribution (Fig. 2). To generate each sample point, we checked the universality
of 200 random automata with 30 states.

Performance Comparison. We compare the performance of the backward
antichain algorithm with the tool dk.brics.automaton developed by Møller
[Mø04], which implements the forward subset algorithm and stops determiniza-
tion whenever a rejecting state is encountered. According to the experiments
of Tabakov and Vardi, this tool, which uses explicit state representation, is the
most efficient one for checking universality [TV05]. For the comparison, we use
the semi-symbolic encoding of antichains, as that turns out to be much more
efficient than the fully symbolic encoding. The comparison is carried out on
the whole parameter space of the randomized model. All experiments are con-
ducted on a biprocessor Linux station (two 3.06Ghz Intel Xeons with 4GB of
RAM). We only measure the execution times for the universality test in both
approaches, not the time for parsing the input files and constructing the initial
data structures.

In Fig. 3, Fig. 4, and Fig. 5, we present the execution times for checking
universality by the explicit subset algorithm and the semi-symbolic antichain
algorithm. To generate each sample point, we check the universality of 100 ran-
dom automata with |Loc| = 175 (this is roughly the largest size that the subset
algorithm is able to handle on the entire parameter space with the available
memory). In Fig. 3, we present the median execution times for testing universal-
ity by the subset approach as a function of r (transition density) and f (density
of accepting states). The figure shows that the universality test is most difficult
when r = 2 and f = 1. For the same instances, the median execution time of
our algorithm is always less than the time unit of the system clock (1ms).

In Fig. 4 and Fig. 5, we present the average execution times for testing univer-
sality by the subset approach and the semi-symbolic antichain approach, respec-
tively. Both figures exhibit similar peaks, showing that the difficult instances are
roughly the same for both approaches. However, the antichain algorithm is much
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Fig. 2. Probability of universal au-
tomata (|Loc| = 30)

Fig. 3. Median execution time for the
subset algorithm (|Loc| = 175)

Fig. 4. Average execution time for the
subset algorithm (|Loc| = 175)

Fig. 5. Average execution time for
the semi-symbolic antichain algorithm
(|Loc| = 175)

faster. For the most difficult parameter values (r = 2 and f = 1), the antichain
algorithm is 165 times faster than the subset algorithm. Intuitively, these in-
stances are difficult for both algorithms for the following two reasons. First, the
probability to be universal for these parameter values is around 50 percent, and
we believe that most of these instances are neither trivially universal nor trivially
nonuniversal. Second, when an automaton is universal, the subset method has
to build the entire deterministic automaton, and the antichain method has to
complete the computation of the least fixed point.

In Fig. 6 we present the ratio of the average time for the subset approach and
the average time for the antichain approach as a function of the densities. The
comparison for r ≤ 1.4 and f ≤ 0.2 is not very significant, because the execution
times are very close to the precision of the system clock (1ms). For the rest
of the parameter space, the antichain algorithm performs always better (up to
200 times better). Finally, in Fig. 7, we show that the semi-symbolic antichain
approach scales well when the size of the automaton increases, in contrast to
the subset approach. For the experiments we generated randomly 100 automata
per sample point for automaton sizes under 200 states, and 30 automata per
sample point for sizes over 200 states. The densities are again r = 2 and f = 1.
The antichain algorithm is able to handle random automata with 4000 states
in the average time of 12s. The average size of the final antichain (for universal
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Fig. 6. Average execution time ratio
(|Loc| = 175)
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Fig. 7. Average execution times for the
subset and semi-symbolic antichain algo-
rithms (transition density 2; accepting-
states density 1)

automata) is 217 state sets for automata with 4000 states. We did not pursue
experiments with larger automata, because we would have had to modify the
automaton generator, as it is not designed for such large automaton sizes. The
subset algorithm quickly exceeds the memory limit when the number of states
nears 200, so the curve is quite short in the left corner of Fig. 7.

As mentioned above, the semi-symbolic antichain encoding gives far better
performances on the random model than the fully symbolic encoding, as shown
in Table 1 for the difficult instances (r = 2 and f = 1). It also turns out that
the fully symbolic encoding does not scale well when the size of the automaton
increases. Each sample point is computed on a set of 50 random automata with
less than 100 states. For 175 states, the sample size is 100, and for more states,
the sample size is 30. The number of boolean variables of the BDDs that encode
antichains seems to be the reason for the difference in performances: the number
of boolean variables grows linearly with the number of states in the fully sym-
bolic encoding, but logarithmically in the semi-symbolic encoding. We have also
implemented the forward antichain algorithm with the semi-symbolic encoding.

Fig. 8. Average execution time for the forward semi-symbolic antichain algorithm
(|Loc|=175)
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Table 1. Average execution times (ms) for checking universality with r = 2 and f = 1

number of states 20 40 60 80 100 175 500 1000 1500 2000 2500 3000 3500 4000

subset algorithm 23 50 141 309 583 2257

fully symb. antich. 3 14 70 175 421 6400

semi-symb. antich. 1 2 2 3 5 14 76 400 973 1741 2886 5341 9063 13160

On the random model, this approach is roughly twice as slow as the backward
antichain algorithm, which is still better by several orders of magnitude than
the subset algorithm. See Fig. 8 for the experimental results.

5 Beyond Universality

Language Inclusion. We show that language inclusion can be checked using
an antichain algorithm based on a slightly richer lattice. Consider two NFAs
A = 〈LocA, InitA,FinA, Σ, δA〉 and B = 〈LocB, InitB,FinB, Σ, δB〉 over the same
alphabet. We wish to check whether Lang(A) ⊆ Lang(B). An antichain over
LocA × 2LocB is a set q ∈ 2LocA×2LocB such that for all (�1, s1), (�2, s2) ∈ q with
�1 = �2 and s1 �= s2, we have neither s1 ⊆ s2 nor s2 ⊆ s1. Given a set q ∈
2LocA×2LocB , an element (�, s) ∈ q is maximal iff for every s′ with s′ ⊃ s, we
have (�, s′) �∈ q. We denote by �q� the set of maximal elements of q. Given two
antichains q and q′, we define

q �l q
′ iff ∀(�, s) ∈ q · ∃(�, s′) ∈ q′ : s ⊆ s′;

q �l q
′ = �{(�, s) | (�, s) ∈ q ∨ (�, s) ∈ q′}�;

q �l q
′ = �{(�, s ∩ s′) | (�, s) ∈ q ∧ (�, s′) ∈ q′}�.

Let CPrel(q) = �{(�, s) | ∃σ ∈ Σ · ∃(�′, s′) ∈ q : �′ ∈ δA(�, σ) ∧ postBσ (s) ⊆ s′}�.

Theorem 6. Let A and B be two finite automata, and let Fl =
�

l{q | q =
CPrel (q) �l (FinA × {FinB})}. Then Lang(A) �⊆ Lang(B) iff there exists a state
� ∈ InitA such that {(�, InitB)} �l Fl.

Typically, A is an “implementation” automaton, and B a “specification” au-
tomaton. Often A is given as a synchronous product of automata, that is,
A = A1 ⊗ · · · ⊗ An. Then we can apply our method with antichains over
LocA1 × · · · × LocAn × 2LocB . However, in the common case where the imple-
mentation components Ai are deterministic (but the specification B is nonde-
terministic), an alternative approach is possible, and likely more efficient. The
following lemma shows that in this case, the language-inclusion problem can be
reduced in polynomial time to the universality problem. This reduction has the
advantage of avoiding the construction of the product of the implementation
components.

Lemma 7. For a set A1, . . . , An of DFAs and an NFA B, we define the sum
C = A1⊕· · ·⊕An⊕B. Then Lang(A1)∩. . .∩Lang(An) ⊆ Lang(B) iff Lang(C) =
Σ∗.
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Emptiness of Alternating Automata. The antichain algorithm for checking
the universality of NFAs can be generalized to checking the emptiness of alter-
nating automata, using the same lattice with a slight modification of the function
CPre. In alternating automata, the transitions are given by boolean formulas.
For example, ρ(�, σ) = �1∨(�2∧�3) means that in state �, a word of the form σ ·w
is accepted if either w is accepted in �1, or w is accepted in both �2 and �3. Our
formal definitions follow [KV01]. Let B+(Loc) be the set of monotone boolean
formulas over Loc, defined by the grammar ϕ ::= true | � | ϕ ∧ ϕ | ϕ ∨ ϕ, where
� ∈ Loc. A set s ⊆ Loc of states satisfies a formula ϕ ∈ B+(Loc) (denoted s |= ϕ)
iff ϕ is equivalent to true when the states in s are replaced by true, and the states
in Loc \ s by false.

An alternating finite automaton, or AFA, is a tuple A = 〈Loc, Init,Fin, Σ, ρ〉,
where Loc, Init, Fin, and Σ are as for NFAs, and ρ: Loc × Σ → B+(Loc) is
a transition function. The NFAs can be seen as a subclass of the AFAs: the
transition relation δ of an NFA can be translated into the transition function ρ
of AFA such that ρ(�, σ) = �1∨. . .∨�n for {�1, . . . , �n} = {�′ ∈ Loc | (�, σ, �′) ∈ δ}.
A run of the AFA A over a finite word w is a tree T = (N,⇒), whose nodes
are a prefix-closed set N ⊆ Loc+ of nonempty sequences of states. The level
of a node x = �1 . . . �n in N is its size |x| = n, and the last element of x is
last(x) = �n. The set N contains a single node at level 1, the root, which is a
state in Init. We require that for all x ∈ N , we have |x| ≤ |w| + 1. The child
relation ⇒⊆ N × N satisfies the following condition: for all nodes x ∈ N , we
have (1) if x⇒ x′, then x′ = x · � for some � ∈ Loc, and (2) if |x| ≤ |w|, then the
set s = {last(x′) | x ⇒ x′} is such that s |= ρ(last(x), w(|x|)). A leaf of T is a
node x of level |x| = |w| + 1. A run T is accepting iff last(x) ∈ Fin for all leaves
x of T . The language Lang(A) accepted by A is the set of words w ∈ Σ∗ such
that A has an accepting run over w.

The emptiness problem for AFAs is to decide, given an AFA A, whether
Lang(A) = ∅. Since complementation of AFAs is easy (by dualizing the tran-
sition function and complementing the set of accepting states), the universality
problem for AFAs (to decide, given an AFA A, if Lang(A) = Σ∗) is polynomi-
ally equivalent to emptiness. Given an AFA A = 〈Loc, Init,Fin, Σ, ρ〉, consider
the following monotone function on the lattice L of antichains over Loc: for an
antichain q ∈ L, let

CPrea(q) = �{s | ∃s′ ∈ q · ∃σ ∈ Σ · ∀� ∈ s : s′ |= ρ(�, σ)}�.

This monotone function on L can be used to decide the emptiness problem for
AFAs, as shown in the following theorem.

Theorem 8. Let A = 〈Loc, Init,Fin, Σ, δ〉 be an AFA, and let Fa =
�{

q | q =
CPrea(q) � {Fin}

}
. Then Lang(A) �= ∅ iff {Init} � Fa.

6 Conclusions

We showed that explicit determinization can be avoided when solving several
problems related to NFAs on finite words. Our new solutions to the universality
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and language-inclusion problems for NFAs, and to the emptiness problem for
AFAs, evaluate the least fixed point of simple monotone functions on lattices of
antichains. They are goal-directed and leave determinization implicit. We imple-
mented the new algorithm for the universality problem and compared its perfor-
mance to that of the classical algorithm (which uses explicit determinization).
Our method outperforms the classical one dramatically on the entire parame-
ter space of a randomized model. On the difficult instances of the randomized
model, our algorithm is several orders of magnitude faster than the classical one.

We plan to pursue several future directions. First, as the performance of the
new algorithm on the randomized model is very encouraging, we want to apply
antichain algorithms to practical problems. Second, the antichain method does
not extend trivially to automata over infinite words. We need further research
to see if our results can be extended to such cases.

Acknowledgements. We thank Deian Tabakov for his code and helpful answers
about the randomized model.
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Abstract. In automated synthesis, we transform a specification into a system
that is guaranteed to satisfy the specification. In spite of the rich theory devel-
oped for system synthesis, little of this theory has been reduced to practice. This
is in contrast with model-checking theory, which has led to industrial develop-
ment and use of formal verification tools. We see two main reasons for the lack
of practical impact of synthesis. The first is algorithmic: synthesis involves de-
terminization of automata on infinite words, and a solution of parity games with
highly complex state spaces; both problems have been notoriously resistant to ef-
ficient implementation. The second is methodological: current theory of synthesis
assumes a single comprehensive specification. In practice, however, the specifi-
cation is composed of a set of properties, which is typically evolving – properties
may be added, deleted, or modified.

In this work we address both issues. We extend the Safraless synthesis al-
gorithm of Kupferman and Vardi so that it handles LTL formulas by translating
them to nondeterministic generalized Büchi automata. This leads to an exponen-
tial improvement in the complexity of the algorithm. Technically, our algorithm
reduces the synthesis problem to the emptiness problem of a nondeterministic
Büchi tree automaton A. The generation ofA avoids determinization, avoids the
parity acceptance condition, and is based on an analysis of runs of universal gen-
eralized co-Büchi tree automata. The clean and simple structure of A enables
optimizations and a symbolic implementation. In addition, it makes it possible to
use information gathered during the synthesis process of properties in the process
of synthesizing their conjunction.

1 Introduction

One of the most significant developments in the area of program verification over the
last two decades has been the development of algorithmic methods for verifying tem-
poral specifications of finite-state programs; see [5]. A frequent criticism against this
approach, however, is that verification is done after significant resources have already
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been invested in the development of the program. Since programs invariably contain er-
rors, verification simply becomes part of the debugging process. The critics argue that
the desired goal is to use the specification in the program development process in order
to guarantee the design of correct programs. This is called program synthesis.

In the late 1980s, several researchers realized that the classical approach to program
synthesis, where a program is extracted from a proof that the specification is satisfiable,
is well suited to closed systems, but not to open (also called reactive) systems [1,6,23].
In reactive systems, the program interacts with the environment, and a correct program
should then satisfy the specification with respect to all environments. These researchers
argued that the right way to approach synthesis of reactive systems is to consider the
situation as a (possibly infinite) game between the environment and the program. A
correct program can be then viewed as a winning strategy in this game. It turns out that
satisfiability of the specification is not sufficient to guarantee the existence of such a
strategy. Abadi et al. called specifications for which a winning strategy exists realizable.
Thus, a strategy for a program with inputs in I and outputs in O maps finite sequences
of inputs (words in (2I)∗ – the actions of the environment so far) to an output in 2O – a
suggested action for the program. A strategy can then be viewed as a labeling of a tree
with directions in 2I by labels in 2O. The traditional algorithm for finding a winning
strategy transforms the specification into a parity automaton over such trees such that
a program is realizable precisely when this tree automaton is nonempty, i.e., it accepts
some infinite tree [23]. A finite generator of an infinite tree accepted by this automaton
can be viewed as a finite-state program realizing the specification. This is closely related
to the approach taken, e.g., in [25], to solve Church’s solvability problem [4]. Several
works during the 1990s showed how this approach to program synthesis can be carried
out in a variety of settings.

In spite of the rich theory developed for program synthesis, little of this theory has
been reduced to practice. In fact, the main approaches to tackle synthesis are either
to use heuristic approaches (e.g., [12]) or to restrict the kind of allowed specification
(e.g., [22]). Some people argue that this is because the realizability problem for linear-
temporal logic (LTL) specifications is 2EXPTIME-complete [23,26], but this argument
is not compelling. First, experience with verification shows that even nonelementary al-
gorithms can be practical, since the worst-case complexity does not arise often (cf., the
model-checking tool MONA [7]). Furthermore, in some sense, synthesis is not harder
than verification. This may seem to contradict the known fact that while verification is
“easy” (linear in the size of the model and at most exponential in the size of the spec-
ification [16]), synthesis is hard (2EXPTIME-complete). There is, however, something
misleading in this fact: while the complexity of synthesis is given with respect to the
specification only, the complexity of verification is given with respect to the specifica-
tion and the program, which can be much larger than the specification. In particular, it
is shown in [26] that there are temporal specifications for which every realizing pro-
gram must be at least doubly exponentially larger than the specifications. Clearly, the
verification of such programs is doubly exponential in the specification, just as the cost
of synthesis.

We believe that there are two reasons for the lack of practical impact of synthe-
sis theory. The first is algorithmic and the second is methodological. Consider first
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the algorithmic problem. First, constructing tree automata for realizing strategies uses
determinization of Büchi automata. Safra’s determinization construction has been no-
toriously resistant to efficient implementations [2,29] (An alternative construction is
equally hard [2]. Piterman’s improvement of Safra includes the tree structures that
proved hard to implement [21].) Second, determinization results in automata with a very
complicated state space. The best-known algorithms for parity-tree-automata emptiness
[13] are nontrivial already when applied to simple state spaces. Implementing them on
top of the messy state space that results from determinization is awfully complex, and
is not amenable to optimizations and a symbolic implementation.

Another major issue is methodological. The current theory of program synthesis
assumes that one gets a comprehensive set of temporal assertions as a starting point.
This cannot be realistic in practice. A more realistic approach would be to assume an
evolving formal specification: temporal assertions can be added, deleted, or modified.
Since it is rare to have a complete set of assertions at the very start of the design process,
there is a need to develop compositional synthesis algorithms. Such algorithms can, for
example, refine designs when provided with additional temporal properties.

In this paper we address both issues. We focus on the case where forbidden behav-
iors are described by nondeterministic generalized Büchi automata on infinite words,
which are Büchi automata with multiple acceptance sets (corresponding to the impar-
tiality fairness condition of [17]). Our interest in specifying forbidden behaviors and in
using the generalized Büchi condition is motivated by the fact that LTL formulas (and
their negation) can be conveniently translated to nondeterministic generalized Büchi
automata [9]. Equivalently, one can specify allowed behavior by universal generalized
co-Büchi automata. Following [15], we offer an alternative to the standard automata-
theoretic approach. The crux of our approach is avoiding the use of determinization
constructions and of nondeterministic parity tree automata. In the approach described
here, one checks whether the specification ψ is realizable using the following steps: (1)
construct a universal generalized co-Büchi tree automatonAψ that accepts all realizing
strategies for ψ, (2) reduce1 Aψ to an alternating weak tree automatonAw

ψ , (3) translate
Aw

ψ to a nondeterministic Büchi tree automatonAn
ψ , and (4) check that the language of

An
ψ is nonempty. The key is avoiding determinization, by using universal generalized

co-Büchi automata instead of deterministic parity automata.2

The difference between our approach here and the approach in [15] is that here we
use generalized co-Büchi automata, unlike the co-Büchi automata used there. This leads
to an exponential improvement in the complexity of our algorithm, as we describe be-
low. Extending the framework of [15] to generalized co-Büchi automata requires two
key technical steps. First, as our Safraless approach used a “Safraful” bound on the size

1 We use “reduce A1 to A2”, rather than “translate A1 to A2” to indicate that A2 accepts a subset
of the language of A1, yet the language of A1 is empty iff the language of A2 is empty.

2 A note to readers who are discouraged by the fact our method goes via several intermediate
automata: it is possible to combine the reductions into one construction, and in fact we describe
here also a direct translation of universal generalized co-Büchi automata into nondeterministic
Büchi automata. In practice, however, it is beneficial to have many intermediate automata,
as each intermediate automaton undergoes optimization constructions that are suitable for its
particular type, cf. [11].
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of the realizing strategies, we need to extend Safra’s construction to nondeterministic
generalized Büchi automata, obtaining an exponential improvement (with respect to an
approach that first translates the generalized Büchi automaton to a Büchi automaton) in
that construction. Second, we need to show how the co-Büchi ranks devised in [14] for
the analysis of runs of universal automata on words can be applied to the analysis of
runs of universal automata on finitely generated trees.

Beyond the improvement in complexity, the advantage of the Safraless approach is
that we get tree automata with cleanly described state spaces, which enables the appli-
cation of symbolic algorithms for Büchi tree automata emptiness. Further, we can now
obtain a compositional algorithm. Given a specification ψ, we first check its realizabil-
ity. Suppose now that we get an additional specification ψ′. We can, of course, simply
check the realizability of ψ ∧ ψ′ from scratch. Instead, we suggest to first check also
the realizability of ψ′. We then show how, thanks to the simple structure of the tree au-
tomata, much of the work used in checking the realizability of ψ and ψ′ in isolation can
be reused in checking the realizability of ψ ∧ ψ′. The compositional algorithm we sug-
gest can be combined with an incremental algorithm, in which we iteratively increase
the bound on the size of the realizing strategy. As demonstrated in [11] for the linear
setting, the bound that is needed in practice is usually much smaller than the worst-case
bound. In addition, we explain how the incremental and compositional algorithm can
be implemented symbolically.

2 Preliminaries

We assume familiarity with the basic notions of alternating automata on infinite trees,
cf. [10].

Given an alphabet Σ and a set D of directions, a Σ-labeled D-tree is a pair 〈T, τ〉,
where T ⊆ D∗ is a tree over D and τ : T → Σ maps each node of T to a letter
in Σ. A transducer is a labeled finite graph with a designated start node, where the
edges are labeled by D and the nodes are labeled by Σ. A Σ-labeled D-tree is regular
if it is the unwinding of some transducer. More formally, a transducer is a tuple T =
〈D,Σ, S, sin, η, L〉, where D is a finite set of directions, Σ is a finite alphabet, S is
a finite set of states, sin ∈ S is an initial state, η : S × D → S is a deterministic
transition function, and L : S → Σ is a labeling function. We define η : D∗ → S in the
standard way: η(ε) = sin, and for x ∈ D∗ and d ∈ D, we have η(x · d) = η(η(x), d).
Intuitively, A Σ-labeled D-tree 〈D∗, τ〉 is regular if there exists a transducer T =
〈D,Σ, S, sin, η, L〉 such that for every x ∈ D∗, we have τ(x) = L(η(x)). We then
say that the size of the regular tree 〈D∗, τ〉, denoted ‖τ‖, is |S|, the number of states
of T .

We denote an alternating tree automaton by a tupleA = 〈Σ,D,Q, qin, δ, α〉, where
Σ is the input alphabet, D is a set of directions, Q is a finite set of states, δ : Q×Σ →
B+(D × Q) is a transition function, qin ∈ Q is an initial state, and α specifies the
acceptance condition A run of A is accepting if all its infinite paths satisfy the accep-
tance condition. For a path π, we denote the set of automaton states visited infinitely
often along this path by inf(π). We consider here four acceptance conditions defined
as follows
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– A path π satisfies a generalized Büchi condition α = {F1, F2, . . . , Fk} ⊆ 2Q iff
for all 1 ≤ i ≤ k we have inf(π)∩Fi �= ∅. The number k of sets in α is called the
index of the automaton. If |α| = 1 we call α a Büchi condition.

– A path π satisfies a generalized co-Büchi condition α = {F1, F2, . . . , Fk} ⊆ 2Q

iff for some 1 ≤ i ≤ k we have inf(π) ∩ Fi = ∅. The number k of sets in α is
called the index of the automaton. If |α| = 1 we call α a co-Büchi condition.

– A path π satisfies a parity condition α = 〈F0, . . . , Fk〉 where F0, . . . Fk form a
partition of Q iff for some even i we have inf(π) ∩ Fi �= ∅ and forall i′ < i we
have inf(π) ∩ Fi′ = ∅. We call k the number of priorities of α.

For the three conditions, an automaton accepts a tree iff there exists a run that accepts
it. We denote by L(A) the set of all Σ-labeled trees that A accepts. We also refer to a
fourth condition, which is a special case of the Büchi condition, and is referred to as the
weak condition [20].

Below we discuss some special cases of alternating automata. The alternating au-
tomaton A is nondeterministic if for all the formulas that appear in δ, if (d1, q1) and
(d2, q2) are conjunctively related, then d1 �= d2. (i.e., if the transition is rewritten in
disjunctive normal form, there is at most one element of {d} × Q, for each d ∈ D,
in each disjunct). The automaton A is universal if all the formulas that appear in δ are
conjunctions of atoms in D × Q, and A is deterministic if it is both nondeterministic
and universal. The automaton A is a word automaton if |D| = 1. Then, we can omit
D from the specification of the automaton and denote the transition function of A as
δ : Q × Σ → B+(Q). If the word automaton is nondeterministic or universal, then
δ : Q×Σ → 2Q.

We denote each of the different types of automata by an acronym in {D,N,U,A}×
{B,GB,C,GC, P} × {W,T }, where the first letter describes the branching mode of
the automaton (deterministic, nondeterministic, universal, or alternating), the second
letter describes the acceptance condition (Büchi, generalized Büchi, co-Büchi, gener-
alized co-Büchi, or parity), and the third letter describes the object over which the au-
tomaton runs (words or trees). For example, APT are alternating parity tree automata
and UGCT are universal generalized co-Büchi tree automata.

3 Synthesis

Consider an UGCW S over the alphabet 2I∪O, for sets I and O of input and output
signals. The realizability problem for S [23] is to decide whether there is a strategy
f : (2I)∗ → 2O, generated by a transducer3 such that all the computations of the system
generated by f are in L(S). We call such a strategy, a good strategy. A computation
ρ ∈ (2I∪O)ω is generated by f if ρ = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . and for all
j ≥ 1, we have oj = f(i0 · i1 · · · ij−1).

In practice, the UGCW S originates from an LTL formula ψ that specifies the desired
properties of the program we synthesize. In order to get S, we first translate ¬ψ to an
NGBWA¬ψ, and then dualizeA¬ψ by viewing it as a UGCW. By [31,9],A¬ψ , and thus

3 As S recognizes an ω-regular language, if some transducer that generates f exists, then there
is also a finite-state transducer.
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also S, have 2O(|ψ|) states and index O(|ψ|). Alternatively, one can define properties
directly using UGCW, as done, for example, in the framework of Generalized Symbolic
Trajectory Evaluation [32], by means of fair assertion graphs.

Theorem 1. The realizability problem for a UGCW can be reduced to the nonemptiness
problem of a UGCT with the same state space and index.

Proof: A strategy f : (2I)∗ → 2O can be viewed as a 2O-labeled 2I-tree. Given a
UGCW S, we define a UGCT S′ such that S′ accepts a 2O-labeled 2I-tree 〈T, τ〉 iff τ
is a good strategy for S.

Let S = 〈2I∪O, Q, qin, δ, α〉. Then, S′ = 〈2O, 2I , Q, qin, δ
′, α〉, where for every q ∈

Q and o ∈ 2O, we have δ′(q, o) =
∧

i∈2I

∧
q′∈δ(q,i∪o)(i, q

′). Thus, from state q, reading

the output assignment o ∈ 2O, the automaton S′ branches to each direction i ∈ 2I , with
all the states q′ to which δ branches when it reads i∪o in state q. It is not hard to see that
S′ accepts a 2O-labeled 2I -tree 〈T, τ〉 iff for all the paths {ε, i0, i0 · i1, i0 · i1 · i2, . . .}
of T , the infinite word (i0 ∪ τ(ε)), (i1 ∪ τ(i0)), (i2 ∪ τ(i0 · i1)), . . . is accepted by the
UGCW S as required.

We now describe an emptiness preserving translation of UGCT to NBT. The correctness
proof of the construction is given in Sections 4.1 and 4.2. There, we also suggest to use
ABT as an intermediate step in the construction. While this adds a step to our chain of
reductions, it enables further optimizations of the result.

For an integer c, let [c] denote the set {0, 1, . . . , c}, and let [c]odd and [c]even denote
the set of odd and even members of [c], respectively. Also, let Rk(c) = [2c]even ∪
([2c]odd × {1, . . . , k}), and ≤ be the lexicographical order on the elements of Rk(c).
We refer to the members of Rk(c) in [2c]even as even ranks and refer to the members
of Rk(c) in [2c]odd × {j} as odd ranks with index j. Note that the size of Rk(c) is
c(k + 1) + 1. Our construction refers to a function Det(n, k), which, as we show later,
is bounded from above by n2n+2kn.

Theorem 2. Let A be a UGCT with n states and index k. There is an NBT A′ over the
same alphabet such that all the following hold.

– L(A′) ⊆ L(A),
– L(A) �= ∅ implies L(A′) �= ∅, and
– the number of states in A′ is 2O(n2(log n+log k)).

Proof: LetA = 〈Σ,D,Q, qin, δ, {F1, . . . , Fk}〉, and let c = Det(n, k). Note that c is
2O(n(log n+log k)). LetRk(c) be the set of functions f : Q→ Rk(c) in which f(q), for
all q ∈ Fj , is not odd with index j. For g ∈ Rk(c), let odd(g) = {q : g(q) is odd}. We
define A′ = 〈Σ,D,Q′, q′in, δ

′, α′〉, where
– Q′ = 3Q×Rk(c). For technical convenience, we refer to the states of Q′ as triples
〈S,O, f〉 with O ⊆ S ⊆ Q and f ∈ Rk(c).

– q′in = 〈{qin}, ∅, g0〉, where g0 maps all states to 2c.
– For q ∈ Q, σ ∈ Σ, and d ∈ D, let δ(q, σ, d) = {q′ | (d, q′) ∈ δ(q, σ)}. For S ⊆ Q,

σ ∈ Σ, and d ∈ D we define δ(S, σ, d) in the natural way. For two functions g and
g′ inRk(c), a letter σ, and direction d ∈ D, we say that g′ covers 〈g, σ, d〉 if for all
q and q′ in Q, if q′ ∈ δ(q, σ, d), then g′(q′) ≤ g(q). Let g′ � 〈g, σ, d〉 denote that
g′ covers 〈g, σ, d〉. Then, for all 〈S,O, g〉 ∈ Q′ and σ ∈ Σ, we define δ as follows.
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• If O �= ∅, then

δ′(〈S,O, g〉, σ) =
∧

d∈D

∨
gd�〈g,σ,d〉

(d, 〈δ(S, σ, d), δ(O, σ, d) \ odd(gd), gd〉)

• If O = ∅, then

δ′(〈S,O, g〉, σ) =
∧

d∈D

∨
gd�〈g,σ,d〉

(d, 〈δ(S, σ, d), δ(S, σ, d) \ odd(gd), gd〉)

– α′ = 2Q × {∅} ×Rk(c).
In Section 4 we sketch the proof that this automaton indeed satisfies the conditions of
the theorem.

In fact,A′ accepts every regular tree in the language ofA that is produced by a “small”
transducer. We show that whenever A accepts some regular tree, there exists some
“small” regular tree that is accepted by A′. Thus, if A accepts some regular tree, it
accepts a regular tree produced by a small transducer, and this regular tree is also ac-
cepted by A′.

Corollary 1. The realizability problem for an NGBW with n states and index k can be
reduced to the nonemptiness problem of an NBT with 2O(n2(log n+log k)) states.

These bounds are exponentially better than those established in [15]. There, the
NGBW is converted to an NBW with nk states and the overall resulting complexity
is 2O((nk)2(log k+log n)).4

The synthesis problem for S is to find a transducer that generates a strategy real-
izing S. Known algorithms for the nonemptiness problem can be easily extended to
return a transducer [24]. The algorithm we present here also enjoys this property, thus
it can be used to solve not only the realizability problem but also the synthesis problem.
(For a comparison of the Safraless and the Safraful approaches to synthesis from the
perspective of program size, see [15].)

4 From UGCT to NBT

Recall that runs of alternating tree automata are labeled trees. By merging nodes that are
roots of identical subtrees, it is possible to maintain runs in graphs. In Section 4.2, we
prove a bounded-size run graph property for UGCT. In Section 4.2, we show how the
bounded-size property enables a simple translation of UGCT to ABT, which we then
translate to an NBT. Combining the translations results in the UGCT to NBT construc-
tion described in Theorem 2. While our construction avoids using the determinization
construction, the proof of the bounded-size run-graph property makes use of the bound
the construction provides to the blow-up involved in determinization. Since we handle
the generalized co-Büchi construction, we need a bound on the blow-up involved in the
determinization of NGBW. We provide such a bound in Section 4.1.

4 We can use the improved bound on determinization established in [21] to improve the bounds
in [15]. This, however, reduces only the constants in the exponent.
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4.1 NGBW to DPW

There are two known approaches to determinization of NGBW. The first is to convert
the NGBW to an NBW [3] and then use determinization [27,21]. The second is to
view the NGBW as a Streett automaton and apply determinization of Streett automata
[28,21]. Both approaches produce automata with (nk)O(nk) states. In this section we
show how to extend the determinization construction for the case of generalized Büchi
automata. Our construction below produces a DPW with (nk)O(n) states, exponentially
fewer states than the approaches described.

We offer here a succinct description of the improvement. The basis of our construc-
tion is Safra’s determinization [27], as improved by Piterman [21]. The key is to aug-
ment compact Safra trees with an indexing function. In Piterman’s construction, the
DPW refers to a visit in the set of accepting states as a good event. In our extension,
a good event occurs only after visits to all the sets in the generalized Büchi condition.
Thus, the idea is similar to the indexing used in the translation of NGBW to NBW [9],
but the challenge is to combine this indexing in the state space of the DPW in a way
that minimizes the blow-up in terms of k. the improved construction is used only to
generate the improved bound. The synthesis algorithm uses this bound but it does not
use the determinization construction.

Theorem 3. Given an NGBW with n states and index k, we can construct an equivalent
DPW with at most n2n+2kn states and 2n priorities.

Proof: Let N = 〈Σ,S, δ, s0, α〉 be an NGBW with |S| = n and α = {F1, . . . , Fk}.
Let V = [n]. We construct the DPW D equivalent to N . Let D = 〈Σ,D, ρ, d0, α

′〉,
where the components of D are as follows.

– A generalized compact Safra tree t is 〈N, 1, p, l, h, r, g〉 where N ⊆ V is a set of
nodes, 1 ∈ N is the root node, p : N → N is the parenthood function, l : N → 2S

is a labeling of the nodes with subsets of S, h : N → [k] is an indexing function
associating with every node an index in [k], and r, g ∈ [n + 1] are used to define
the parity condition. In addition, the label of every node is a proper superset of
the union of the labels of its children. The labels of two siblings are disjoint. The
set of nodes is always consecutive and includes the first |N | elements in V (i.e.,
1, . . . , |N |). The set D of states is the set of generalized compact Safra trees over
S and k.

– d0 ∈ D has a unique node 1 where l(1)={s0}, h(1)=1, r=2, and g=1.
– The parity acceptance condition is α′={F ′

0, . . . , F
′
2n−1} where

• F ′
0 = {d ∈ D | g = 1}

• F ′
2i+1 = {d ∈ D | r = i + 2 and g ≥ r}

• F ′
2i+2 = {d ∈ D | g = i + 2 and r > g}

– For every tree d ∈ D and letter σ ∈ Σ the transition d′ = ρ(d, σ) is the result of
the following transformations on d. (1) For every node v with label S′ replace S′

by δ(S′, σ). (2) For every node v with label S′ such that h(v) = i and S′ ∩Fi �= ∅,
create a son v′ such that v′ is the minimal value in V that is greater than all other
nodes. Set its label to S′∩Fi and its index to 1. We may use temporarily nodes in the
range [(n+1)..(2n)]. (3) For every node v with label S′ and state s ∈ S′ such that
s belongs also to some sibling v′ of v such that v′ < v, remove s from the label of
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v and all its descendants. (4) For every node v whose label is equal to the union of
the labels of its children, remove all descendants of v. If h(v) = k, change h(v) to
1 and call v green. If h(v) < k, increase h(v) by one. Set g to the minimum of n+1
and the green nodes. (5) Remove all nodes with empty labels. Set r the minimum
of n+1 and all the nodes removed during all stages of the transformation. (6) Let
Z denote the set of nodes removed during all previous stages of the transformation.
For every node v let rem(v) be |{v′ ∈ Z | v′ < v}|. For every node v such that
l(v) �= ∅ we replace v by v−rem(v).

Let Det(n, k) be the number of generalized compact Safra trees for NGBW with n
states and index k. By Theorem 3, Det(n, k) is bounded from above by n2n+2kn.

4.2 From UGCT to NBT

A Bounded-Size Run Graph Property for UGCT. Let A = 〈Σ,D,Q, qin, δ, α〉 be
a UGCT with α = {F1, . . . , Fk}. Recall that a run 〈Tr, r〉 of A on a Σ-labeled D-tree
〈T, τ〉 is a (T ×Q)-labeled tree in which a node y with r(y) = 〈x, q〉 stands for a copy
ofA that visits the state q when it reads the node x. Assume that 〈T, τ〉 is regular, and is
generated by a transducer T = 〈D,Σ, S, sin, η, L〉. For two nodes y1 and y2 in Tr, with
r(y1) = 〈x1, q1〉 and r(y2) = 〈x2, q2〉, we say that y1 and y2 are similar iff q1 = q2
and η(x1) = η(x2). By merging similar nodes into a single vertex, we can represent the
run 〈Tr, r〉 by a finite graph G = 〈V,E〉, where V = S × Q and E(〈s, q〉, 〈s′, q′〉) iff
there is c ∈ D such that (c, q′) ∈ δ(q, L(s)) and η(s, c) = s′. We restrict G to vertices
reachable from the vertex 〈sin, qin〉. We refer to G as the run graph of A on T . A run
graph ofA is then a run graph ofA on some transducer T . We say that G is accepting iff
every infinite path of G has only finitely many Fj-vertices (vertices in S×Fj), for some
1 ≤ j ≤ k. Since A is universal and T is deterministic, the run 〈Tr, r〉 is memoryless
in the sense that the merging does not introduce to G paths that do not exist in 〈Tr, r〉,
and thus, it preserves acceptance. Formally, we have the following:

Lemma 1. Consider a UGCTA. Let 〈T, τ〉 be a tree generated by a transducer T . The
run tree 〈Tr, r〉 of A on 〈T, τ〉 is accepting iff the run graph G of A on T is accepting.

Note that G is finite, and its size is bounded by S × Q. We now bound S and get a
bounded-size run-graph property for UGCT. The bound on S depends on the blow-up
involved in NGBW determinization, which we studied in Section 4.1. Essentially, the
bound depends on the size of an NPT equivalent to the UGCT, and in order to get such
an NPT we have to determinize an NGBW that accepts bad paths in runs of the UGCT.

Theorem 4. A UGCT A with n states and index k is not empty iff A has an accepting
run graph with at most Det(n, k) · n vertices.

From UGCT to NBT via ABT. Consider a graph G′ ⊆ G. We say that a vertex 〈s, q〉
is finite in G′ iff all the paths that start at 〈s, q〉 are finite. For 1 ≤ j ≤ k, we say that a
vertex 〈s, q〉 is Fj-free in G′ iff all the vertices in G′ that are reachable from 〈s, q〉 are
not Fj-vertices. Note that, in particular, an Fj -free vertex is not an Fj-vertex.
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Given a run 〈Tr, r〉, we define an infinite sequence of graphs G0 ⊇ G1
1 ⊇ G2

1 ⊇
. . . Gk

1 ⊇ Gk+1
1 ⊇ G1

3 ⊇ . . . Gk+1
3 ⊇ G1

5 . . . as follows. To simplify notations, we
sometimes refer to G1

2i+1 as G2i+1 and to Gk+1
2i+1 as G2i+2. Thus, G1 = G1

1, G2 =
Gk+1

1 , G3 = G1
3, G4 = Gk+1

3 , and so on.
– G0 = G.
– G1

2i+1 = G2i \ {〈s, q〉 | 〈s, q〉 is finite in G2i}.
– Gj+1

2i+1 = Gj
2i+1 \ {〈s, q〉 | 〈s, q〉 is Fj-free in Gj

2i+1}, for 1 ≤ j ≤ k.

Lemma 2. A run graph G = 〈V,E〉 is accepting iff there is i ≤ |V | for which G2i is
empty.

Let G be an accepting run graph. Given a vertex 〈s, q〉 in G, the rank of 〈s, q〉, denoted
rank(s, q), is defined as follows:

rank(s, q) =
[

2i If 〈s, q〉 is finite in G2i.
〈2i + 1, j〉 If 〈s, q〉 is Fj-free in Gj

2i+1.

Recall that, for an integer c, we have defined Rk(c)=[2c]even∪([2c]odd×{1, . . . , k}),
as a set of c(k + 1) ranks, and defined ≤ as the lexicographical order on the elements
of Rk(c). For an odd rank ρ = 〈2i + 1, j〉, we refer to Gj

2i+1 as Gρ. Let c = |V |.
By Lemma 2, there is i ≤ c for which G2i is empty. Therefore, every vertex gets a
well-defined rank in Rk(c).

Lemma 3. In every infinite path in an accepting run graph G, there exists a vertex
〈s, q〉 with an odd rank such that all the vertices 〈s′, q′〉 on the path that are reachable
from 〈s, q〉 have rank(s′, q′) ≤ rank(s, q).

We can now use the analysis of ranks in order to translate UGCT to NBT. In order to
enable further optimizations, we use ABT as an intermediate step in the construction.

Theorem 5. Let A be a UGCT with n states and index k. There is an ABT A′ over the
same alphabet such that all the following hold.

– L(A′) ⊆ L(A),
– L(A) �= ∅ implies L(A′) �= ∅, and
– the number of states in A′ is 2O(n(log n+log k)).

As detailed in the proof of the Theorem, the ABT A′ accepts all the regular trees
〈T, τ〉 ∈ L(A) that are generated by a transducer T = 〈D,Σ, S, sin, η, L〉 with at
most Det(n, k) states. Note that the run graph of A on such 〈T, τ〉 is accepting and is
of size most Det(n, k) · n. By Theorem 4, we have that L(A′) �= ∅ iff L(A) �= ∅.

The state space of A′ is Q′ = Q × Rk(c). Intuitively, when A′ is in state 〈q, ρ〉 as
it reads the node x ∈ T , it guesses that the rank of the vertex 〈η(x), q〉 of G is ρ. The
transitions of A′ allows the guessed ranks to decrease, but makes sure that if a state
is in Fj , the guessed rank for it cannot be odd with index j. By Lemma 3, the guessed
ranks should eventually converge to some odd rank, which is checked by the acceptance
condition of A′.5

5 Readers familiar with weak automata [20], would note that our automaton is in fact an alter-
nating weak tree automaton. It is the special structure of weak automata that enables some of
the optimizations we describe below.
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In [18], Miyano and Hayashi describe a translation of ABW to NBW. In Theorem 6
below (see also [19]), we present (a technical variant of) their translation, adapted to
tree automata,

Theorem 6. LetA be an ABT with n states. There is an NBTA′ with 2O(n) states, such
that L(A′) = L(A).

Combining Theorems 5 and 6, one can reduce the nonemptiness problem for UGCT
to the nonemptiness problem for NBT. Consider a UGCT A with n states and in-
dex k. If we translate A to an NBT by going through the ABT we have obtained
in Theorem 5, we end up with an NBT with 22O(n(log n+log k))

states, as the ABT has
2O(n(log n+log k)) states. In order to complete the construction, and get the NBT de-
scribed in the proof of Theorem 2, we exploit the special structure of the ABT and
show that only 2O(n2(log n+log k)) states of the NBT constructed in Theorem 6 may
participate in an accepting run.

5 Compositional Synthesis

A serious drawback of current synthesis algorithms is that they assume a comprehen-
sive set of temporal assertions as a starting point. In practice, however, specifications are
evolving: temporal assertions are added, deleted, or modified during the design process.
In this section we describe how our synthesis algorithm can support compositional syn-
thesis, where the temporal assertions are given one by one. We show how the Safraless
approach enables us, when we check the realizability of ψ∧ψ′, to use much of the work
done in checking the realizability of ψ and ψ′ in isolation. Devising compositional syn-
thesis algorithms to other forms of composition, e.g., ψ′ → ψ, is an interesting research
problem.

Our compositional algorithm extends the incremental-synthesis algorithm described
in [15]. Essentially, we show that when we construct and check the emptiness of the
NBT to which realizability of ψ ∧ ψ′ is reduced, we can use much of the work done
in the process of checking the emptiness of the two (much smaller) NBTs to which
realizability of ψ and ψ′ is reduced (in isolation).

We first review the incremental-synthesis idea from [15]. Recall that our construction
is based on the fact we can bound the maximal rank that a vertex in an accepting run
graph G gets. Often, the sequence G0, G1, G2, . . . of graphs described in Section 4.2
converges to the empty graph very quickly, making the bound on the maximal rank
much smaller (see [11] for an analysis and experimental results for the case of UCW).
Accordingly, one can regard the bound c as a parameter in the construction: start with a
small parameter, and increase it if necessary.

To see how this is done, consider the combined construction described in Theorem 2.
Starting with a UGCT A with state space Q of size n, we took c = Det(n, k) · n (an
upper bound on the size of the minimal accepting run graph of A), and constructed an
NBT A′ with state space 3Q × Rk(c), where Rk(c) is the set of functions f : Q →
Rk(c) in which f(q) is not odd with index j for all q ∈ Fj . For l ≤ c, let Rk[l] be the
restriction of Rk to functions with range Rk(l), and let A′[l] be the NBT A′ resulting
from replacing the functions Rk[c] by Rk[c]. Recall that the NBT A′[l] is empty iff
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all the run graphs of A of size at most l are not accepting. Thus, coming to check the
emptiness of A, the incremental approach proceeds as follows: start with a small l and
check the nonemptiness of A′[l]. If A′[l] is not empty, thenA is not empty, and we can
terminate with a “nonempty” output. Otherwise, increase l, and repeat the procedure.
When l = c andA′[l] is still empty, we can terminate with an “empty” output.

As argued for UCTs in [15], it is possible to take advantage of the work done during
the emptiness test of A′[l1], when testing emptiness of A′[l2], for l2 > l1. To see this,
note that the state space ofA′[l2] consists of the union of 3Q×Rk[l1] (the state space of
A′[l1]) with 3Q× (Rk[l2] \Rk[l1]) (states whose f ∈ Rk[l2] has a state that is mapped
to a rank greater than l1). Also, since ranks can only decrease, once the NBT A′[l2]
reaches a state of A′[l1], it stays in such states forever. So, if we have already checked
the nonemptiness of A′[l1] and have recorded the classification of its states to empty
and nonempty, the additional work needed in the nonemptiness test of A′[l2] concerns
only states in 3Q × (R[l2] \ Rk[l1]).

We now describe how the incremental approach can be extended to a compositional
one. Let S = 〈Σ,Q, δ, qin, {F1, . . . , Fk}〉 and S′ = 〈Σ,Q′, δ′, q′in, {F ′

1, . . . , F
′
k′}〉

be UGCWs specifying required behaviors. Let n = |Q| and n′ = |Q′|. Without loss
of generality, assume that the state spaces Q and Q′ are disjoint. We can define the
intersection of S and S′ as the UGCW P obtained by putting S and S′ “side by side”;
thus6 P = 〈Σ,Q∪Q′, δ∪δ′, {qin, q

′
in}, {F1∪Q′, . . . , Fk∪Q′, F ′

1∪Q, . . . , F ′
k′ ∪Q}〉.

Note that it is indeed the case that P has an accepting run on a word w iff both S and
S′ has an accepting run on w.

Let A and A′ be the NBTs to which realizability of S and S′ is reduced, respec-
tively. A non-compositional approach generates the NBT that corresponds to P . By
Theorem 2, this results in an NBT U with state space 3Q∪Q′ × Rk+k′ (p)Q∪Q′

, for
p = Det(n+n′, k + k′) · (n+ n′). On the other hand, the state spaces ofA andA′ are
much smaller, and are 3Q × Rk(c)Q and 3Q′ × Rk′(c′)Q′

, for c = Det(n, k) · n and
c′ = Det(n′, k′) · n′. respectively.

Let us examine the structure of the state space of U more carefully. Each of its states
can be viewed as a triplet 〈S ∪ S′, O ∪ O′, f〉, for O ⊆ S ⊆ Q, O′ ⊆ S′ ⊆ Q′, and
f : Q ∪ Q′ → Rk+k′ (p). For f as above, let f|Q and f|Q′ denote the restrictions of
f to Q and Q′, respectively. Note that if f maps the states in S to ranks in Rk(c) and
maps states in S′ to ranks in Rk′(c′), then the state 〈S ∪ S′, O ∪ O′, f〉 corresponds
to the states 〈S,O, f|Q〉 of A and 〈S′, O′, f|Q′〉 of A′. Moreover, if one of these states
is empty, so is 〈S ∪ S′, O ∪ O′, f〉. This observation is the key to our compositional
algorithm.

For l ≤ c and l′ ≤ c′, let U [l, l′] denote the NBT U restricted to states 〈S ∪ S′, O ∪
O′, f〉 in which f(q), for q ∈ S, is in Rk(l) and f(q′), for q′ ∈ S′, is in Rk′(l′). We
check the emptiness of U incrementally and compositionally as follows. We start with
small l1 and l′1 and check the emptiness of U [l1, l′1]. Doing so, we first mark as empty
all states 〈S∪S′, O∪O′, f〉 for which either 〈S,O, f|Q〉 is empty inA or 〈S′, O′, f|Q′〉
is empty inA′, and continue the emptiness check only in the (expectedly much smaller)
state space. If U [l1, l′1] is not empty, we are done. Otherwise, we increase our parameters

6 For technical simplicity, we allow P to have two initial states. This can be easily avoided by
adding a new initial state whose transitions are the union of the transitions from qin and q′

in.
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to l2 and l′2, with l2 ≥ l1 and l′2 ≥ l′1. Note that we need not increase both parameters.
Checking the emptiness of U [l2, l′2], we make use of the information gathered in the
emptiness checks ofA[l2],A′[l′2], as well as U [l1, l′1]. The procedure continues until we
either reach lj and l′j for which U [lj , l′j ] is not empty, in which case the specification
is realizable, or we find that U [p, p] is empty, in which case the specification is not
realizable.

We note that, as with the incremental approach, the significant advantage of the com-
positional approach is when the specification is realizable, and especially when U [l, l′]
is not empty for l and l′ smaller than c and c′ – thus we can use information about A
andA′ all the way to the positive response. We also note that the incremental approach
is possible due to the simple structure of the state spaces of the NBTs to which we have
reduced the realizability problem. This simple structure also makes it easy to implement
our approach symbolically: the state space of the NBT consists of sets of states and a
ranking function, it can be encoded by Boolean variables, and the NBT’s transitions can
be encoded by relations on these variables and a primed version of them. The fixpoint
solution for the nonemptiness problem of NBT (c.f., [30]) then yields a symbolic so-
lution to the original UGCT nonemptiness problem. Moreover, checking the emptiness
of U [lj , l′j], we can use BDDs for the empty states in A[lj ], A[l′j ], and U [lj−1, l

′
j−1].

Finally, as discussed in [15], the BDDs that are generated by the symbolic nonempti-
ness procedure can be used to generate a symbolic witness strategy, from which we can
synthesize a sequential circuit implementing the strategy.
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Minimizing Generalized Büchi Automata
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Abstract. We consider the problem of minimization of generalized Büchi
automata. We extend fair-simulation minimization and delayed-simulation mini-
mization to the case where the Büchi automaton has multiple acceptance condi-
tions. For fair simulation, we show how to efficiently compute the fair-simulation
relation while maintaining the structure of the automaton. We then use the fair-
simulation relation to merge states and remove transitions. Our fair-simulation al-
gorithm works in time O(mn3k2) where m is the number of transitions, n is the
number of states, and k is the number of acceptance sets. For delayed simulation,
we extend the existing definition to the case of multiple acceptance conditions.
We show that our definition can indeed be used for minimization and give an al-
gorithm that computes the delayed-simulation relation. Our delayed-simulation
algorithm works in time O(mn3k). We implemented the two algorithms and re-
port on experimental results.

1 Introduction

In recent years algorithmic methods for verifying temporal-logic properties of finite-
state systems have been discovered (cf. [CGP99]). The development of symbolic meth-
ods to reason about large state spaces [McM93, BCC+99] have led to the acceptance
of model checking in hardware industry [BLM01, CFF+01]. The standard approach to
linear temporal logic (LTL) model checking is to translate the given specification to a
nondeterministic Büchi automaton [Var96]. By now, there are many algorithms that take
an LTL formula (or formalisms that extend LTL, cf. [AFF+02, IEE05]) and construct
an equivalent Büchi automaton [GPVW95, SB00, GO01]. The resulting automata may
be exponentially larger than the original LTL formula.

To improve model-checking efficiency we would like to produce the minimal pos-
sible automata. Unfortunately, finding the minimal automaton equivalent to a given
nondeterministic automaton is computationally expensive. Thus, we usually resort to
computationally cheap methods that are not guaranteed to produce the best automata.

One such approach is to use simulation [Mil71]. A state t simulates a state s if it has
the same observations and for every successor s′ of s there exists a successor t′ of t that
simulates s′. If s and t are simulation equivalent, i.e., t simulates s and s simulates t,
then we can merge s and t to a single state. Similarly, if s has transitions to both t and
t′ such that t′ simulates t, then the transition to t is redundant. Simulation considers
only the transition structure of the automaton and not its acceptance condition. Thus,
simulation is inadequate for minimization of Büchi automata.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 45–58, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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There have been several suggestions how to extend simulation to include the accep-
tance condition [DHW91, GL94, HKR97, EWS01]. The simplest of these, is direct sim-
ulation where in addition to agreement on observations of states, we demand agreement
on acceptance [DHW91]. A variant is reversed simulation which checks the edges enter-
ing a state [SB00]. Both can be applied to automata on infinite objects [SB00, GBS02].
Agreement on acceptance makes direct and reversed simulation very restrictive.

Fair-Simulation is a more relaxed notion of simulation [HKR97]. According to this
notion, simulation comes equipped with a strategy. The strategy instructs us which suc-
cessor t′ of t to choose. We demand in addition that by following the strategy a fair
computation on one side produces a fair computation on the other side. That is, if we
have an infinite sequence of states that starts from the simulated state we can use the
strategy to produce an infinite sequence of simulating states. Furthermore, if the first
sequence is fair so is the second. Etessami et al. show how to efficiently compute fair
simulation for the case of Büchi automata [EWS01]. They show also that fair simula-
tion is too relaxed and cannot be used to merge states. Gurumurthy et al. show that it
is still worthwhile to try minimizing with fair simulation [GBS02]. They show that by
checking every merge and edge removal for soundness, fair simulation can still be used
for minimization. The total complexity of all successful soundness checks is bounded
by the complexity of checking fair simulation.

Etessami et al. provide an intermediate simulation notion called delayed simulation
[EWS01]. The simulation again includes a strategy but this time whenever one compu-
tation visits an accepting state the other computation must visit an accepting state later.
They show that delayed simulation can be used to merge states. That is, if s and t are
delayed-simulation equivalent, then the automaton in which s and t are merged into
one state is equivalent to the original. By now most LTL to Büchi conversions use some
form of simulation to minimize the size of the automaton.

Translation of LTL to Büchi automata results naturally in generalized Büchi au-
tomata, that is, Büchi automata with multiple acceptance sets (cf. [GPVW95, SB00]).
A generalized Büchi automaton with k acceptance conditions and n states can be eas-
ily converted to a simple Büchi automaton with nk states (and one acceptance con-
dition) [Cho74]. This conversion is natural (and even required) when explicit state
model checking is used [CVWY92].1 However, when using symbolic model check-
ing this conversion is undesirable and unnecessary. Symbolic algorithms for checking
emptiness of automata easily handle the generalized Büchi condition without loosing
efficiency. On the other hand, converting generalized Büchi to simple Büchi results in
model checking a problem that may be k times larger. Counter examples may be sig-
nificantly longer (even more than a factor of k as the order between the acceptance
sets may be important). A similar situation arises when considering complementation
of generalized Büchi automata; handling generalized Büchi directly is exponentially

1 In the case that a simple Büchi automaton is required it would be best to apply first the conver-
sion to a simple Büchi automaton. The conversion from generalized Büchi to a simple Büchi
involves the addition of a deterministic part; this implies that simulation on the generalized
automaton translates to simulation on the simple automaton. It follows that every modifica-
tion done using our techniques on the generalized automaton would be done on the simple
automaton.
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more efficient [KV04]. Also when we use LTL in the context of synthesis, handling the
generalized Büchi condition directly produces algorithms that are exponentially better
than converting them to simple Büchi [KPV06]. Thus, it is extremely important to be
able to further minimize generalized Büchi automata without first converting them to
simple Büchi automata.

The notions of direct and reversed simulation are extended naturally to generalized
Büchi automata (though they are even more restrictive in this case) [EH00, SB00]. This
is not the case for fair and delayed simulation. The definition of fair simulation does not
rely on a specific acceptance condition. Indeed, it applies naturally to generalized Büchi
automata. It is not clear, however, how to solve efficiently fair simulation with respect
to generalized Büchi automata and how to extend the efficient soundness check. In the
case of delayed simulation it is not even clear how to extend the definition to the case of
generalized Büchi automata. As mentioned, generalized Büchi automata that are used
for symbolic model checking are not converted to simple Büchi automata. As we do not
know how to use fair-simulation minimization and delayed-simulation minimization on
these automata, we use only the simple optimization techniques. Here we show how the
more advanced minimization techniques can be applied to generalized Büchi automata.

In the context of fair simulation, the efficient computation of fair simulation for
Büchi automata relies on Jurdziński’s ranking for parity games [Jur00, EWS01]. We
show how to define a ranking for this type of fair simulation, how to compute this
ranking efficiently, and how to check efficiently whether fair-simulation minimization
is sound. The overall complexity of the fair-simulation minimization for all success-
ful merges / edge removals is O(mn3k2) where m is the number of transitions of the
automaton, n the number of states, and k the number of acceptance sets.

The definition of delayed simulation is tailored specifically for simple Büchi au-
tomata [EWS01]. We show how to extend this definition to the case of generalized
Büchi automata. We prove that our definition, while seemingly very relaxed, has the
power needed in order to be used to minimize generalized Büchi automata. We also
show how to efficiently check delayed simulation for this case. The complexity of the
delayed simulation minimization is O(mn3k) where m is the number of transitions of
the automaton, n the number of states, and k the number of acceptance sets.

Finally, we have implemented both these extensions in Wring [SB00]. We report on
the results of testing our implementation on 500 randomly generated LTL formulae.

2 Preliminaries

2.1 Games

A game is a tuple G = 〈V, V0, V1, ρ,W 〉 where V is the set of locations of the game, V0
and V1 are a partition of V to locations of player 0 and player 1 respectively, ρ ⊆ V ×V
is the transition relation, and W ⊆ V ω is the winning set of G.

A play in G is a maximal sequence of locations π = v0v1 · · · such that forall i ≥ 0 we
have (vi, vi+1) ∈ ρ. A play π is winning for player 0 if π ∈W or π is finite and the last
location in π is in V1 (i.e., player 1 cannot move from the last location in π). Otherwise,
player 1 wins. For an infinite play π we denote by inf(π) the set of locations that recur
infinitely often in π. Formally, inf(π) = {v ∈ V | v = vi for infinitely many i}.
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A strategy for player 0 is a partial function f : V ∗ · V0 → V such that whenever
f(πv) is defined (v, f(πv)) ∈ ρ. We say that a play π = v0v1 · · · is f -conform if
whenever vi ∈ V0 we have vi+1 = f(v0 · · · vi). The strategy f is winning from v if
every f -conform play that starts in v is winning for player 0. We say that player 0 wins
from v if she has a winning strategy. The winning region of player 0, is the set of states
from which player 0 wins. We denote the winning region of player 0 by W0. A strategy,
winning strategy, win, and winning region are defined dually for player 1. We solve a
game by computing the winning regions W0 and W1. For the kind of games handled by
this paper W0 and W1 form a partition of V [GH82].

In this paper we are interested in two types of winning conditions. In order to define
the first winning conditions we use two sets P = {P1, . . . , Pk} and Q = {Q1, . . . , Ql}
of subsets of the states in G. The generalized Streett[1] condition on P and Q is the
set of sequences π ∈ V ω such that either there exists i such that inf(π) ∩ Pi = ∅ or
forall j we have inf(π)∩Qj �= ∅. That is, either there exists some set in P that appears
finitely often in π, or every set in Q appears infinitely often in π. Notice that when P
and Q are singletons then the generalized Streett[1] condition on P and Q is in fact a
Streett[1] condition [Str82] or a parity[3] condition [EJ91]. The second winning con-
dition is generalized response. We use a set P = {〈P1, Q1〉, . . . , 〈Pk, Qk〉} of pairs of
subsets of V . In order to define the winning condition we add to the game a counter that
ranges over {1, . . . , k}. The counter is controlled by player 1 and before every move of
player 1 she may change this counter arbitrarily. Player 0 wins the generalized response
condition on P if either player 1 changes the counter infinitely often, or if eventually
the counter is set to i and along the suffix of the play along which the counter is i every
visit to Pi is followed by a visit to Qi. That is, player 1 chooses a pair 〈Pi, Qi〉 ∈ P .
While playing according to this pair a visit to Pi should be followed later by a visit
to Qi. At every given point in time player 1 may decide to change the target pair to j
and start following 〈Pj , Qj〉. If player 1 changes her mind infinitely often she looses.
Notice that this is very different from ensuring that for every j ∈ {1, . . . , k} every visit
to Pj is followed by a visit to Qj . In our setting player 0 can work with each of the pairs
separately. She does not care about other pairs while playing according to one pair (at
least not directly). From every state in the winning region of player 0, she has a strategy
to win the delayed game with respect to every one of the pairs. This strategy cannot
leave the region from which she can win with respect to the other pairs. In order to
ensure that forall j ∈ {1, . . . , k} every visit to Pj is followed by a visit to Qj , player
0 has to memorize to which pairs she owes a visit. This is not necessary in our case.
Notice that in the case that P is a singleton {〈P1, Q1〉}, this game is exactly the game
defined in [EWS01] for delayed simulation. We explain below the motivation for these
two conditions and in Section 3 show how to solve these two types of games.

2.2 Nondeterministic Büchi Automata

A nondeterministic Büchi automaton (or NBW for short) is N = 〈Σ,S, S0, δ, T,F〉,
where Σ = {−1, 0, 1}P for some set of propositions P is a finite alphabet, S is a
finite set of states, S0 ⊆ S is a set of initial states, δ ⊆ S × S is a transition relation,
T : S → Σ is a labeling function, and F = {F1, . . . , Fk} ⊆ 2S is a set of winning
conditions. We call F ∈ F a winning set or acceptance set. For v ∈ V we denote
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δ(v) = {w | (v, w) ∈ δ} and δ−1(v) = {w | (w, v) ∈ δ} the set of successors and
predecessors of v. A run of N is an infinite sequence of states s0, s1, . . . ∈ Sω such that
s0 ∈ S0 and forall j ≥ 0 we have (sj , sj+1) ∈ δ. For a run r = s0, s1, . . ., let inf(r) =
{s ∈ S | s = si for infinitely many i’s} be the set of all states occurring infinitely often
in the run. A run r is accepting if for every 1 ≤ i ≤ k we have inf(r) ∩ Fi �= ∅.
Usually, we distinguish between Büchi automata where |F| = 1 and generalized Büchi
automata where |F| > 1. In this paper we are interested mainly in generalized Büchi
automata. Unless mentioned explicitly, all NBW have more than one acceptance set.

Given two labels σ, σ′ ∈ {−1, 0, 1}P , we say that σ′ abstracts σ (σ � σ′) if for every
q ∈ P such that σ′(q) = 1 we have σ(q) = 1 and for every q such that σ′(q) = −1
we have σ(q) = −1. It is simple to see that the abstraction relation is reflexive and
transitive. An infinite word over P is an infinite sequence w = w0w1 · · · ∈ {−1, 1}P

of truth assignments to the propositions in P . A run r = s0, s1, . . . induces an infinite
word w = w0w1 · · · if for every i ≥ 0 we have that T (si) abstracts wi (notice that
a single run may induce many different words). A word w is accepted by N if it is
induced by some accepting run. The language of N , denoted L(N), is the set of words
accepted by N . We say that two automata are equivalent if they have the same language.

Another way to characterize sets of sequences of propositions is by LTL formulas
[Pnu77, Eme90]. For every LTL formulaϕ, there exists an NBW Nϕ with 2O(|ϕ|) states,
such that L(Nϕ) = L(ϕ) [VW94]. We would like the produced NBW to have a minimal
number of states, transitions, and acceptance sets.

2.3 Simulation

A natural way of comparing automata is by considering language equivalence and lan-
guage containment. However, these problems are computationally expensive and im-
practical. In many cases, we resort to using simulation, an equivalence criterion that
implies language containment and is easy to compute.

Simulation does not consider the acceptance condition. We use the extensions fair
simulation [HKR97] and delayed simulation [EWS01] that consider acceptance. Both
simulations are defined via games. Consider two NBW N = 〈Σ,S, S0, δ, T,F〉 and
N ′ = 〈Σ,R,R0, η, T

′,F ′〉. Let GN,N ′ = 〈V0∪V1, V0, V1, ρ,W 〉 be the simulation
game where (a) V0 = S × R × {0} (b) V1 = {(s, t, 1) : s ∈ S, t ∈ R, and T (s) �
T ′(t)} (c) ρ = {((s, t, 1), (s′, t, 0)) : (s, s′) ∈ δ} ∪ {((s, t, 0), (s, t′, 1)) | (t, t′) ∈ η}
Note that the game has O(|S|·|R|) states and O(|δ|·|R|+|η|·|S|) transitions. In order to
define the winning conditions we define sets of subsets of the locations that depend on
the winning conditions of N and N ′. Let F = {F1, . . . , Fk} and F ′ = {F ′

1, . . . , F
′
l }.

We define the sets P1, . . . , Pk and Q1, . . . , Ql. The set Pi contains all locations (s, t, 1)
such that s ∈ Fi. The set Qi contains all locations (s, t, 1) such that t ∈ F ′

i .
In order to consider fair simulation we consider the generalized Streett[1] game

GN,N ′ over P= {P1, . . . , Pk} and Q= {Q1, . . . , Ql}. It follows that player 0 wins
an infinite play if the projection of the play on the first component is fair implies that
the projection of the play on the second component is fair. We call this game the fair-
simulation game or just the fair game. If player 0 wins the fair game from state (s, t, 1)
then t fair simulates s, denoted by s≤f t. We call H = {(s, t) | (s, t, 1) ∈ W0} the
simulation relation. From every pair (s, t) ∈ H player 0 has a strategy so that the play
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remains in H and if the projection of an infinite outcome on the first component is
fair then so is the projection on the second component. We say that s and t are fair
equivalent, denoted s=f t if both s≤f t and t≤fs. Fair simulation implies language
containment [HKR97]. Gurumurthy et al. show how to use fair simulation to reduce the
number of states and transitions of an NBW where |F| = 1 [GBS02].

In order to consider delayed simulation we require that |F| = |F ′| (i.e., k = l).
Consider the generalized response game GN,N ′ over P = {〈P1, Q1〉, . . . , 〈Pk, Qk〉}.
We call this game the delayed-simulation game or just the delayed game. As before, if
player 0 wins from (s, t, 1) then t delayed simulates s. That is, H = {(s, t) | (s, t, 1) ∈
W0} is the simulation relation. From every pair (s, t) ∈ H and for every pair 〈Pi, Qi〉 ∈
P player 0 has a strategy so that the play remains in H and if the projection of an infinite
outcome on the first component visits Pi then the projection on the second component
visits Qi sometime later. The notations≤d and =d are defined like for fair simulation.
We consider delayed simulation between an automaton and itself. When |F| = 1 our
definition is equivalent to the definition in [EWS01]. Etessami et al. study delayed sim-
ulation for the case where |F| = 1. They show that delayed simulation is implied by
direct simulation (which we do not define here) and it implies fair simulation. These
two claims are true also for the general definition above. The first claim is immediate
and the second can be proved much like Theorem 8.

We note that the generalization of delayed simulation to the case of generalized
Büchi automata is not straight forward. The most straight forward extension would
be to consider a play winning if for every 〈Pi, Qi〉 ∈ P we have that every visit to Pi is
followed by a visit to Qi. In Section 4 we show that our definition is strong enough to
be used for minimization of NBW. Having different strategies for every one of the pairs
is exactly what is needed to establish correctness of delayed-simulation minimization
(as long as the strategies remain in the winning region of player 0).

We use simulation to reduce the number of states and transitions of an automaton.
We usually compute simulation between an NBW and itself. In order to reason about the
changes done to an automaton, we consider simulation between two different automata.

3 Solving Games

3.1 Generalized Streett[1] Games

In [EWS01] and [GBS02], fair games are solved using a reduction to parity[3] games.
Then Jurdziński’s algorithm for solving parity games is used [Jur00]. Here we gener-
alize this approach to our case.

Let G = 〈V, ρ〉 be a generalized Streett[1] game over P = {P1, . . . , Pk} and
Q = {Q1, . . . , Ql}. We define a set of ranking functionsR = 〈r1, . . . , rl〉. The ranking
ri measures what is the minimum over j of the maximal number of visits to Pj until a
visit to Qi is enforced by player 0. If the rank of some state is finite, it means that either
for some j we have Pj is visited finitely often or within a finite number of steps player
0 forces a visit to Qi. We use the ranking to define a winning strategy for player 0 and
show that whenever player 0 wins, such a ranking system exists.

We now define formally the range of the ranking functions and the ranking functions
themselves. We denote by |Pi−Qj| the number of states in Pi−Qj . For j ∈ [k], let
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|j| = maxi{|Pi−Qj|}. We set Dj = ([0..|j|]× [1..k])∪{∞}. We order Dj according
to the lexicographic order with ∞ as maximal element. This induces a well order on
Dj and we define increment by one in the natural way according to this order. Namely
(r, i) + 1 is (r, i + 1) if i < k and (r + 1, 1) if i = k and r < |j|. We set (|j|, k) + 1 =
∞ = ∞ + 1. Let j ⊕ 1 denote (j mod l)+1. Consider a set of ranking functions
R = 〈r1, . . . , rl〉 such that rj : V → Dj . We define bestj(v) to be the rank of the mini-
mal successor of v in case v ∈ V0 and the maximal successor in case v ∈ V1. If v ∈ Qj

we take the minimal / maximal according to rj⊕1, otherwise according to rj . Formally,

bestj(v) =


min(v,w)∈ρ{rj⊕1(w)} v ∈ V0 and v ∈ Qj

min(v,w)∈ρ{rj(w)} v ∈ V0 and v /∈ Qj

max(v,w)∈ρ{rj⊕1(w)} v ∈ V1 and v ∈ Qj

max(v,w)∈ρ{rj(w)} v ∈ V1 and v /∈ Qj

A ranking is good if for every v ∈ V and for every j ∈ [1..l] all the following hold.
– If v ∈ Qj and bestj(v) <∞ then rj(v) = (0, 1).
– If v /∈ Qj , bestj(v) = (r, i), and v ∈ Pi then rj(v) > bestj(v).
– Otherwise rj(v) ≥ bestj(v).

Notice that there is a circular dependency between all the rankings through the defini-
tion of bestj(v) when v ∈ Qj . We claim that given a good ranking, every state v such
that r1(v) <∞ is winning for player 0.

The ranking defines a winning strategy for player 0. More accurately, every ranking
([1..l]) defines a different strategy. Player 0 chooses one such strategy and tries to de-
crease it. When playing according to strategy j and the play reaches a state v for which
rj(v) = (0, 1) and v ∈ Qj she starts playing according to the j⊕1 strategy. If player
0 changes her strategy infinitely often then forall 1 ≤ i ≤ l we have Qi is visited in-
finitely often and player 0 wins. If player 0 eventually plays according to some fixed
strategy i, it follows that the rank eventually remains constant (r, i). It follows that Pi

is not visited again and player 0 wins.
We say that a ranking is tight if it is good and in addition for every winning state v of

player 0 we have r1(v)<∞. In [KPP05] we give a symbolic algorithm for the solution
of generalized Streett[1] games. The algorithm consists of a µ-calculus formula that
characterizes the set of winning states of player 0. In the full version we prove that
the strategy proposed above is winning and use the algorithm of [KPP05] to prove
that whenever there exists a winning strategy for player 0 a tight ranking system exists.

If we can produce a tight ranking system, it provides a partition of the states of the
game to W0 and W1. In order to efficiently compute tight ranking system, we gener-
alize Jurdziński’s rank lifting algorithm [Jur00] to our case. For a state v ∈ V and a
ranking function rj : V → Dj , let incrj

v(i, o) be (0, 1) in the case that v ∈ Qj and
(i, o) < ∞, (i, o) + 1 in the case that v /∈ Qj and v ∈ Po, and (i, o) otherwise2. Let
updatej(rj , v) be the ranking r′j such that r′j(v

′) = rj(v′) for v′ �= v and r′j(v) =
max{rj(v), incrj

v(best(v))}. The lifting algorithm that computes the good ranking is:

1 Let R := ∀v, j : rj(v) = (0, 1)
2 While (∃v, j s.t. rj(v) �= updatej(rj , v)) do
3 Let rj := updatej(rj , v)

2 Notice that in the case that v ∈ Qj and (i, o) =∞ then incrj
v(i, o) =∞.
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Theorem 1. Given a generalized Streett[1] game G, player 0 wins from a location v
iff after the lifting algorithm r1(v) �= ∞.

Etessami et al. give an efficient implementation that computes Jurdziński’s ranking for
parity[3] games [EWS01]. In Fig. 1 we generalize their approach to our ranking.

1 foreach v ∈ V and j ∈ [n] do
2 Bj(v) := 0; Cj(v) := |{w : (v, w) ∈ δ}|; rj(v) := (0, 1);
3 L := {(v, j) ∈ V | qj /∈ L(v) and p1 ∈ L(v)};
4 while L �= ∅ do
5 let (v, j) ∈ L; L := L \ {(v, j)};
6 t := rj(v);
7 Bj(v) := bestj(v); Cj(v) := cntj(v);
8 rj(v) := incrj

v(bestj(v));
9 P := {w ∈ V | (w, v) ∈ ρ};
10 foreach w ∈ P such that (w, j) /∈ L do
11 if w ∈ V0 and t = Bj(w) and Cj(w) > 1 then Cj(w)−−;
12 if w ∈ V0 and t = Bj(w) and Cj(w) = 1 then L := L ∪ {(w, j)};
13 if w ∈ V1 and t = Bj(w) then Cj(w)++;
14 if w ∈ V1 and t > Bj(w) then L := L ∪ {(w, j)};
15 endforeach
16 endwhile

Fig. 1. Efficient solution of generalized Streett[1] games

Theorem 2. We can solve a generalized Streett[1] game in time O(tgkl) where t is the
number of transitions, g the number of locations, k = |P |, and l = |Q|.

When we use this algorithm to compute the fair simulation relation (i.e., solve GN,N )
we get the bounds stated in the following corollary.

Corollary 1. We can compute the fair simulation on an NBW N in time proportional
to O(mn3k2) where m is the number of transitions of N , n is the number of states of
N , and k is the size of F .

We note that if P and Q are singletons then our ranking and Jurdziński’s ranking for
parity[3] are one and the same. In this case the two algorithms are identical.

3.2 Generalized Response Games

In [EWS01], delayed games with one pair are solved using a reduction to parity[3]
games. In order to remember whether the play owes a visit to the acceptance set they
add a Boolean flag. We prefer to take the view of player 1. This allows us to remove the
Boolean flag. The treatment of delayed games becomes completely different from the
treatment of fair games.

Let G = 〈V, V0, V1, ρ,W 〉 be the delayed game over P ={〈P1, Q1〉, . . . , 〈Pk, Qk〉}.
In Fig. 2 we give an algorithm that solves delayed games. Intuitively, player 1 wins
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‘immediately’ from Pi states from which player 1 can avoid Qi states. Additional win-
ning states are states from which player 1 can force the game to immediate wins or to
previously recognized winning states. The algorithm computes the immediate winning
according to some pair and the states from which player 1 can force visits to them. Then
it proceeds to do the same thing for other pairs until no new winning states for player
1 are discovered. Here  and ⊕ denote cyclic subtraction and addition in [1..k]. The
function back reach(X) computes the set of states from which player 1 can force the
play to X . The function avoid set(X,Y ) computes the set of states from which player
1 can avoid X or reach Y .

1 foreach 〈Pi, Qi〉 ∈ P do
2 wini = ∅; old wini = V ;
3 i := 1;
4 while wini �= old wini do
5 old wini := wini�1;
6 avoid := avoid set(Qi, old wini);
7 imm win := (avoid ∩ Pi) ∨ old wini;
8 wini := back reach(imm win);
9 i := i⊕ 1;
10 endwhile

Fig. 2. Efficient solution of generalized response games

Theorem 3. The algorithm in Fig. 2 computes W1 in generalized response games.

We prove soundness by showing that every state collected by the algorithm has some
winning strategy for player 1. We prove completeness by showing that the winning
region of player 1 can be partitioned to regions winning by each of the pairs.

Theorem 4. We can solve generalized response games in time proportional to O(tgk)
where t is the number of transitions, g the number of locations, and k the size of P .

When we use this algorithm to compute the delayed simulation relation we get the
bounds stated in the following corollary.

Corollary 2. We can compute the delayed simulation on an NBW N in time propor-
tional to O(mn3k) where m is the number of transitions of N , n is the number of states
of N , and k is the size of F .

4 Simulation Minimization

4.1 Modifications to NBW and Games

Given an automaton N = 〈Σ,S, S0, δ, T,F〉 and two states s, t ∈ S we would like to
merge states s and t. We denote by N(t← s) the automaton N where state s is merged
with state t. That is, we remove state s from the automaton, replace every occurrence of
s in S0, δ, and F by t. Formally, N(t← s) = 〈Σ,S′, S′

0, δ
′, T,F ′〉 with the following

components.
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– S′ = S − {s} - remove s from the set of states.
– If s ∈ S0 then S′

0 = (S0 ∪ {t}) − {s}, otherwise S′
0 = S0 - replace s by t in the

set of initial states if necessary.
– δ′ = (δ ∪ {(t, s′) : (s, s′) ∈ δ} ∪ {(s′, t) : (s′, s) ∈ δ})− ({s} × S ∪ S × {s})

- replace transitions entering or leaving s by the respective transition from / to t.
– For every F ∈ F , if s ∈ F add (F ∪ {t})− {s} to F ′, otherwise add F to F ′.
In the case where |F| = 1, Etessami et al. use delayed simulation to merge states

[EWS01]. They show that if s and t are delayed equivalent then N and N(t← s) agree
on their languages. Formally, we have the following.

Theorem 5. [EWS01] For an NBW N such that |F| = 1, and s, t such that s=dt we
have L(N) = L(N(t← s)).

Etessami et al. show that in the case of NBW with one acceptance set, delayed simula-
tion can be used for minimization. We show that this is the case also with our definition
and NBW with multiple acceptance sets.

Merging two fair-equivalent states may result in automata that are not equivalent
[EWS01]. Gurumurthy et al. show that it is still worthwhile to try and merge fair-
equivalent states, however, every such merge has to be verified to make sure that it has
not changed the automaton [GBS02]. We show how to extend the efficient algorithm
for computing fair-simulation to the case of NBW with multiple acceptance sets.

Let N = 〈Σ,S, S0, δ, T,F〉 and N ′ = 〈Σ,R,R0, η, L,F ′〉 be two NBW such that
R = S. Let ∆ ⊆ S × S be a set of transitions. We define rem(N,∆) = 〈Σ,S, S0, δ−
∆,T,F〉 and add(N,∆) = 〈Σ,S, S0, δ ∪ ∆,T,F〉. Let GN,N ′ = 〈V, V0, V1, ρ,W 〉
be the simulation game for N and N ′. We define rem(GN,N ′ , ∆) = 〈V, V0, V1, ρ

′,W 〉
where ρ′ = ρ − {((s, t, 0), (s, t′, 1)) | (t, t′) ∈ ∆}. That is, we restrict the moves of
player 0 by removing the moves in ∆. We define add(GN,N ′) = 〈V, V0, V1, ρ

′′,W 〉
where ρ′′ = ρ ∪ {((s, t, 1), (s′, t, 0)) | (s, s′) ∈ ∆}. That is, we add options to player
1 by adding the moves in ∆. Intuitively, if we add transitions to an automaton we know
that the new automaton simulates the old one. We only check that the old automaton
simulates the new one. Dually, when we remove transitions we know that the old au-
tomaton simulates the new one. We have to check only the other direction.

Theorem 6. [GBS02] Let N be an NBW and ∆ a set of transitions. All the following
are true.

– GN,rem(N,∆) = rem(GN,N , ∆).
– rem(rem(GN,N , ∆), ∆′) = rem(GN,N , ∆ ∪∆′).
– Gadd(N,∆),N = add(GN,N , ∆).
– add(add(GN,N , ∆), ∆′) = add(GN,N , ∆ ∪∆′).

According to this theorem it does not matter whether we handle the game graph directly
or build it from scratch from the modified automata. Furthermore, a series of transitions
can be removed one at a time without rebuilding the game. This theorem is used to
efficiently check whether merging of fair equivalent states is allowed [GBS02].

4.2 Fair-Simulation Minimization

As mentioned fair simulation cannot be used for merging states. Gurumurthy et al. show
that it is still worthwhile to try to merge using fair simulation provided that all merges
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are checked [GBS02]. Their algorithm is efficient in the sense that it does not start the
fair simulation computation anew for every merge. In a similar way, if there exists a
state s such that s has transition to both t and t′ where t≤f t

′ they try to remove the
transition from s to t. In such a case, they say that t is a little brother of t′. Again, they
show how to check efficiently all the edge removals. In this section we extend their
approach to the case of generalized Büchi automata.

In order to use fair-simulation for minimization we have to check whether the
changes done to the automaton are sound, i.e., the new automaton accepts the same
language. We change the automaton by adding or removing transitions. In order to
check soundness of changes we try to prove that the original automaton and the modi-
fied automaton are fair-simulation equivalent. In order to check a series of additions /
removals efficiently, we show how to reuse the ranks computed in previous stages.

Consider an NBW N = 〈Σ,S, S0, δ, T,F〉. It induces the fair game GN,N =
〈V , V0, V1, ρ,W 〉. Let R = {r1, . . . , rk} be the ranking computed by the algorithm
in Section 3. We say that R is the ranking of a game G when R is the result of applying
the rank computation algorithm. Given two ranking systems R and R′, we say that R
is at least R′ if for every location v and every 1 ≤ j ≤ k we have rj(v) ≥ r′j(v). The
following lemma is stated and proved in [GBS02] for NBW with |F| = 1. The lemma
and its proof are identical for the case of NBW where |F| > 1.

Lemma 1. For every set of transitions ∆, the ranking of rem(GN,N , ∆) is at least the
ranking of GN,N and the ranking of add(GN,N , ∆) is at least the ranking of GN,N .

Intuitively, if we want to add transitions to the automaton, we add these transitions to
the locations of player 1. If we want to remove transitions we remove these transitions
from the locations of player 0. When we do that, the game becomes easier for player 1
and harder for player 0. It follows that the ranking in the modified game increases. This
means, that if we start from the ranks computed in previous stages and only increase
them we are safe. However, the ranks are bounded by values that are not changed by
addition / removal of edges. When we measure the amount of work done in all stages
of the algorithm (that include several lifting rounds) it cannot be more than O(mn3k2)
total. Essentially, we do the extra lifting rounds for free.

We would like to be able to merge fair equivalent states of N and check if the re-
sulting automaton is equivalent to the original. We would like to use only addition /
removal of transitions to do that. In order to check if a merge is possible, we create an
automaton with two states with the same predecessors and the same successors. That
is, if s=f t we add all outgoing / incoming transitions from /to s to t and vice versa. We
show now that if we have two states with equivalent incoming / outgoing transitions,
one of them can be removed.

Theorem 7. Let N = 〈Σ,S, S0, ρ, T,F〉 be an NBW. Given s and t in S such that
ρ(s) = ρ(t) and ρ−1(s) = ρ−1(t) then L(N) = L(N(t← s)).

Suppose that we have the game GN,N and the ranking R resulting from running our al-
gorithm. This gives us the fair-simulation relation H . Consider two states s and t such
that s=f t. We would like to check whether we can merge s and t. In order to do that we
make s and t have the same incoming edges and the same outgoing edges. Formally, let
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∆ = {(v, t) | (v, s) ∈ δ}∪{(v, s) | (v, t) ∈ δ}∪{(t, v) | (s, v) ∈ δ}∪{(s, v) | (t, v) ∈
δ}. We consider the game add(GN,N , ∆). We update the ranking according to the ad-
dition. If the new automaton fair simulates the old automaton we conclude the merge
to be successful and continue. If the new automaton does not fair simulate the old au-
tomaton we conclude the merge to be unsuccessful and revert to the ranking before
considering add(GN,N , ∆). We then proceed to the next pair of candidates to merge.
As explained we can now consider the game add(add(GN,N , ∆), ∆′) where ∆′ is the
set of transitions that relate to the new pair of states to be merged. Little brothers are
handled similarly.

4.3 Delayed-Simulation Minimization

Delayed simulation as defined for NBW with single acceptance condition can be used
for minimization [EWS01]. That is, if s=dt then L(N(t← s)) = L(N). Our definition
extends delayed simulation for the case of NBW with multiple acceptance conditions.
We show that also under our definition s=dt implies L(N(t← s)) = L(N). Although
our definition is weaker than the straight forward extension of delayed simulation it is
strong enough. When considering an infinite fair computation of one automaton, there
are infinitely many visits to every one of the acceptance sets. We use delayed simulation
on every set separately. When the first automaton visits some acceptance set we force a
visit to the same acceptance set in the second automaton. Until this goal is achieved we
ignore accepting states belonging to other sets. Once this goal is achieved we consider
the next acceptance set in cyclic order.

Theorem 8. Given an NBW N and states s, t s.t. s=dt then L(N(t← s)) = L(N).

We show that if there exists a run r of N(t ← s) that starts with a fair state according
to Fi we can find a run segment r′ or N that simulates the prefix of r and ends with a
fair state from Fi. Given an accepting run of N(t← s) every fair set is visited infinitely
often. So we create a run of N that visits each fair set in turn. While going for a visit in
Fi we ignore other sets in F .

In a similar way we can prove that delayed simulation implies fair simulation (which
in turn implies trace containment). As delayed simulation implies fair simulation, every
delayed equivalent states are also fair equivalent. This means, that if we try delayed
minimization after fair minimization, the only candidates for merging are the states that
we try merging but fail to pass the fair simulation test.

5 Experimental Results

In this section, we present experimental results for our algorithms. We have imple-
mented the approach described in Section 4 in Wring [SB00]. In order to test the effi-
ciency of our application we tested it on randomly generated LTL formulas.

In Wring, the sequence of optimization steps applied to an NBW starts with a prun-
ing step that removes states that cannot reach a fair cycle. This is followed by a min-
imization step that includes direct, reverse, fair, and delayed simulation minimization.
Finally, there is another pruning step. Obviously, on NBW with multiple acceptance
conditions only direct and reverse simulation are applied (in the original Wring).
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We compare our extension to generalized Büchi automata, with the previously im-
plemented algorithms. We have generated 537 random LTL formulas which produce
NBW with more than one acceptance condition (that is, for these formulas direct and
reversed simulation leave an NBW with more than one acceptance set). We report on
the results of running our application on these formulas. We compare the original ver-
sion of Wring, which applies direct and reverse minimization, to our version, which
adds fair minimization, delayed minimization, or both fair and delayed minimization.
The results are given in Table 1. For each option we give the total number of states,
transitions, initial states, fairness conditions, and CPU time.

Table 1. Experimental results for 537 random LTL formulae

Method States Trans Fair Init Time
original 26836 104605 1213 3586 3006
fair 26262 100912 1153 3518 6107

Method States Trans Fair Init Time
delayed 26776 104236 1204 3585 3732
fair+delayed 26070 99672 1141 3518 6666

The results above show that our algorithm can improve generalized Büchi automata
that have already undergone optimization. We save approximately 3% of the states of
the automata, which is comparable to the 1% saved by the original implementation
of fair and delayed simulation to NBW with one acceptance set [GBS02]. In the case
of fair simulation the CPU time is considerable. We note that our automata are larger
by a factor of 10 than the automata used in [GBS02] (where in average an NBW has 55
states and 100 transitions). When combined, delayed and fair simulation may produce
better results. On one example (not included above), starting from 183 states, each sep-
arately hardly reduced the automaton while together they reduced about 90 states. On
this example alone, our application requires about 2000 seconds while original Wring
requires about 200. Out of 537 NBW, only on 70 our algorithm saves more than 2 states.
On these automata it reduced the number of states from 4234 to 3572 and the number
of transitions from 17029 to 13077 (about 15% of the states and 25% of the transitions).
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Abstract. We present the tool Ticc (Tool for Interface Compatibility
and Composition). In Ticc, a component interface describes both the
behavior of a component, and the component’s assumptions on the envi-
ronment’s behavior. Ticc can check the compatibility of such interfaces,
and analyze their emergent behavior, via a symbolic implementation of
game-theoretic algorithms.

1 Overview

Open systems are systems whose behavior is jointly determined by their inter-
nal structure, and by the inputs that they receive from their environment. In
previous work, it has been argued that games constitute a natural model for
open systems [1,6,7,4,2]. We use games to represent the interaction between the
behavior originating within a component, and the behavior originating from the
component’s environment. In particular, we model components as Input-Output
games: the moves of Input represent the behavior the component can accept
from the environment, while the moves of Output represent the behavior the
component can generate.

Unlike component models based on transition systems, models based on games
provide a notion of compatibility [6,7,4]. When two components P and Q are
composed, we can check whether the output behavior of P satisfies the input
requirements of Q, and vice-versa. However, we do not define P and Q to be
compatible only if their input requirements are always satisfied. Rather, we rec-
ognize that the output behavior of P and Q can still be influenced by their
residual interaction with the environment (unless the composition of P and Q is
closed). Thus, we define P and Q to be compatible if there is some environment
under which their input assumptions are mutually satisfied, and we associate
with their composition P‖Q the weakest (most general) assumptions about the
environment that guarantee mutual compatibility. In game-theoretic terms, P
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and Q are compatible if, in their joint model, Input has a strategy to guaran-
tee that all outputs from P to Q can be accepted by Q, and vice-versa; the
environment assumption of P‖Q is simply the most general such Input strategy.

These game-based component models have been called interface theories, and
two tools for interface theories predate Ticc. The asynchronous, action-based
interface theories of [6] are implemented as part of the Ptolemy toolset [8].
The tool Chic implements synchronous, variable-based interface theories closely
modeled after [7]. Our goal in developing Ticc was to provide an asynchronous
model where components have rich communication primitives that facilitate the
modeling of software and distributed systems.

In Ticc, variables encode both the local state of the components (called mod-
ules) and the global state of the system. Modules synchronize on shared actions,
and the occurrence of actions can cause variables to be updated. Each global
variable can be updated by more than one module, so that it is both read
and write-shared; restrictions ensure that variable updates are free from race-
conditions. An action can appear in a module both as input and as output. If
an action a occurs in a module P as output, but not as input, then P can gen-
erate a, but not accept it from other modules. If a occurs in P both as input
and as output, then P can both generate a, and accept it from other modules.
This enables the encoding of rich communication schemes, including exclusive,
and many-to-many schemes, and differentiates the modules of Ticc from other
modules with more restrictive communication primitives, such as I/O Automata
[10] and Reactive Modules [3]. The theory behind Ticc has been presented in
[5]; here, we describe the tool itself.

2 The Ticc Tool

Ticc parses interfaces, called modules, encoded in a guarded-command lan-
guage, and builds symbolic representations for these interfaces that are used
for compatibility checking and composition. Ticc is written in OCaml [9],
and the symbolic algorithms rely on the MDD/BDD Glue and Cudd pack-
ages [11]. The code of Ticc is freely available and can be downloaded from
http://dvlab.cse.ucsc.edu/dvlab/Ticc. This web site is an open Wiki that also
contains the documentation for the tool, and several additional examples.

We illustrate the modeling language of Ticc by means of a simple example:
a fire detection system. The system is composed of a control unit and several
smoke detectors. When a detector senses smoke (action smoke), it reports it by
emitting the action fire. When the control unit receives action fire from any
of the detectors, it emits the action call fd , corresponding to a call to the fire
department. Additionally, an input disable disables both the control unit and the
detectors, so that the smoke sensors can be tested without triggering an alarm.

We provide the code for the control unit module (ControlUnit), for one of
the (several) fire detectors (FireDetector1), as well as for a faulty detector that
ignores the disable messages (Faulty FireDetector2):

The body of each module starts with the list of its local variables; Ticc
supports Boolean and integral range variables. The transitions are specified using
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guarded commands guard ⇒ command, where guard and command are boolean
expressions over the local and global variables; as usual, primed variables refer
to the values after a transition is taken. For instance, the output transition fire
in module FireDetector1 can be taken only when s has value 1; the transition
leads to a state where s = 2.

module ControlUnit:
var s: [0..3] // 0=waiting, 1=alarm raised, 2=fd called, 3=disabled
input fire: { local: s = 0 | s = 1 ==> s’ := 1

else s = 2 ==> }
input disable: { local: true ==> s’ := 3 }
output call_fd: { s = 1 ==> s’ = 2 }

endmodule

module FireDetector1:
var s: [0..2] // 0=idle, 1=smoke detected, 2=inactive
input smoke1: { local: s = 0 | s = 1 ==> s’ := 1

else s = 2 ==> } // do nothing if inactive
output fire: { s = 1 ==> s’ = 2 }
input fire: { } // accepts (and ignores) fire inputs
input disable: { local: true ==> s’ := 2 }

endmodule

module Faulty_FireDetector2:
var s: [0..2] // 0=idle, 1=smoke detected, 2=inactive
input smoke2: { local: s = 0 | s = 1 ==> s’ := 1

else s = 2 ==> } // do nothing if inactive
output fire: { s = 1 ==> s’ = 2 }
input fire: { } // accepts (and ignores) fire inputs
// does not listen to disable action

endmodule

When modules ControlUnit and FireDetector1 are composed, they syn-
chronize on the shared actions fire and disable . First, input transitions in a
module synchronize with the corresponding output transitions in the other mod-
ule. Thus, the output transition labeled with fire in FireDetector1 synchro-
nizes with the input transitions labeled with fire in ControlUnit. Moreover,
input transitions associated to a shared action in different modules also synchro-
nize. For instance, the input transitions associated with fire in FireDetector1
and ControlUnit synchronize, so that the composition FireDetector1 ‖
ControlUnit can also accept fire as input, and can therefore be composed with
other fire detectors.

The composition of ControlUnit and Faulty FireDetector2 goes less
smoothly. When the composition receives a disable action, the control unit shuts
down (s = 3), while the faulty detector remains in operation. When the faulty
detector senses smoke (input smoke2), it will emit fire: if the control unit has
been disabled by the disable action, this causes an incompatibility. Ticc diag-
noses this incompatibility by synthesizing the following input restrictions:
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– A restriction preventing the input disable if the faulty detector is in state
s = 1, that is, it has detected smoke and is about to issue fire.

– A restriction preventing the input smoke2 when ControlUnit is at s = 3
(disabled).

Since the actions disable and smoke2 should be acceptable at any time, the new
input restrictions for these actions are a strong indication that the composition
ControlUnit ‖ Faulty FireDetector2 does not work properly.

3 Using Ticc

Ticc is implemented as a set of functions that extends the capabilities of the
OCaml command-line. The incompatibility mentioned in the previous section is
exposed by the following series of OCaml commands:

# open Ticc;;
# parse "fire-detector-disable.si";;
# let controlunit = mk_sym "ControlUnit";;
# let wfire2 = mk_sym "Faulty_FireDetector2";;
# print_input_restriction (compose controlunit wfire2) "disable";;
# print_input_restriction (compose controlunit wfire2) "smoke2";;

The mk sym function builds a symbolic representation of a module, given the
module name. The last two lines print how the input actions have been restricted
in the composition.
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Abstract. Fast is a tool designed for the analysis of counter systems,
i.e. automata extended with unbounded integer variables. Despite the
reachability set is not recursive in general, Fast implements several in-
novative techniques such as acceleration and circuit selection to solve
this problem in practice. In its latest version, the tool is built upon an
open architecture: the Presburger library is manipulated through a clear
and convenient interface, thus any Presburger arithmetics package can
be plugged to the tool. We provide four implementations of the inter-
face using Lash, Mona, Omega and a new shared automata package
with computation cache. Finally new features are available, like different
acceleration algorithms.

Keywords: counter systems verification, acceleration, generic Pres-
burger interface, automata with cache computation.

1 Introduction

The automatic verification of reactive systems is a major field of research. A
popular way of modeling such systems is by means of (synchronized) automata
extended with variables. The automata represent the control structure of the
system, while variables encode data. Fast is a tool for the analysis of systems
manipulating unbounded integer variables. We check safety properties by com-
puting the reachability set of the systems. Even if this reachability set is not
necessarily recursive, we use innovative techniques (acceleration, flattening, re-
duction) to increase convergence. Fast relies heavily on Presburger arithmetics
for both system/properties specification and symbolic representation of infinite
sets of states. Fast theoretical background is described in [7,2,1,3].

In our opinion, the following facts make Fast a valuable tool for counter
system analysis. (1) Since counter systems and Presburger constraints are very
expressive, Fast can be applied to a large spectrum of applications and the tool is
not tied to a particular specific case-study. (2) Despite the inherent theoretical
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limitations, the analysis succeeds in most practical cases. (3) Fast design is
fully based on a clear theoretical framework. Abilities and limits of the tool are
identified: the tool is complete relatively to the class of flattable systems [3]. Since
many decidable subclasses of counter systems are flattable [8], Fast provides
a unified and efficient verification algorithm for many well-studied classes of
counter systems. (4) Finally the user can guide the tool via a script language,
which is useful since termination cannot be guaranteed.

Experimentations. Fast has been tested over a pool of 40 infinite-state systems,
and the computation succeeded in around 80% of the tests [2,1]. In [5] Fast
is used to prove properties of a class of communication protocols manipulating
counters and queues. A comparison of Fast and other tools in [3] shows that
Fast provides a very efficient engine for (forward) reachability set computation
of counter systems.

Extended Release. This new version provides the following improvements: (1) an
open architecture based on an analysis engine and a convenient interface (API)
for Presburger arithmetics. We provide adaptations of the standard packages
Lash [9], Mona [10] and Omega [11] to the API; (2) a new Presburger package
implementing the API via shared automata [6] equipped with a computation
cache; (3) various add-ons both in the analysis engine and in the interface.

2 Open Architecture

The architecture of the tool has been redesigned, and the tool is now divided in
two parts: on the one side, a counter system analysis engine built upon a generic
Presburger API; on the other side various implementations of this API. These
different libraries can be re-used easily in various applications, independently of
Fast and counter system analysis, corresponding to a recurrent demand.

The Generic Presburger Programming Interface (Genepi). The API requires
only basic operations on Presburger formulas such as conjunction, disjunction,
negation, (inverse) projection and satisfiability testing. The API is easy to use,
and it is also quite easy to adapt existing Presburger packages to the API.

Implementations of the API. We provide three implementations of the API based
upon standard packages Lash, Mona and Omega. The Mona implementation
corresponds to the former version of Fast.

Potential Applications. People concerned with Presburger packages can take ad-
vantage of our open architecture and API in at least two ways. (1) Presburger
developers. People interested in developing a Presburger package can easily linked
it to Faster and use the tool and the 40 case-studies as intensive benchmarking
for their package. (2) Presburger users. People interested in developing any ap-
plication requiring Presburger arithmetics can use our generic Presburger API,
and then select through the set of implementations which one fits most their
application.
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3 The Shared Automata Package

We have also developed from scratch an implementation of the API using shared
automata introduced by Couvreur in [6]. These automata share their strongly
connected components in a bdd-like manner. It allow to implement important
features for intensive computation, such as cache computation and constant-time
equality testing. Our library is functional, but the computation cache is not yet
well optimized. However it has already permitted to speed up computation time
by a factor 3. The shared automata package is called PresTaf.

4 New Features in Analysis

The tool has been extended with new capacities, both in the analysis engine
and in the interface. (1) One can specify the acceleration algorithm, choosing
between standard acceleration and convex acceleration [1]. The last one considers
restricted functions but is more efficient. Different search heuristics are also
available. (2) One can specify some circuits to be used during the analysis. (3)
Finally we developed a tool to transform a Petri net in pnml format into a Fast
model. The language pnml [4] describes various extensions of Petri nets and it
is under standardization.

5 Comparison of Presburger libraries

We present in figure 1 the performances (time spent in seconds) of Faster
depending on our different implementations of Presburger arithmetics. Columns
V and T denote respectively the number of variables and transitions in the
system. All these systems have infinite reachability sets, except Dekker.

System V T Mona∗ Lash PresTaf∗∗ Omega
Central Server system 13 8 5.94 91.1 7.20 43.3
Consistency Protocol 12 8 77.4 2400 140 50.3
Producer/Consumer Java 18 14 446 2520 57.6 ≥ 3600
CSM - N 13 13 13.1 241 12.5 616
Dekker ME 22 22 11.4 287 12.8 ≥ 3600
Last-in First-served 17 10 0.65 8.12 1.13 13.9
Multipoll 17 20 7.25 283 8.55 295
SWIMMING POOL 9 6 44.1 993 48.6 ≥ 3600

∗ This implementation corresponds to the former version of Fast.
∗∗ A computation cache is available, but not yet optimized.

Fig. 1. Comparison of different Presburger implementations

Even though the computation cache implemented in PresTaf is not fully
optimized, figure 1 shows that PresTaf and Mona have significantly the same
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execution time. Lash seems outperformed by the two previous libraries. Recall
that (1) Lash provides Presburger implementation for negative and non-negative
integers, thanks to more complex algorithms, and (2) Lash does not imple-
ment any computation cache. Omega is also outperformed. The tool appears to
compute unduly complicated Presburger formulas (even with the simplification
method provided by the package), while Lash, Mona and PresTaf benefit
from canonical representations of formulas.

In the previous table, the memory used is not given because, due to cache
computation, this value is not representative. Without computation cache, since
the internal representations of Lash, Mona and PresTaf are slightly the same,
the three implementations require slightly the same amount of memory.

Availability.Faster, Genepi and PresTaf are available at http://altarica.
labri.fr/. The tool, the API and the libraries are freely available under the GPL
license. The analysis engine is written in C++ and the different implementations
of the API are written in C. Faster has been tested on an Intel PC running Linux
and gcc 4.0.2.

Acknowledgments. We are grateful to Jean-Michel Couvreur for providing
us advices on the implementation of shared automata, and to Ales Smrcka for
adapting Omega source code to recent compilers.
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Abstract. Automata are a useful tool in infinite-state model checking,
since they can represent infinite sets of integers and reals. However, anal-
ogous to the use of bdds to represent finite sets, the sizes of the automata
are an obstacle in the automata-based set representation. In this paper,
we generalize the notion of “don’t cares” for bdds to word languages as
a means to reduce the automata sizes. We show that the minimal weak
deterministic Büchi automaton (wdba) with respect to a given don’t
care set, under certain restrictions, is uniquely determined and can be
efficiently constructed. We apply don’t cares to improve the efficiency
of a decision procedure for the first-order logic over the mixed linear
arithmetic over the integers and the reals based on wdbas.

1 Introduction

As Büchi observed almost 50 years ago [8, 9], automata can be used to de-
cide arithmetical theories, like Presburger arithmetic. Roughly speaking, a Pres-
burger arithmetic formula defines a regular language, for which one can build the
automaton recursively over the structure of the formula. So, automata are used
to represent sets of integers that are definable in Presburger arithmetic. More
recently, model checkers for systems with unbounded integers, like fast [1] and
alv [19] have been developed that use such an automata-based set represen-
tation. The use of automata in these model checkers can be compared to the
use of bdds in model checkers for finite state systems, like smv [17]: automata
describe sets of system states. Moreover, automata constructions can be used
for computing or overapproximating the set of all reachable states.

Sets of reals can be represented by ω-automata. Boigelot, Jodogne, and
Wolper [5] have shown recently that even weak deterministic Büchi automata
(wdbas) suffice to represent the first-order definable sets in (R, Z,+, <), where
Z is the unary predicate stating whether a number is an integer. This result
paves the way for a more effective automata-based decision procedure for the

� This work was supported by the German Research Foundation (DFG) and the Swiss
National Science Foundation (SNF).

�� Due to space limitations, proofs are omitted. Details are in the technical report [10].
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first-order logic over (R, Z,+, <). wdbas can be handled algorithmically almost
as efficiently as automata over finite words. For instance, in contrast to Büchi au-
tomata, they can be efficiently minimized [16] and they are easy to complement.
wdbas and this logic have a wide range of applications, such as the symbolic
verification of linear hybrid automata [3,4]. The automata library lash [15] pro-
vides implementations of all the needed operations for implementing a decision
procedure for the first-order logic over (R, Z,+, <) based on wdbas.

However, analogous to bdds, it turns out that a limiting factor in the
automata-based representation of potential infinite sets of integers or reals is
the size of the automata. In fact, our first results of an automata-based decision
procedure for the first-order theory over (R, Z,+, <) were rather discouraging;
even for medium sized formulas the minimal wdbas were often huge. An analysis
of the constructed automata lead to the results presented in this article.

For bdds, many algorithms and methods have been developed to reduce the
bdd sizes, which have improved the performance bdd-based model-checkers. One
of these techniques is the use of don’t cares [12]. Roughly speaking, don’t cares
are inputs of a combinational circuit for which the circuit output is not specified
or irrelevant. The bdd representation of a circuit can be reduced by choosing
appropriate output values for the don’t care inputs. In this paper, we generalize
the notion of don’t cares for bdds to languages. In the most general sense, a
don’t care set is a language over some alphabet. The set chosen depends on the
application domain. The intuition of a don’t care word is that it is irrelevant
whether this word belongs to a language or not. Adding or removing don’t care
words to languages can result in smaller automata. A trivial example is where
the don’t care set consists of all words. In this case we can either add or remove
all words and obtain an automaton with a single state. However, usually a don’t
care set is a proper subset of all words and it is not obvious which of these
words must be added or removed to obtain smaller automata. Furthermore,
the order in which we add and remove words might lead to different (minimal)
automata accepting the same language modulo the don’t care set. We prove that
under certain restrictions on the don’t care set, the minimal wdba is uniquely
determined and can be efficiently constructed.

To demonstrate the effectiveness of don’t cares for automata, we apply it to the
approach for representing and manipulating sets of integers and reals by wdbas.
First, we define a straightforward don’t care set when encoding reals by ω-
words. Second, we present an automata construction for handling the existential
quantification, which becomes more complicated when using don’t cares. Third,
we show by experiments that introducing don’t care sets can reduce the automata
sizes significantly in computing and representing sets of integers and reals.

We proceed as follows. In 2, we give preliminaries. In §3, we introduce don’t
care words and present our general results about don’t care sets. In §4, we present
an automata construction for projecting sets of reals that are represented by
wdbas modulo a specific set of don’t cares. In §5, we report on experimental
results. Finally, in §6, we draw conclusions.
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2 Preliminaries

We assume that the reader is familiar with the basics of automata theory and
first-order logic. The purpose of this section is to recall some background in these
areas, and fix the notation and terminology used in the remainder of the text.

2.1 Languages and Deterministic Automata

Let Σ be an alphabet. We denote the set of all finite words over Σ by Σ∗ and
Σ+ denotes the set Σ∗ \ {ε}, where ε is the empty word. Σω is the set of all ω-
words over Σ. The concatenation of words is written as juxtaposition. We write
|w| for the length of w ∈ Σ∗. We often write a word w ∈ Σ∗ of length � ≥ 0
as w(0) . . . w(�− 1) and an ω-word α ∈ Σω as α(0)α(1)α(2) . . . , where w(i) and
α(i) denote the ith letter of w and α, respectively.

A deterministic finite automaton (dfa) A is a tuple (Q,Σ, δ, qI, F ), where
Q is a finite set of states, Σ is an alphabet, δ : Q × Σ → Q is the transition
function, qI ∈ Q is the initial state, and F ⊆ Q is the set of accepting states.
A state not in F is a rejecting state. The size of A is the cardinality of Q. We
write Aq for the dfa that is identical to A except that q ∈ Q is the initial
state. We extend δ to the function δ̂ : Q × Σ∗ → Q defined as δ̂(q, ε) := q and
δ̂(q, bu) := δ̂(δ(q, b), u), where q ∈ Q, b ∈ Σ, and u ∈ Σ∗. The dfa A defines the
language L∗(A) := {w ∈ Σ∗ : δ̂(qI, w) ∈ F}.

The state q ∈ Q is reachable from p ∈ Q if there is a word w ∈ Σ∗ such
that δ̂(p, w) = q. In the remainder of the text, we assume that every state in
an automaton is reachable from its initial state. A strongly connected component
(scc) of A is a set S ⊆ Q such that every p ∈ S is reachable from every q ∈ S
and S is maximal. For q ∈ Q, SCC(q) denotes the scc S ⊆ Q with q ∈ S. We
call an scc S accepting if S ⊆ F , and rejecting if S ∩ F = ∅.

We can view a dfa as a deterministic Büchi automaton (dba). A run of the
dba A on the ω-word α ∈ Σω is an ω-word ϑ ∈ Qω such that ϑ(0) = qI and
ϑ(i + 1) = δ(ϑ(i), α(i)), for all i ∈ N. The run ϑ is accepting if Inf(ϑ) ∩ F �= ∅,
where Inf(ϑ) is the set of states that occur infinitely often in ϑ. The dba A

defines the ω-language Lω(A) := {α ∈ Σω : the run of A on α is accepting}.
The dba A is weak if every scc of A is either accepting or rejecting. We use the
initialism wdba for “weak deterministic Büchi automaton.” Similarly, we can
view a dfa as a deterministic co-Büchi automaton (co-dba). Runs of co-dbas
are defined as for dbas. A run ϑ of a co-dba C is accepting if Inf(ϑ) ∩ F = ∅,
where F is the set of “accepting” states of C. We define Lω(C) := {α ∈ Σω :
the run of C on α is accepting (in the co-Büchi sense)}.

2.2 Representing Sets of Reals with Automata

Let R be the structure (R, Z,+, <), where + and < are as expected and Z is
the unary predicate such that Z(x) is true iff x is an integer. For a formula
ϕ(x1, . . . , xr) and a1, . . . , ar ∈ R, we write R |= ϕ[a1, . . . , ar] if ϕ is true in R
when the variable xi is interpreted as ai, for 1 ≤ i ≤ r.
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Boigelot, Jodogne, and Wolper have shown in [5] that for every first-order
definable set X ⊆ Rr in R, there is a wdba A that describes X . Moreover, they
have shown that A can be effectively constructed from a formula ϕ(x1, . . . , xr)
that defines X , i.e., X = {a ∈ Rr : R |= ϕ[a]}. We recall the precise correspon-
dence between subsets of Rr and ω-languages from [5]. In the remainder of the
text, let � > 1 and Σ := {0, . . . , �− 1} be fixed. � is called the base.

Definition 1. Let r ≥ 1.
1. Vr denotes the set of all ω-words over the alphabet Σr∪{�} of the form v �γ,

where v ∈ (Σr)+ with v(0) ∈ {0, �− 1}r and γ ∈ (Σr)ω.
2. An ω-word v � γ ∈ Vr represents the vector of reals with r components

〈〈v�γ〉〉 :=
∑

0<i<|v|
�|v|−i−1 ·v(i)+

∑
i≥0

�−i−1 ·γ(i)+

{
0 if v(0) = 0,
−�|v|−1 if v(0) = �− 1,

where vector addition and scalar multiplication are componentwise.1

3. For a formula ϕ(x1, . . . , xr), we define L(ϕ) := {α ∈ Vr : R |= ϕ[〈〈α〉〉]}.
Note that the encoding v � γ ∈ V1 of a real is based on the �’s complement
representation. The symbol � plays the role of a decimal point, separating the
integer part v from the fractional part γ. Moreover, note that every vector in
Rr can be represented by an ω-word in Vr. However, the representation is not
unique. First, we can repeat the first letter arbitrary often without changing the
represented vector. Second, a vector that contains in a component a rational
whose denominator has only prime factors that are also factors of the base �,
has distinct representations, e.g., in base � = 2, 〈〈0 � 10ω〉〉 = 〈〈0 � 01ω〉〉 = 1

2 ,
where bω denotes the infinite repetition of the letter b.

Additional Notation. Let r ≥ 1 and s, t ∈ {1, . . . , r} with s ≤ t. We denote the
tth coordinate of b ∈ Σr by b�t and b�s,t := (b�s, b�s+1, . . . , b�t). We write α�t for
the tth track of α ∈ (Σr∪{�})ω, i.e., α�t is the ω-word γ ∈ (Σ∪{�})ω defined as
γ(i) := � if α(i) = �, and γ(i) := α(i)�t otherwise, for i ∈ N. Analogously, α�s,t

denotes the ω-word consisting of the tracks s, s+ 1, . . . , t of α. For m,n ≥ 1 and
ω-words α ∈ (Σm ∪ {�})ω and β ∈ (Σn ∪ {�})ω, we write (α, β) for the ω-word
γ ∈ (Σm+n ∪ {�})ω with γ�1,m = α and γ�m+1,m+n = β. Here, we make the
assumption that α(i) = � iff β(i) = �, for all i ∈ N. We use the same notation
for finite words, which is defined analogously.

3 Don’t Cares for Optimizing the Real Representation

In this section, we define our optimized representation of the reals as ω-words,
which leads us to the general concept of don’t care words for ω-languages. We
first give a motivating example.

Example 2. Consider the formula ϕ(x, y) := x �= 0 ∧ x+y = 0. The minimal
wdba accepting L(ϕ) in base � = 2 is shown in Figure 1(a). This wdba is rather
1 Note that we do not distinguish between vectors and tuples.



Don’t Care Words with an Application to the Automata-Based Approach 71

0

11

(1,0)

12

(0,1)

8

(0,0)

1

*

9

(1,1)

2

*

10

(1,1)

(0,0)

(0,1)
(1,0)

3

*

(1,1)

(0,0)

(0,1)

(1,0)

4
*

(1,1)

(0,0)

(1,0)

(0,1)

5

*

(0,0)

(1,1)

(1,1)

(0,0)

(0,1)
(1,0)

(1,1)

(0,0)

(0,1)

(1,0)

(1,1)

(0,0)

(1,0)(0,1)

(a) straightforward encoding
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(0,0)

(1,1)
(0,1)
(1,0)

(b) optimized encoding

Fig. 1. Minimal wdbas for the formula x �=0 ∧ x+y =0. For the sake of readability,
we have omitted the rejecting sink states and their incoming transitions.

complex as it must either accept or reject all ω-words that represent the same
pair of reals. For instance, the ω-words α := (1, 0)�(1, 0)ω and β := (0, 1)�(0, 1)ω

represent the pair (0, 0) of reals, which does not satisfy ϕ and thus, the wdba
must reject them. In the optimized encoding we exploit that already the ω-word
γ := (0, 0) � (0, 0)ω takes care of the fact that the pair of reals (0, 0) is not
in the represented set. That means, we can add α and β to the ω-language.
More general, an ω-word that has a suffix in which at least one of its tracks is
of the form 1ω is treated as a don’t care, i.e., we can freely chose whether the
automaton should accept or reject this ω-word. Observe that for every don’t
care representing the pair (x, y) of reals, there is an ω-word that also represents
(x, y) and is not a don’t care.

Consider again the ω-words α and β, which are don’t cares. When reading
these ω-words, we eventually loop in the states 4 and 5, respectively. Note that
all runs that eventually stay in one of these states are don’t cares. Making the
states 4 and 5 accepting clearly alters the ω-language of the wdba. However, we
only add ω-words that are don’t cares, like α and β. If the states 4 and 5 are
accepting we can merge them with state 3. Analogously, we can make state 2
rejecting. Then, we can merge the states 2 and 9 with the rejecting sink state.
We could also make the states 11 or 12 accepting. However, this would not be
beneficial since it will prevent us from merging the states 10, 11, and 12. The
resulting minimized automaton is depicted in Figure 1(b).

In the context of encoding reals by ω-words we use the following don’t cares.

Definition 3. Let r ≥ 1. An ω-word α ∈ (Σr ∪ {�})ω is a don’t care word if
there are t ∈ {1, . . . , r} and k ∈ N such that α(i) ∈ Σr and α(i)�t = � − 1, for
all i ≥ k. DCr denotes the set of all don’t care words in (Σr ∪ {�})ω.

Instead of constructing a wdba that accepts the ω-language L(ϕ) for a formula
ϕ, we are interested in constructing a wdba that accepts an ω-language that
coincide on all the ω-words in L(ϕ) that are not don’t care words. Note that
removing or adding all don’t care words to L(ϕ) does not necessarily result in a
smaller automaton. Also note that by removing or adding all don’t care words
we can obtain ω-languages that are not recognizable by wdbas.



72 J. Eisinger and F. Klaedtke

The following definition generalizes the concept of ω-words for which we “do
not care” if they belong to an ω-language or not.

Definition 4. A don’t care set D is an ω-language over some alphabet Γ , and
an ω-word in D is a don’t care word. For ω-languages L,L′ ⊆ Γω, we write
L ≡D L′ if L \D = L′ \D.

We want to remark that the so-called don’t care sets will usually depend on the
application context. In our case, the don’t care sets DCr naturally arise from the
encoding of the reals in Definition 1.

In the remainder of this section, we present general results about ω-languages
with respect to a don’t care set D. We focus on ω-languages that can be described
by Büchi automata, in particular by wdbas. In §3.1 and §3.2, we establish some
straightforward facts. Namely, in §3.1, we observe that standard automata con-
structions carry over to handle the Boolean operations when using don’t care
sets, and in §3.2, we show how to solve the emptiness problem for Büchi au-
tomata with respect to an ω-regular don’t care set D ⊆ Γω. In §3.3, we describe
minimization of wdbas with respect to a don’t care set D ⊆ Γω, where we
assume that D fulfills the two properties: (1) D �= Γω and (2) α ∈ D ⇔ uα ∈ D,
for all u ∈ Γ ∗ and α ∈ Γω. In particular, we show that the minimal wdba is
uniquely determined (up to isomorphism) and we give an efficient algorithm for
constructing it under the assumption that D is ω-regular.

3.1 Boolean Operations

The automata construction for Boolean operations, like union and complementa-
tion of ω-languages, need not to be changed when using a don’t care set D ⊆ Γω.
For instance, for complementation, if we have that L ≡D L′, for ω-languages
L,L′ ⊆ Γω, then we have that Γω \ L ≡D Γω \ L′. Note that it is irrelevant
whether L and L′ differ on D, i.e., L ∩D �= L′ ∩D.

For wdbas, we can use the standard product construction for the intersection
and union. Let A = (Q,Γ, δ, qI, F ) and B = (Q′, Γ, δ′, q′I, F

′) be wdbas. For the
intersection, we define D := (Q×Q′, Γ, η, (qI, q′I), F × F ′), where η((q, q′), b) :=
(δ(q, b), δ′(q′, b)), for q ∈ Q, q′ ∈ Q′, and b ∈ Γ . The construction for the union
is similar. Complementing wdbas is done by flipping accepting and rejecting
states of a wdba. We define C := (Q,Γ, δ, qI, Q \ F ).

Proposition 5. (a) For the wdba D, it holds that Lω(D) ≡D Lω(A)∩Lω(B).
(b) For the wdba C, it holds that Lω(C) ≡D Γω \ Lω(A).

3.2 Emptiness Check

The emptiness problem for Büchi automata modulo a don’t care set D is to
check whether a Büchi automaton A accepts an ω-word that is not in D. If D is
ω-regular, then we can solve this problem by constructing the Büchi automaton
accepting Lω(A) \D and check whether the resulting Büchi automaton accepts
an ω-word. The complexity is in O(n), where n is the number of states of A. Note
that D is fixed and hence, the size of the Büchi automaton for D is a constant.
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3.3 Minimizing WDBAs with Don’t Cares

Löding showed in [16] that the minimal wdba can be constructed in two steps.
In the first steps, the wdba is put in linear time into a normal form by deter-
mining a suitable set of accepting states. This step does not change the accepted
ω-language, since it only alters the acceptance types of states (rejecting or ac-
cepting) that cannot occur infinitely often in a run. In the second step, the
wdba in normal form is minimized by a standard dfa minimization algorithm,
like that of Hopcroft [13]. We extend Löding’s algorithm to wdbas such that it
takes a don’t care set D over the alphabet Γ into account, where we require that
(1) D �= Γω and (2) α ∈ D ⇔ uα ∈ D, for all u ∈ Γ ∗ and α ∈ Γω.

Definition 6. Let A = (Q,Γ, δ, qI, F ) be a wdba.
1. A is D-minimal if there is no smaller wdba B such that Lω(A) ≡D Lω(B).
2. A state q ∈ Q is D-recurrent if Lω(A′) \ D �= ∅, where A′ is the wdba

(Q,Γ, δ, q, SCC(q)). A state is D-transient if it is not D-recurrent. An scc is
D-recurrent if it contains a D-recurrent state, otherwise, it is D-transient.

Note that an scc without loops is D-transient. Moreover, note that for the
ω-words not in D, it is irrelevant whether a D-transient scc is accepting or
rejecting. Thus, we can make D-transient sccs accepting or rejecting without
altering the accepted ω-language modulo the don’t care set D.

Similar to Löding’s algorithm, we construct first a suitable set of accepting
states by determining the acceptance types of D-transient states optimal in the
sense that applying a minimization algorithm for dfas yields the minimal wdba
with respect to the don’t care set D. We need the following definitions.

Definition 7. Let A = (Q,Γ, δ, qI, F ) be a wdba.
1. A mapping c : Q→ N is a D-coloring for A if the two conditions hold:

– c(q) is even ⇔ q ∈ F , for every D-recurrent state q ∈ Q, and
– c(p) ≤ c(q), for all p, q ∈ Q and b ∈ Γ with δ(p, b) = q.

The D-coloring c is k-maximal, where k ∈ N, if c(q) ≤ k and c′(q) ≤ c(q),
for every q ∈ Q and every D-coloring c′ : Q→ N for A.

2. A is in D-normal form if for some even k ∈ N, there is a k-maximal D-
coloring c : Q→ N such that F = Fc, where Fc := {q ∈ Q : c(q) is even}.2

The algorithm in Figure 2 computes the D-normal form of a given wdba
A = (Q,Γ, δ, qI, F ). The main task of the algorithm is to compute a k-maximal
coloring for A, where k is even and large enough. This is done by looking at
the acyclic scc graph of A, which the algorithm traverses in a reversed topo-
logical ordering (lines 4–19). The scc graph and the topological ordering can
be computed in linear time. Observe that the states in an scc have the same
color in a D-coloring. In the ith traversal of the for-loop (lines 4–19), we color the
states in the ith scc with respect to the reversed topological ordering, where the
states in the successor sccs are already colored. If there are no successor sccs,
2 Alternatively, we could require that k has to be odd. But we must fix some parity

in order to obtain a canonical form for D-minimal wdbas in D-normal form.
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1: Compute the scc graph G of A.
2: Compute a topological ordering v1, . . . , vm on the vertices of G. To simplify

notation, we identify a vertex vi with its corresponding scc, i.e., a set of states.
3: Let k ≥ m be an even number.
4: for i = m downto 1 do /* Compute a k-maximal D-coloring c : Q → N */
5: if vi has no successors and vi is accepting then
6: Define c(q) := k, for all q ∈ vi.
7: else if vi has no successors and vi is rejecting then
8: Define c(q) := k − 1, for all q ∈ vi.
9: else

10: Let � := min{c(q) : vj is a successor of vi and q ∈ vj}.
11: if vi is D-transient then
12: Define c(q) := �, for all q ∈ vi.
13: else if (� is even and vi is accepting) or (� is odd and vi is rejecting) then
14: Define c(q) := �, for all q ∈ vi.
15: else
16: Define c(q) := �− 1, for all q ∈ vi.
17: end if
18: end if
19: end for
20: Return the wdba A′ := (Q,Γ, δ, qI, Fc).

Fig. 2. Algorithm for computing the D-normal form of a wdba A = (Q, Γ, δ, qI, F )

we assign the maximal color to the states depending on k and their acceptance
type (lines 5–8). Note that an scc with no successors cannot be D-transient,
since D �= Γω. If the scc has successors, the maximal color for the states in this
scc depends on the minimal color � of the successor sccs (line 10). If the scc
is D-transient (lines 11–12) then � is the maximal color we can assign to these
states. Depending on �, the states in the scc will then be either accepting or
rejecting in the resulting wdba. If the scc is D-recurrent, the coloring has to
preserve the acceptance type of the states in the scc. Depending on �, we assign
the maximal possible color to the states in the scc (lines 13–15).

In line 11 of the algorithm, we must check whether an scc S is D-transient.
This can be done by checking whether Lω(C) ⊆ D holds, where C is the wdba
(Q,Σ, δ, q, S) and q is an arbitrarily chosen state in S. Note that Lω(C) ⊆ D
iff Lω(C) ∩ (Γω \D) = ∅. Under the assumption that D is ω-regular, it is easy
to see that Lω(C) ∩ (Γω \ D) = ∅ can be checked in time O(|S|), since D is
fixed and we can construct a Büchi automaton for the ω-language Γω \ D in
a preprocessing step. In summary, the checks performed in line 11 take time
O(
∑

S scc of A |S|) = O(|Q|). So, if D is ω-regular, the algorithm in Figure 2
computes a k-maximal coloring in linear time.

Lemma 8. For a given wdba A = (Q,Γ, δ, qI, F ), there is a set F ′ ⊆ Q
such that the wdba A′ := (Q,Γ, δ, qI, F

′) is in D-normal form and Lω(A) ≡D

Lω(A′). The set F ′ can be constructed in time O(|Q|) if D is ω-regular.

Our minimization algorithm for wdbas with the don’t care set D is as follows:
First, we put the given wdba into D-normal form. Second, we apply to the
wdba in D-normal form the classical dfa minimization algorithm [13]. The
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overall complexity is in O(n logn), where n is the size of A. This algorithm
returns the unique minimal wdba for the don’t care set D.

Theorem 9. For a given wdba A = (Q,Γ, δ, qI, F ), there is a D-minimal
wdba A′ with Lω(A) ≡D Lω(A′). A′ can be constructed in time O(|Q| log |Q|)
if D is ω-regular. Furthermore, every D-minimal wdba B in D-normal form
with Lω(A) ≡D Lω(B) is isomorphic to A′.

Remark 10. Similar to Definition 3, we can define for r ≥ 1, the set Ir that
consists of the ω-words over Σr ∪{�} that are not periodic in at least one track.
Note that such a periodic track, if it is also in V1, corresponds to an irrational
number. Obviously, Ir has the properties (1) and (2). The decision procedure
for the first-order logic over R using wdbas given in [5] can be understood as
an automata-based decision procedure for the first-order logic over (Q, Z,+, <)
using wdbas with the don’t care sets Ir. Note that the ω-languages definable
in the first-order logic over (Q, Z,+, <) are in general not ω-regular using the
encoding in Definition 1.2. From this point of view, we see that wdbas modulo
don’t care sets can describe non-ω-regular languages and in this case, they even
have a canonical minimal form (Theorem 9). Analogously, wdbas with the don’t
care sets DCr can describe ω-regular languages that are not in the Borel class Fσ∩
Gδ, which exactly captures the expressive power of wdbas [18]. Furthermore,
by Theorem 9, the ω-words in DCr that have to be added to or removed from
the ω-language are uniquely determined in order to obtain the minimal wdba
for the ω-language modulo the don’t care set DCr.

4 Quantification for the Reals

In this section, we give an automata construction for wdbas that handles the
quantification in the first-order logic over R when using the don’t care sets DCr.

Roughly speaking, for the straightforward encoding, the existential quantifica-
tion is done by eliminating the track of the quantified variable in the transitions
of the wdba.3 Intuitively, this nondeterministic automaton guesses the digits of
the quantified variable. As explained in [5], we can determinize this automaton
by using the breakpoint construction for weak co-Büchi automata (see [14]). The
construction for handling the existential quantification that we present in this
subsection for the optimized encoding is also based on the breakpoint construc-
tion. However, the construction is more subtle because of the following problem:
Assume that A is a wdba for the formula ϕ(x1, . . . , xr), i.e., Lω(A) ≡DCr L(ϕ).
Eliminating the track of the variable xr results in a nondeterministic Büchi
automaton that might accept ω-words α �∈ DCr−1 for which there is only an
ω-word γ ∈ DC1 such that (α, γ) ∈ Lω(A). A wdba for ∃xrϕ must not accept
such ω-words α. A concrete instance of this problem is given in the example:

Example 11. Consider again the formula ϕ(x, y) := x �= 0 ∧ x + y = 0 and
the wdba in Figure 1(b) from Example 2. Eliminating the x-track, i.e., the
3 Some additional work is needed for the sign bit, see, e.g., [6,5] for details.
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first track, yields a nondeterministic Büchi automaton that accepts the ω-word
0 � 0ω, since we can infinitely loop in state q := {3, 4, 5} by reading the letter 0.
However, R �|= ∃xϕ[〈〈0 � 0ω〉〉]. Here, the problem is that the only ω-word γ such
that (γ, 0 � 0ω) is accepted by the wdba in Figure 1(b) is the don’t care word
1 � 1ω. On the one hand, for the ω-word 0 � 0ω the state q has to be rejecting.
On the other hand, for the ω-word 0 � (10)ω the state q has to be accepting.

Before we present our construction, we remark that removing all don’t care words
from the ω-language of the given wdba before applying the construction in [5]
for handling the existential quantification does not work. The reason is that the
resulting dba is not necessarily weak and hence, we cannot longer apply the
breakpoint construction after eliminating the track of the quantified variable.

Assume that A = (Q,Σr ∪ {�}, δ, qI, F ) is a wdba for the formula ϕ with r
free variables, i.e., Lω(A) ≡DCr

L(ϕ). We divide the construction of the wdba
for ∃xiϕ into two steps. First, we construct from A a co-dba B that accepts an
ω-language for ∃xiϕ, i.e., Lω(B) ≡DCr−1 L(∃xiϕ). Second, we show that B can
be easily turned into a wdba. To simplify notation, we assume without loss of
generality that i = r and Lω(A) ⊆ Vr.

To define B’s transition function, we need the following definitions. For u ∈
Σ+ with u(0) ∈ {0, �− 1}, we define

u :=


0n if u = (�− 1)n with n > 0,
010n if u = 0(�− 1)n with n ≥ 0,
v(c + 1)0n if u = vc(�− 1)n with v ∈ Σ+, c ∈ Σ \ {�− 1}, and n ≥ 0.

Note that 〈〈u(�− 1)n � (� − 1)ω〉〉 = 〈〈u0n � 0ω〉〉, for all n ≥ 0 and u ∈ Σ+ with
u(0) ∈ {0, �− 1}. We define the relation M ⊆ Q×Q by pMq iff p ∈ F and for
every α ∈ (Σr−1)ω \ DCr−1, it holds that (α, (� − 1)ω) ∈ Lω(A′) ⇒ (α, 0ω) ∈
Lω(Aq), where A′ is the wdba (Q,Σr ∪ {�}, δ, p, SCC(p)).

Intuitively, the construction works as follows. As in the breakpoint construc-
tion, B has states of the form (R,S). Roughly speaking, in the first component
we collect A’s states that are reached by guessing the digits of the variable xr .
The second component checks whether we eventually stay in an accepting scc
of A. In contrast to the breakpoint construction, R and S are not only subsets
of Q but sets of pairs of states of A. The reason for using pairs of states is the
following. Assume that we reach the pair (R,S) from B’s initial state by reading
a finite prefix of an ω-word γ ∈ Vr−1 \ DCr−1. For (p, q) ∈ R, we have that
p is reached by guessing a finite prefix of the digits of a real number for the
quantified variable xr . However, the guessed digits u could be a finite prefix of
a don’t care word α ∈ DC1 ∩ V1. Suppose that we visit p infinitely often when
reading (γ, α). If p is accepting, A accepts (γ, α). However, since (γ, α) is a don’t
care word, 〈〈α〉〉 is not necessarily a real number such that R |= ϕ[〈〈γ〉〉, 〈〈α〉〉]. In
order to detect such a case, we use the state q and the relation M . The state q
is the state that is reached when guessing the corresponding digits for u of the
ω-word β ∈ V1 \ DC1 such that 〈〈α〉〉 = 〈〈β〉〉. If pMq holds, then we know that
R |= ϕ[〈〈γ〉〉, 〈〈α〉〉], since 〈〈α〉〉 = 〈〈β〉〉 and A also accepts β. Hence, p is rightly an
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accepting state for the prefix of γ we have read so far. In the case where pMq
does not hold, we have to treat p as a rejecting state.

Formally, B is the co-dba ({q′I} ∪ (K ×K), Σr−1 ∪ {�}, η, q′I,K ×{∅}), where
K := P(Q × Q), q′I is a fresh state and η is defined as follows. For the initial
state, we define η(q′I, b) := (∅, ∅), for b �∈ {0, �− 1}r−1, and for b ∈ {0, �− 1}r−1,
we define η(q′I, b) := (I(b), ∅), where

I(b) :=
{(

δ̂(qI, (b|u|, u)), δ̂(qI, (b|u|, u))
)

: u ∈ Σ+ with u(0) ∈ {0, 1}
}
.

For a state (R,S) ∈ K ×K and b ∈ Σr−1, we define

η
(
(R,S), b

)
:=
{

(R′, R′ ∩M) if S = ∅,
(R′, S′ ∩M) if S �= ∅,

where
R′ :=

{(
δ(p, (b, �− 1)), δ(q, (b, 0))

)
: (p, q) ∈ R

}
∪{(

δ(p, (b, c)), δ(p, (b, c + 1))
)

: (p, q) ∈ R and c ∈ Σ \ {�− 1}
}
, and

S′ :=
{(

δ(p, (b, �− 1)), δ(q, (b, 0))
)

: (p, q) ∈ S
}
∪{(

δ(p, (b, c)), δ(p, (b, c + 1))
)

: (p, q) ∈ S and c ∈ Σ \ {�− 1}
}
.

Finally, η((R,S), �) := (R′, R′∩M), where R′ := {(δ(p, �), δ(q, �)) : (p, q) ∈ R}.

Lemma 12. It holds that Lω(B) ≡DCr−1 L(∃xrϕ).
An scc of B might contain accepting and rejecting states. The next lemma shows
that if an scc of B contains accepting and rejecting states then we can make all
states in this scc accepting. Given this, it is easy to turn the co-dba B into a
wdba A′ for L(∃xrϕ), i.e., Lω(A′) ≡DCr−1 L(∃xrϕ).

Lemma 13. Let ψ(y1, . . . , ys) be a formula and let C = (P,Σs ∪ {�}, µ, pI, E)
be a co-dba with Lω(C) ≡DCs

L(ψ). If S ⊆ P is an scc with S ∩ E �= ∅ then
Lω(C′) ≡DCs

L(ψ), where C′ is the co-dba (P,Σs ∪ {�}, µ, pI, E ∪ S).

The above given construction yields a wdba that has 1+22·|Q|2 states. However,
some of the states are not reachable from the initial state q′I, e.g., the states
(R,S) ∈ K×K with S �⊆ R are never reachable from q′I. Next, we briefly discuss
the auxiliary computations involved in the construction.

For the transitions from the initial state q′I, we need to compute the sets I(b),
for every b ∈ Σr−1. Computing I(b) separately for each b ∈ Σr−1, yields an
algorithm that is exponential in r and is not practical. The algorithm described
in [6] for determining the initial transitions of dfas for quantifying Presburger
arithmetic formulas, can be adopted to our construction and it works well in
practice, although it has exponential worst case complexity in r.

For computing the relation M , we define the wdbas G := (Q,Σr−1, δ1, qI, F )
and H := (Q,Σr−1, δ2, qI, F ), where δ1(q, b) := δ(p, (b, � − 1)) and δ2(q, b) :=
δ(p, (b, 0)), for q ∈ Q and b ∈ Σr−1. For states p, q ∈ Q, we have that pMq iff
(1) p ∈ F and (2) Lω(G′) ∩ Lω(Hq) contains an ω-word not in DCr−1, where G′

is the wdba (Q,Σr−1, δ1, p, SCC(p)). Since the scc of p consists of at most |F |
states, condition (2) can be checked in time O(|Q| · |F |), see §3.1 and §3.2. An
upper bound for computing M is O(|Q|2 · |F |2), since the first component in M
has to be a state in F .
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5 Experimental Results

In this section, we report on experimental results obtained from our prototype
implementation of an automata-based decision procedure for the first-order logic
over R.4 We want to point out that in our implementation we only used the don’t
care sets DCr (Definition 3). We have carried out tests on two different classes of
problems: (1) randomly generated formulas and (2) the iterative computation of
the reachable states of infinite-state systems. In the later case, we mainly focus
on the sizes of the automata, as our prototype is not intended to compete with
optimized tools for solving the reachability problem.
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Fig. 3. Automata sizes encountered during the computation for Fischer’s protocol with
4 processes. The solid (dashed) lines correspond to the optimized (straightforward)
encoding. The intermediate construction steps correspond to the flows and jumps of
the processes in Fischer’s protocol. We obtain similar results for the other protocols.

Random Formulas. We have applied our prototype to randomly generated for-
mulas. For a test set of 100 formulas with 4 variables with about 10 disjunctions
and conjunctions each, the savings in terms of automata sizes encountered dur-
ing the construction are observable (on average 8.4%), although moderate. Our
new construction for the quantification generates larger automata (on average
40.1%), however, after normalization and minimization the resulting automata
with don’t care sets are smaller (on average 7.7%). Our prototype requires up
to one order of magnitude more runtime for the quantification when using don’t
care words. When restricting the 4 variables to the integer domain, the savings
due to the don’t care set become more substantial (on average 48.5%), as ev-
ery integer has encodings that are in the don’t care set. In comparison to an
implementation based on lash [15] without don’t cares, our prototype is faster.
The marginal difference in performance on small quantifier free formulas grows
rapidly when the formulas contain quantifiers or have more variables.

Reachability Analysis. Infinite-state systems, like systems with unbounded inte-
gers or linear hybrid automata can be analyzed symbolically in the first-order
logic over R. We have analyzed the Bakery protocol, Fischer’s protocol, and the
4 Our prototype is publicly available online at http://www.informatik.
uni-freiburg.de/~eisinger/research/rva.html .
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with don’t cares without don’t cares
iterations peak final runtime peak final runtime

Fischer 2 9 238 53 43.98s 2,318 182 49.52s

Fischer 3 15 44,631 405 164.75s 90,422 2,045 184.59s

Fischer 4 21 51,676 4,377 2,739.58s 417,649 27,548 4,353.66s

Fischer 5 27 145,629 55,885 20,972.79s 1625,141 430,727 53,940.37s

Railroad 8 152,826 7,735 1,594.32s 365,004 9,411 1,080.24s

Bakery 2 30 107 - 52.42s 557 - 63.64s

Bakery 3 30 314 - 107.74s 2,010 - 121.09s

Bakery 4 30 909 - 201.41s 8,883 - 272.70s

Fig. 4. Iterations required to reach the fixpoint of the reachable state set for several
infinite-state systems, construction times, and peak and final automata sizes. Note that
the fixpoint for Bakery cannot be reached using our naive fixpoint computation.

railroad crossing example [11]. Using don’t care words, the automata constructed
during the iterative computation of the reachable states become smaller by an
order of magnitude (see Figures 3 and 4). This saving can be explained by the
following two observations. First, the formulas that describe the transitions of a
system contain many variables (the formulas for Fischer’s protocol with 5 pro-
cesses have 34 variables). Note that the don’t care sets contain more words if the
formula contains many free variables. Second, the construction of the reachable
state set requires a large number of automata constructions. Although the saving
in a single automata construction might be small, the overall saving grows with
the number of automata constructions.

6 Conclusions

We generalized the concept of don’t cares for bdds to automata and demon-
strated that don’t cares are effective in reducing the automata sizes. On the one
hand, we were able to prove rather general results about don’t cares sets, like the
minimization of wdbas. On the other hand, we presented an automata construc-
tion for the quantification in the first-order logic R, which depends on the used
don’t care set. We demonstrated the potential of don’t cares by a prototype.

Related to our work is [2] on widening sets of integers that are represented by
automata. In order to obtain always an overapproximation of a set, widening an
automaton represented set only adds words to the language. In contrast, we al-
low words to be removed, and adding or removing don’t care words still yields an
exact automata-based representation of a set. Moreover, for the sets of vectors of
reals, we used a don’t care set for which the automata-based set representation
is still unique. We want to point out that the widening method [2] is complemen-
tary to don’t care words and hence, they can be combined in infinite-state model
checkers that use an automata-based representation for the reachable states of a
system. Analogously, don’t care words are complementary to acceleration tech-
niques like [7]. However, further work is needed in combining these techniques,
since the automata constructions might need some adjustment to work also for
don’t care words (see, e.g., the automata construction in §4).
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Future work also includes improving the mechanization of the automata con-
struction for handling the existential quantification in the first-order logic over
R, which is currently the bottleneck in our prototype. Another direction we
want to pursue is to exploit don’t cares further. For example, for carrying out
the quantification of x in the second disjunct of the formula ψ(y) ∨ ∃xϕ(x, y),
we can use the language of the automaton for ψ as a don’t care set for making
the automaton for ϕ smaller before we apply the construction for the existential
quantification. Overall, we believe that don’t care words have a large potential
for making automata-based model checking more effective.
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Abstract. We present a new Simplex-based linear arithmetic solver that can be
integrated efficiently in the DPLL(T ) framework. The new solver improves over
existing approaches by enabling fast backtracking, supporting a priori simplifica-
tion to reduce the problem size, and providing an efficient form of theory propa-
gation. We also present a new and simple approach for solving strict inequalities.
Experimental results show substantial performance improvements over existing
tools that use other Simplex-based solvers in DPLL(T ) decision procedures. The
new solver is even competitive with state-of-the-art tools specialized for the dif-
ference logic fragment.

1 Introduction

Decision procedures for quantifier-free linear arithmetic determine whether a boolean
combination of linear equalities, inequalities, and disequalities is satisfiable. Several
tools for solving this problem rely on the DPLL(T ) approach [1]: they combine boolean
satisfiability solvers based on the Davis-Putnam-Logemann-Loveland (DPLL) proce-
dure, and arithmetic solvers capable of deciding the satisfiability of conjunctions of lin-
ear constraints. Results of a first satisfiability modulo theories (SMT) competition, com-
paring several of these tools, are presented in [2]. Several tools (e.g., Barcelogic [21] or
Slice [20]) are specialized for the difference-logic fragment of linear arithmetic and rely
on graph algorithms. For general linear arithmetic, existing tools rely either on Fourier-
Motzkin elimination [3] (used by CVClite [4], CVC [5], SVC [6]) or on Simplex meth-
ods [7] (used by MathSat [8], ICS [9], Simplics, Yices, ARIO [10]). Fourier-Motzkin
elimination explodes on many problems and Simplex is generally superior.

The common methods for integrating a Simplex solver with DPLL rely on incre-
mental versions of Simplex such as described in [11,12,13,14]. A tableau is constructed
and updated incrementally: rows are added as DPLL proceeds and are later removed
when DPLL backtracks. These frequent addition and removal of rows and the related
bookkeeping have a significant cost. For example, backtracking may require pivoting
operations. This paper presents a simpler and more efficient solver that considerably
reduces this overhead. The approach relies on transforming the original formula Φ into
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an equisatisfiable Φ′ such that the satisfiability of Φ′ is decided by solving a series of
problems of the form

find x ∈ Rn such that Ax = 0 and li ≤ xi ≤ ui for i = 1, . . . , n,

where the matrix A is fixed and li and ui are bounds on xi that may vary with each
problem. Variants of Simplex can efficiently solve problems in this form. Section 4
presents such a variant designed to be efficient in the DPPL(T ) context, and Section 5
shows how to extend it to problems with strict inequalities. Since A is fixed, no row
is ever added or removed from the tableau, and backtracking is very cheap. The new
solver has additional advantages: it is possible to simplify the problem a priori by elim-
inating irrelevant variables, and a simple but useful form of theory propagation can be
implemented cheaply.

2 Background

Given a quantifier-free theory T , a T -solver is a procedure for deciding whether a fi-
nite set of atoms of T is satisfiable. If Φ is a formula built by boolean combination of
atoms of T , then the satisfiability of Φ can be decided by combining a boolean satis-
fiability solver and a T -solver. The DPLL(T ) approach is an efficient method for such
integrations that relies on the DPLL procedure.

2.1 Solvers for DPPL(T )

In the DPLL(T ) framework, a T -solver maintains a state that is an internal representa-
tion of the atoms asserted so far. This solver must provide operations for updating the
state by asserting new atoms, checking whether the state is consistent, and backtracking.
Optionally, the solver may also implement theory propagation, that is, identify atoms
that are implied by the current state. To interact with the DPLL search, the solver must
produce explanations for conflicts and propagated atoms. In an inconsistent state S, an
explanation is any inconsistent subset of the atoms asserted in S. Similarly, an expla-
nation for an implied atom γ is a subset Γ of the asserted atoms such that Γ |= γ. An
explanation Γ is minimal if no proper subset of Γ is an explanation.

The solver is assumed initialized for a fixed formula Φ and we denote by A the set
of atoms that occur in Φ. The set of atoms asserted so far is denoted by α. The solver
also maintains a stack of checkpoints that mark consistent states to which the solver can
backtrack. We assume that a T -solver implements the following API.1

– Assert(γ) asserts atom γ in the current state. It returns either ok or unsat〈Γ 〉 where
Γ is a subset of α. In the first case, γ is inserted into α. In the latter case, α ∪ {γ}
is inconsistent and Γ is the explanation.

– Check() checks whether α is consistent. If so, it returns ok, otherwise it returns
unsat〈Γ 〉. As previously Γ ⊆ α is an explanation for the inconsistency. A new
checkpoint is created when ok is returned.

1 This is similar to the API proposed in [1].
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– Backtrack() backtracks to the consistent state represented by the checkpoint on the
top of the stack.

– Propagate() performs theory propagation. It returns a set {〈Γ1, γ1〉, . . . , 〈Γt, γt〉}
where Γi ⊆ α and γi ∈ A \ α. For every pair 〈Γi, γi〉 produced, γi is an atom not
already asserted that is implied by Γi, and Γi is a subset of α.

Assert must be sound but is not required to be complete: Assert(γ) may return ok
even if α∪{γ} is inconsistent. Similarly, Propagate must be sound but does not have to
be exhaustive. On the other hand, function Check is required to be sound and complete:
if Check() = ok then α must be consistent. This model enables several atoms to be
asserted in a single “batch”, using several calls to Assert followed by a single call to
Check. Assert can then implement only inexpensive (and possibly incomplete) consis-
tency checks while Check implements a complete (and possibly expensive) consistency-
checking procedure. The state S′ after executing Backtrack must be logically equivalent
to the state S when the checkpoint was created, but S′ may be different from S.

2.2 Existing Simplex Solvers for DPLL(T )

A quantifier-free linear arithmetic formula is a first-order formula whose atoms are
either propositional variables of equalities, disequalities, or inequalities of the form

a1x1 + . . . + anxn �� b,

where a1, . . . , an and b are rational numbers, x1, . . . , xn are real (or integer) variables,
and �� is one of the operators =, ≤, <, >, ≥, or �=. In the DPLL(T ) framework, de-
ciding the satisfiability of such formulas requires a linear-arithmetic solver. A common
approach is to use incremental forms of Simplex similar to the algorithms described
in [11,12,13,14]. Tools based on this approach include our own tools, Yices and Sim-
plics, and others such as MathSat [8].

In these algorithms, a solver state includes a Simplex tableau that is derived from all
equalities and inequalities asserted so far. A tableau can be written as a set of equalities
of the form

xi = bi +
∑

xj∈N
aijxj , xi ∈ B (1)

where B andN are disjoint sets of variables. Elements of B andN are called basic and
nonbasic variables, respectively. Additional constraints are imposed on some variables
of B ∪ N . So-called slack variables are required to be non-negative, and the tableau
may also contain zero variables, which are all implicitly equal to 0. Zero variables are
used to generate explanations (cf. [11]).

A pivoting operation pivot(xr , xs) swaps a basic variable xr and a nonbasic variable
xs such that ars �= 0. After pivoting, xs becomes basic and xr becomes nonbasic. The
tableau is updated by replacing equation xr = br +

∑
xj∈N arjxj with

xs = − br

ars
+

xr

ars
−

∑
xj∈N \{xs}

arjxj

ars
(2)

and then equation (2) is used to eliminate xs from the rest of the tableau by substitution.
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Fig. 1. Impact of theory propagation in Simplics

Assertion of equalities or inequalities adds new equations to the tableau. For exam-
ple, let γ be an atom of the form t ≥ 0 where t is an arithmetic term. The operation
Assert(γ) involves three steps. First, γ is normalized by substituting any basic variable
xi occurring in t with the term bi +

∑
xj∈N aijxj . The solver checks then whether

the resulting inequality t′ ≥ 0 is satisfiable. This step uses the Simplex algorithm to
maximize t′ subject to the tableau constraints. If t′ has a maximum M and M is neg-
ative, then t′ ≥ 0 is not satisfiable and an explanation is generated. Otherwise, a fresh
slack variable sk is created and a row of the form sk = t′′ is added to the tableau.
Some bookkeeping is required to record that sk is nonnegative and is associated with
atom γ. Processing of equalities and strict inequalities follows the same general princi-
ples. Backtracking removes rows from the tableau. For example, to retract γ, the solver
retrieves the slack variable sk associated with γ. If sk is a basic variable in the cur-
rent state then the corresponding equation is removed from the tableau. Otherwise, a
pivoting operation is applied first to make sk basic.

Disequalities are treated separately since they cannot be incorporated into the
tableau. When a disequality t �= 0 is asserted, it is first normalized as before, and
then the solver must check whether the current tableau implies t = 0. This can be
implemented via the zero-detection procedure described in [11] for example.

2.3 Performance

Assertions and backtracking have a significant cost in solvers based on incremental
Simplex algorithms. Part of this cost (e.g., the pivoting involved in Assert operations)
cannot be avoided, but there is also significant overhead in the frequent additions and re-
movals of rows, creations and deletions of slack variables, and associated bookkeeping.
The remainder of the paper describes a different type of solver, still based on the Sim-
plex method, which significantly reduces this overhead. The new approach is simpler
and more uniform than incremental Simplex. It is also more economical as irrelevant
variables can be eliminated a priori and fewer slack variables are necessary.

Some of the simplifications are based on lessons we learned from experiments with
our previous tools Simplics and Yices:2

2 Both use incremental Simplex and zero detection.
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– Minimal explanations are critical. Dramatic improvements were observed when
comparing Simplics and Yices, which generate minimal explanations, and their
predecessor ICS, which does not.

– Theory propagation is useful if it can be done cheaply. Figure 1 compares the re-
sults of Simplics on the real-arithmetic subset of the SMT-LIB benchmarks [15]
using different levels of theory propagation. By default, Simplics uses a heuristic
form of propagation that is relatively inexpensive but incomplete (no pivoting is
used). This is compared in Figure 1(a) with Simplics running with no propagation
at all, and in Figure 1(b) with Simplics running with complete propagation (where
pivoting is used). On these benchmarks, full propagation is just too expensive, but
no propagation is also a poor choice. Heuristic propagation is clearly superior.

– Zero detection is expensive and can be avoided. On a few examples in the SMT-
LIB benchmarks, Simplics spends as much as 30% of its time in the zero-detection
procedure. A simpler alternative is to rewrite a disequality t �= 0 as the disjunction
of two strict inequalities (t < 0)∨ (t > 0). This transformation may seem wasteful
since it may entail additional case splits, but it works well in practice. After this
transformation, Simplics can solve six problems of the SMT-LIB benchmarks that
it cannot solve otherwise.

3 Preprocessing

Incremental Simplex algorithms can be avoided by rewriting a linear arithmetic formula
Φ into an equisatisfiable formula of the form ΦA∧Φ′, where ΦA is a conjunction of lin-
ear equalities, and all the atoms occurring in Φ′ are elementary atoms of the form y �� b,
where y is a variable and b is a rational constant. The transformation is straightforward.
For example, let Φ be the formula

x ≥ 0 ∧ (x + y ≤ 2 ∨ x + 2y − z ≥ 6) ∧ (x + y = 2 ∨ x + 2y − z > 4).

We introduce two variables s1 and s2 and rewrite Φ to ΦA ∧ Φ′ as follows.

(s1 = x + y ∧ s2 = x + 2y − z) ∧
(x ≥ 0 ∧ (s1 ≤ 2 ∨ s2 ≥ 6) ∧ (s1 = 2 ∨ s2 > 4))

Clearly, this new formula and Φ are equisatisfiable. In general, starting from a formula
Φ, the transformation introduces a new variable si for every linear term ti that is not
already a variable and occurs as the left side of an atom ti �� b of Φ. Then ΦA is the
conjunction of all the equalities si = ti and Φ′ is obtained by replacing every term ti
by the corresponding si in Φ.

Let x1, . . . , xn be the arithmetic variables of ΦA ∧ Φ′, that is, all the variables orig-
inally in Φ and m-additional variables s1, . . . , sm introduced by the previous transfor-
mation (m ≤ n). Then formula ΦA can be written in matrix form as Ax = 0, where
A is a fixed m × n rational matrix and x is a vector in Rn. The rows of A are linearly
independent so A has rank m. Checking whether Φ is satisfiable amounts to finding an
x such that Ax = 0 and x satisfies Φ′. In other words, checking the satisfiability of Φ
in linear arithmetic is equivalent to checking the satisfiability of Φ′ in linear arithmetic
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modulo Ax = 0. Since all atoms of Φ′ are elementary, this requires a solver for de-
ciding the consistency of a set of elementary atoms Γ modulo the constraints Ax = 0.
If Γ contains only equalities and (nonstrict) inequalities, this reduces to searching for
x ∈ Rn such that

Ax = 0 and lj ≤ xj ≤ uj for j = 1, . . . , n (3)

where lj is either −∞ or a rational number, and uj is either +∞ or a rational number.
Since the elementary atoms of Φ′ are known in advance, we can immediately sim-

plify the constraints Ax = 0 by removing any variable xi that does not occur in any
elementary atom of Φ′. This is done by Gaussian elimination. In practice, this presim-
plification can reduce the matrix size significantly (cf. [16]).

The variables si introduced during the transformation play the same role as the slack
variables of standard Simplex. However, the presence of both lower and upper bounds
is beneficial. For example, incremental Simplex algorithms need two slack variables to
represent a constraint such as 1 ≤ x + 3y ≤ 4, whereas a single sk is sufficient if the
general form (3) is used. Overall, rewriting Φ into ΦA ∧ Φ′ and relying on the general
form leads to problems with fewer variables than the algorithms discussed previously.

4 Basic Solver

We first describe a basic solver that handles equalities and nonstrict inequalities with
real variables. Extensions to strict inequalities and integer variables are presented in the
next sections. The basic solver decides the satisfiability of problems in form (3) and
implements the API of Section 2.1 for integration with a DPLL-based SAT solver.

The solver state includes a tableau derived from the constraint matrix A. We will
write such a tableau in the form:

xi =
∑

xj∈N
aijxj xi ∈ B,

where B and N denote the set of basic and nonbasic variables, respectively.3 Since
all rows of this tableau are linear combinations of rows of the original matrix A, the
equality xi =

∑
xj∈N aijxj is satisfied by any x such that Ax = 0.

In addition to this tableau, the solver state stores upper and lower bounds li and ui for
every variable xi and a mapping β that assigns a rational value β(xi) to every variable
xi. The bounds on nonbasic variables are always satisfied by β, that is, the following
invariant is maintained

∀xj ∈ N , lj ≤ β(xj) ≤ uj . (4)

Furthermore,β satisfies the constraintAx = 0. In the initial state, lj = −∞, uj = +∞,
and β(xj) = 0 for all j.

Figure 2 describes two auxiliary procedures that modify β. Procedure update(xi, v)
sets the value of a nonbasic variable xi to v and adjusts the value of all basic variables
so that all equations remain satisfied. Procedure pivotAndUpdate(xi, xj , v) applies piv-
oting to the basic variable xi and the nonbasic variable xj ; it also sets the value of xi to
v and adjusts the values of all basic variables to keep all equations satisfied.

3 This is the same as (1) with bi = 0 for all xi ∈ B.
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procedure update(xi, v)
for each xj ∈ B, β(xj) := β(xj) + aji(v − β(xi))
β(xi) := v

procedure pivotAndUpdate(xi, xj , v)
θ := v−β(xi)

aij

β(xi) := v
β(xj) := β(xj) + θ
for each xk ∈ B \ {xi}, β(xk) := β(xk) + akjθ
pivot(xi, xj)

Fig. 2. Auxiliary procedures

4.1 Main Algorithm

The main procedure of our algorithm is based on the dual Simplex and relies on Bland’s
pivot-selection rule to ensure termination. It relies on a total order on the variables.
Assuming an assignment β that satisfies the previous invariants, but where li ≤ β(xi) ≤
ui may not hold for some basic variables xi, procedure Check searches for a new β that
satisfies all constraints. The procedure is shown in Figure 3. It either terminates with a
new assignment and basis that satisfy all lower and upper bounds (line 4), or finds the
constraints to be unsatisfiable (lines 8 and 13). The body of the main loop selects a basic
variable xi that does not satisfy its bounds (line 3). If xi is below li, then it looks for
a variable xj in the row xi =

∑
xj∈N aijxj that can compensate the gap in xi (lines

6-7). If no such xj exists the problem is unsatisfiable (line 8) because the value of xi is
maximal and is below the lower bound li. Otherwise, the procedure pivots xi and xj ,
and xi is set to li (line 9). The case where xi is above its upper bound (lines 10-14) is
symmetrical.

The following property implies the correctness of Check; a proof is given in [16].

Theorem 1. Procedure Check always terminates.

4.2 Generating Explanations

An inconsistency may be detected by Check at line 8 or 13. Let us assume a conflict is
detected at line 8. There is then a basic variable xi such that β(xi) < li and for every
nonbasic variable xj we have aij > 0 ⇒ β(xj) ≥ uj and aij < 0 ⇒ β(xj) ≤ lj .
Let N+ = {xj ∈ N | aij > 0} and N− = {xj ∈ N | aij < 0}. Since β satisfies all
bounds on nonbasic variables, we have β(xj) = lj for every xj ∈ N− and β(xj) = uj

for every xj ∈ N+. It follows that

β(xi) =
∑

xj∈N
aijβ(xj) =

∑
xj∈N +

aijuj +
∑

xj∈N−
aij lj.

The equation xi =
∑

xj∈N aijxj holds for any x such that Ax = 0. Therefore, for any
such x, we have

β(xi)− xi =
∑

xj∈N+

aij(uj − xj) +
∑

xj∈N−
aij(lj − xj),
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1. procedure Check()
2. loop
3. select the smallest basic variable xi such that β(xi) < li or β(xi) > ui

4. if there is no such xi then return satisfiable
5. if β(xi) < li then
6. select the smallest nonbasic variable xj such that
7. (aij > 0 and β(xj) < uj ) or (aij < 0 and β(xj) > lj)
8. if there is no such xj then return unsatisfiable
9. pivotAndUpdate(xi, xj , li)
10. if β(xi) > ui then
11. select the smallest nonbasic variable xj such that
12. (aij < 0 and β(xj) < uj ) or (aij > 0 and β(xj) > lj)
13. if there is no such xj then return unsatisfiable
14. pivotAndUpdate(xi, xj , ui)
15. end loop

Fig. 3. Check procedure

from which one can derive the following implication:∧
xj∈N+

xj ≤ uj ∧
∧

xj∈N−
lj ≤ xj ⇒ xi ≤ β(xi).

Since β(xi) < li, this is inconsistent with li ≤ xi. The explanation for the conflict is
then the following set of elementary atoms:

Γ = {xj ≤ uj | j ∈ N+} ∪ {xj ≥ lj | j ∈ N−} ∪ {xi ≥ li}.

It is easy to see that Γ is minimal. Explanations for conflicts at line 13 are generated in
the same way.

4.3 Assertion Procedures

The Assert function relies on two procedures shown in Figure 4 for updating the bounds
li and ui. Procedure AssertUpper(xi ≤ ci) has no effect if ui ≤ ci and returns unsat-
isfiable if ci < li; otherwise the current upper bound on xi is set to ci. If variable
xi is nonbasic, then β is updated to maintain invariant (4). If an immediate conflict is
detected at line 3 then generating a minimal explanation is straightforward.

Procedure AssertLower(xi ≥ ci) does the same thing for the lower bound. An equal-
ity xi = ci is asserted by calling both AssertUpper and AssertLower.

4.4 Backtracking

Efficient backtracking is important since the number of backtracks is often very large.
In our approach, backtracking can be efficiently implemented. We just need to save
the value of ui (li) on a stack before it is updated by the procedure AssertUpper (As-
sertLower). This information is used to restore the old bounds when backtracking is
performed. Backtracking does not require saving the successive βs on a stack. Only
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1. procedure AssertUpper(xi ≤ ci)
2. if ci ≥ ui then return satisfiable
3. if ci < li then return unsatisfiable
4. ui := ci

5. if xi is a nonbasic variable and β(xi) > ci then update(xi, ci)
6. return ok

1. procedure AssertLower(xi ≥ ci)
2. if ci ≤ li then return satisfiable
3. if ci > ui then return unsatisfiable
4. li := ci

5. if xi is a nonbasic variable and β(xi) < ci then update(xi, ci)
6. return ok

Fig. 4. Assertion procedures

one assignment β needs to be stored, namely, the one corresponding to the last success-
ful Check. After a successful Check, the assignment β is a model for the current set of
constraints and for the set of constraints asserted at any previous checkpoint. Since no
pivoting or other expensive operation is used, backtracking is very cheap.

4.5 Theory Propagation

Given a set of elementary atomsA from the formula Φ′, then unate propagation is very
cheap to implement. For example, if bound xi ≥ ci has been asserted then any unas-
signed atom of A of the form xi ≥ c′ with c′ < ci is immediately implied. Similarly,
the negation of any atom xi ≤ u with u < ci is implied. This type of propagation is
useful in practice. It occurs frequently in several SMT-LIB benchmarks.

Another method is based on bound refinement. Given a row of a tableau, such as
xi =

∑
xj∈N aijxj , one can derive a lower or upper bound on xi from the lower or

upper bounds on the nonbasic variables xj . These computed bounds may imply unas-
signed elementary atoms with variable xi. This is a heuristic technique as the computed
bounds may be weaker than the current bounds asserted on xi (for example, the com-
puted bounds may be −∞ or +∞). However, bound refinement is quite general. It is
applicable with any equality a1x1 + . . . + anxn = 0 derived by linear combination of
rows of A, not just with rows of a tableau.

4.6 Example

Figure 5 illustrates the algorithm on a small example. Each row represents a state. The
columns contain the tableaux, bounds, and assignments. The first row contains the ini-
tial state. Suppose x ≤ −4 is asserted. Then the value of x must be adjusted, since
β0(x) > −4. Since s1 and s2 depend on x, their values are also modified. No pivoting
is required since the basic variables do not have bounds, so A1 = A0. Next, x ≥ −8
is asserted. Since β1(x) satisfies this bound, nothing changes: A2 = A1 and β2 = β1.
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A0 =

{
s1 = −x + y
s2 = x + y

β0 = (x �→ 0, y �→ 0, s1 �→ 0, s2 �→ 0)

A1 = A0 x ≤ −4 β1 = (x �→ −4, y �→ 0, s1 �→ 4, s2 �→ −4)

A2 = A1 −8 ≤ x ≤ −4 β2 = β1

A3 =

{
y = x + s1

s2 = 2x + s1

−8 ≤ x ≤ −4
s1 ≤ 1

β3 = (x �→ −4, y �→ −3, s1 �→ 1, s2 �→ −7)

Fig. 5. Example

Next, s1 ≤ 1 is asserted. The current value of s1 does not satisfy this bound, so Check
must be invoked. Check pivots s1 and y to decrease s1. The resulting state S3 is shown
in the last row; all constraints are satisfied.

If s2 ≥ −3 is asserted in S3 and Check is called then an inconsistency is detected:
Tableau A2 does not allow s2 to increase since both x and s1 are at their upper bound.
Therefore, s2 ≥ −3 is inconsistent with state S3.

5 Strict Inequalities

The previous method generalizes to strict inequalities using a simple observation.

Lemma 1. A set of linear arithmetic literals Γ containing strict inequalities S =
{p1 > 0, . . . , pn > 0} is satisfiable iff there exists a rational number δ > 0 such
that Γδ = (Γ ∪ Sδ) \ S is satisfiable, where Sδ = {p1 ≥ δ, . . . , pn ≥ δ}.

This lemma says that we can replace all strict inequalities by nonstrict ones if a small
enough δ is known. Rather than computing an explicit value for δ, we treat it symbol-
ically, as an infinitesimal parameter. Bounds and variable assignments now range over
the set Qδ of pairs of rationals. A pair (c, k) of Qδ is denoted by c+kδ and the following
operations and comparison are defined in Qδ:

(c1, k1) + (c1, k2) ≡ (c1 + c2, k1 + k2)
a× (c, k) ≡ (a× c, a× k)

(c1, k1) ≤ (c2, k2) ≡ (c1 < c2) ∨ (c1 = c2 ∧ k1 ≤ k2),

where a is a rational. Strict bounds in Q are converted to nonstrict bounds in Qδ: in-
equality xi > li is converted to xi ≥ li + δ, and xi < ui is converted to xi ≤ ui − δ.
Then all updates to β used in the previous algorithm can be performed in Qδ. The matrix
A does not change; all its coefficients are rational numbers.

By this process, a problem S with strict bounds in the rational is converted into a
problem S′ in the general form (3) but where the bounds li and ui, and the variables xi

are elements of Qδ. If an assignment β′ satisfies S’ then it can be converted into a ra-
tional assignment β that satisfies S. This relies on substituting the symbolic parameter
δ with a small enough positive rational number δ0 ∈ Q, which can always be done since



A Fast Linear-Arithmetic Solver for DPLL(T) 91

there is a finite number of inequalities in S′ (cf. [16]). If S′ is unsatisfiable in Qδ, then
by Lemma 1, S is also unsatisfiable in the rationals.

6 Extensions

The previous solver is sound and complete for the reals. If some or all of the variables xi

are required to be integer, the algorithm is not complete. Nothing ensures that the assign-
ment β constructed by Check gives an integer value to integer variables. To be complete
in the integer or mixed integer case, we employ a branch and cut strategy, that is, the
combination of branch-and-bound with a cutting plane generation algorithm [17,18].
The branch-and-bound algorithm works when problems are solved in Qδ rather than
Q. In other words, it can be used when strict inequalities are present. The cutting-plane
method we use is based on mixed integer Gomory cuts. Such a cutting-plane algorithm
is critical as it dramatically accelerates the convergence of branch-and-cut in several
cases.

Also, it is possible to integrate the linear-arithmetic solver presented in this paper
with solvers for other theories. The simplest method is to perform case-splits on equal-
ities between variables that are shared between different theories. In most cases, the
number of such shared variables is small in comparison with the total number of vari-
ables and this method is quite efficient. This approach is described in detail at [19]. It
can be extended with an opportunistic equality-propagation method [16].

7 Experiments

Figure 6 compares a prototype SMT solver that uses the previous algorithms with other
tools that participated in last year’s SMT competition. The comparison uses all the
SMT-LIB benchmarks in the QF RDL (real difference logic), QF IDL (integer differ-
ence logic), QF LRA (linear real arithmetic), and QF LIA (linear integer arithmetic)
divisions. The experiments were conducted on identical PCs, all equipped with a 32bit
Pentium 4 processor running at 3 GHz. The timeout was set to 1 hour and the memory
usage was limited to 1 GB. With these timing and memory constraints, running all the
benchmarks required approximately 60 CPU days.

Each point on the graphs represents a benchmark: + denotes a difference logic prob-
lem and × denotes a problem outside the difference-logic fragment. The axes corre-
spond to the CPU time taken by the new solver (y-axis) or the other solver (x-axis) on
each benchmark. CPU times are measured in seconds. Points below the diagonal are
then SMT-LIB benchmarks where our new solver is faster. Points on the leftmost verti-
cal edge are problems where a solver aborted, typically by running out of memory. The
graphs comparing our new solver with Barcelogic and Simplics have fewer points, be-
cause Barcelogic supports only difference logic and Simplics does not support integer
problems.

Table 1 summarizes the results. For each tool, it lists the number of instances solved
and unsolved, and the total runtime. As can be seen, the new algorithm largely outper-
forms the other solvers. It is even faster on problems in the difference logic fragment
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Fig. 6. Experimental results

than tools that are specialized for this fragment. The performance improvement is due
to efficient backtracking and to the presimplification enabled by our approach, efficient
theory propagation based on bound refinement also has a big impact.
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Table 1. Experimental results: Summary

sat unsat failed time (secs)
Ario 1.1 186 640 517 1218371
BarcelogicTools 153 417 92 401842
CVC Lite 117 454 772 1193747
MathSAT 3.3.1 330 779 234 739533
Yices 358 756 229 702129
Simplics 240 351 110 476940
New Solver 412 869 62 267198

8 Conclusion

We have presented a new Simplex-based solver designed for efficiently solving SMT
problems involving linear arithmetic. The main features of the new approach include
the possibility to presimplify the input problem by eliminating variables, a reduction
in the number of slack variables, and fast backtracking. A simple but useful form of
theory propagation can also be implemented cheaply. Another result of the paper is a
simple approach for solving strict inequalities that does not require modification of the
basic Simplex algorithm. This approach is more generally applicable to other forms of
solvers, such as graph-based solvers for difference logic.

Experimental results show that the new Simplex-based solver outperforms the most
competitive solvers from SMT-COMP’05, including specialized solvers on difference
logic problems.

Applications for the algorithm presented in this paper go beyond SMT. We are cur-
rently extending the solver to support a form of weighted MAX-SMT, that is, the search
for an assignment to an SMT problem that maximizes a linear objective function. This
MAX-SMT solver will be integrated to SRI’s CALO system4, as part of a module that
combines learning and deductive algorithms.
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Abstract. We present an incremental bounded model checking encoding into
propositional satisfiability where the property specification is expressed as a weak
alternating Büchi automaton (WABA). The encoding is linear in the specification,
or, more exactly O(|I|+ k · |T |+ k · |δ|), where |I| is the size of the initial state
predicate, k is the bound, |T | is the size of the transition relation, and |δ| is the
size of the WABA transition relation. Minimal length counterexamples can also
be found by increasing the encoding size to be quadratic in the number of states
in the largest component of the WABA. The proposed encoding can be used to
implement more efficient bounded model checking algorithms for ω-regular in-
dustrial specification languages such as Accellera’s Property Specification Lan-
guage (PSL). Encouraging experimental results on a prototype implementation
are reported.

Keywords: Weak Alternating Büchi Automata, Bounded Model Checking, PSL,
NuSMV.

1 Introduction

Large and demanding verification efforts require that the property specification lan-
guage used is up to the task. Linear temporal logic (LTL), the property specification
language implemented in many model checkers, has been criticised for the lack of ex-
pressive power [1,2]. Expressing certain properties in LTL is cumbersome at best, and
writing assumptions for compositional reasoning can even be impossible. Most of these
shortcomings are in one way or another related to the fact that LTL cannot express all
ω-regular languages. This has been recognised by many key players in the hardware in-
dustry and Accellera’s Property Specification Language (PSL) [3,4] has been proposed
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as a solution. PSL extends LTL in many ways, but perhaps most importantly PSL can
express all ω-regular languages.1

Expressive specification languages require efficient model checking techniques to
deliver on their promise. Bounded model checking (BMC) [5] is a symbolic model
checking technique that focuses on searching for bounded counterexamples to the given
property. By encoding the model checking problem to propositional satisfiability (SAT),
bounded model checking can leverage the efficiency of modern SAT-solver technology.
Encoding BMC to SAT is accomplished by writing a propositional formula that mod-
els all executions of the system of certain length. Additional constraints ensure that the
final formula is satisfiable if some execution is a counterexample. There are also meth-
ods for concluding that current reached depth is enough to prove that the given property
holds [6,7,8,9]. BMC has established itself as an important tool among current verifi-
cation techniques. A very important question is therefore, can BMC efficiently model
check all ω-regular properties, especially those expressed in PSL.

This work explores different possibilities of implementing BMC for PSL by using the
automata theoretic approach to model checking. The PSL property can first be converted
into an alternating Büchi automaton (ABA) with the help of an external translation
procedure, such as the one described by the Prosyd project (see [10]). This procedure
can create so called weak alternating automata (WABA) which have certain restrictions
on the structure of the automaton but are still able to express all ω-regular properties.
A large subset of core PSL can be converted into a WABA with a linear number of
states with a few exceptions [10].

In the rest of the paper we explore different options of creating an efficient BMC
encoding for WABAs. With an exponential blow-up (O(2a +3b), where a is the number
of accepting states and b is the number of non-accepting states) the WABA can be con-
verted to an explicit state nondeterministic Büchi automaton using the Miyano-Hayashi
construction [11]. This explicit state Büchi automaton could be used but the size of the
encoding is in the worst case exponential in the size of the WABA.

A significantly better option would be to implement a symbolic version (SAT encod-
ing) of the Miyano-Hayashi construction [10]. However, this approach does not exploit
the weakness of the ABAs and might thus not be an optimal approach for WABAs.
We have also experimentally observed that neither the symbolic nor the explicit state
versions of the approach preserve minimal length counterexamples.

We present a new efficient BMC encoding specialised for model checking WABAs.
The size of the encoding is linear in the specification as WABA and the system model.
By increasing the size of the encoding to be quadratic in the number of states in the
largest component of the WABA, we can guarantee that it detects minimal length coun-
terexamples for all WABAs. The encoding utilises the incremental SAT encoding frame-
work developed in [9].

We have experimentally evaluated our new BMC encoding for WABAs. Compared
to BMC based on explicit state Büchi automata, the new WABA encoding is much more
robust because the exponential blow-up in the explicit state Miyano-Hayashi construc-
tion is avoided. The new linear size encoding is clearly faster than a symbolic BMC

1 PSL can also express properties of finite words, for simplicity only ω-words are considered
here.
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encoding of the Miyano-Hayashi construction. In addition, the minimal counterexam-
ple variant of our new encoding produces shorter counterexamples in some cases. On
LTL formulas the new encoding generates minimum length counterexamples and is
as compact (within a constant factor) as the most compact specialised LTL encodings
known [9]. Furthermore, the performance on LTL is quite similar.

There is some earlier work on bounded model checking for subclasses of alterna-
ting Büchi automata and for all ω-regular properties. Sheridan [12] describes a
non-incremental BMC encoding for very weak alternating Büchi automata. This en-
coding captures only the LTL subset of ω-regular properties since very weak alternat-
ing Büchi automata exactly correspond to LTL properties [13,14]. A BMC encoding
for alternation-free µTL, a temporal logic that can express all ω-regular properties, has
been developed by Jehle et al. [15]. The encoding is cubic in the used bound k and thus
not as efficient as the new encoding presented in this work.

2 Alternating Büchi Automata

In this section we cover the technical definitions needed to introduce our BMC encod-
ing for WABAs. The set of positive Boolean formulas over X , denoted by B+(X ), is
the smallest set of formulas which contains all elements from X and is closed under
disjunction and conjunction. A subset S of X is a model of θ ∈ B+(X ), denoted by
S |= θ, iff the truth assignment that assigns true to the elements of S and false to the
elements of X \ S satisfies θ.

As alphabet Σ of alternating automata we restrict ourselves to only considering val-
uations of atomic propositions. More precisely, for a given non-empty finite set AP of
atomic propositions we define the set of atomic proposition complements AP = {p | p∈
AP} and let Σ be the largest set Σ⊆ 2AP ∪ AP such that for all p∈AP exactly one element
of {p, p} is contained in each member of Σ.

An alternating Büchi automaton (ABA) is of the form A = (Q,Σ,q0,δ,F), where
Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, δ : Q →
B+(AP ∪ AP ∪ Q) is the transition relation and F ⊆Q is the set of accepting states. We
use B+(A) to denote the set of Boolean formulas that occur in A’s transition function.

Given an infinite word w ∈ Σω, wi denotes the i-th letter of w (i.e. w = w0w1w2 . . .).
A run of A = (Q,Σ,q0,δ,F) on w is a directed acyclic graph (dag) G = (V,E) with the
following properties:

– V ⊆ Q×N,
– E ⊆⋃i≥0((Q×{i})× (Q×{i+1})),
– (q0,0) ∈V ,
– if (q, i) ∈V then (wi ∪ {q′ | ((q, i),(q′, i+ 1)) ∈ E}) |= δ(q), and
– if ((q, i),(q′, i+ 1)) ∈ E then both (q, i) ∈V and (q′, i+ 1) ∈V .

For technical convenience this definition of a run allows for states which are unreach-
able from the initial state. Let σ be an infinite path in a run in G, i.e. an infinite sequence
of nodes (v0,v1,v2, . . .) such that (vi,vi+1) ∈ E for all i ≥ 0. Let In f (σ) be the set of
states that consists of all automaton states appearing infinitely often in the nodes of σ.
An infinite path σ is accepting iff F ∩ In f (σ) �= /0. A run G is accepting iff every in-
finite path through G is accepting. An ABA A = (Q,Σ,q0,δ,F) accepts a word w ∈ Σω
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iff there is an accepting run G of the automaton A on w. The definition of a run allows
a state to have no successors and a path through the run (as well as the whole run) to be
finite. In effect all such finite paths ending in a state with no successors are “accepting”.
Alternatively the existence of states with no successors could be easily ruled out by
placing additional constraints on δ(·).

Example 1. For instance, δ(q1)= ((p∧q1)∨(p∧((r∧(q2∧q3))∨r))) means that from
state (q1, i) ∈ V with valuation wi = {p,r} move to a state set at i+ 1 containing {q1}
(this also happens with valuation {p,r}), while with valuation {p,r} we will move to a
state set containing {q2,q3}. With valuation {p,r} the transition relation of q1 becomes
true, which means that we do not require q0 to have any successors.

A weak alternating Büchi automaton (WABA) is an ABA A = (Q,Σ,q0,δ,F) whose
states Q can be partitioned into components Q1%·· ·%Qm such that:2

– for all j,k ∈ {1, . . . ,m}, q j ∈ Q j, qk ∈ Qk: if qk appears syntactically in δ(q j) then
k ≤ j; and

– for all 1≤ j ≤ m: Q j ⊆ F or Q j ∩F = /0.

A WABA is a very weak alternating Büchi automaton (VWABA) if no component Q j

contains more than one state. For a component Q j, |δ j| denotes the sum of the sizes of
the transition relations δ(q), where q ∈ Q j.

Let A be a WABA with state set Q partitioned into components Q1 % ·· · %Qm and
final state set F . We next define the component unrolling depth d j needed to detect
minimal length counterexamples in our BMC encoding for each component Qj. For
any j ∈ {1, . . . ,m} let

d j =
{

0 , if Q j ⊆ F
|Q j| , if Q j ∩F = /0

3 Incremental Bounded Model Checking for Weak Alternating
Büchi Automata

Our incremental encoding for weak alternating automata is based on the simple BMC
encodings [16,17,9] for LTL. The approach to incrementality used here is exactly the
same as in [9]. First of all, the encoding needs to be formulated so that it is easy to derive
the encoding for bound k = i + 1 from the encoding for bound k = i. This is done by
separating the encoding to a k-invariant part and a k-dependent part. The information
learned by the SAT solver from the k-invariant constraints can be reused when the bound
is increased while the k-dependent constraints and all the information learned from them
needs to be discarded. Thus we try to minimise the use of k-dependent constraints in our
encoding. The so called Base constraints are also k-invariant, but they are conditions
that are constant for all 0≤ i≤ k.

2 Given an ABA the sets Q1, . . . ,Qm can be easily computed by using an algorithm for com-
puting the maximal strongly connected components (MSCCs) in a graph induced by the ABA
transition relation as follows: the states are the nodes, and there is an edge from q j to qk iff qk
appears syntactically in δ(q j).
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As in earlier works, paths of length k are encoded using k-invariant model constraints
|[M]|k. They encode initialised finite paths of the model M of length k:

|[M]|k ⇔ I(s0)∧
k∧

i=1

T (si−1,si),

where I(s) is the initial state predicate and T (s,s′) is a total transition relation. Let
π = s0s1s2 . . . be an initialised infinite path through M. The corresponding word w =
w0w1w2 . . . ∈ Σω is obtained by concatenating the sets of valuations of atomic proposi-
tions in the states si. We say that π is a (k, l)-loop if π = (s0s1 . . . sl−1)(sl . . . sk)ω such
that 0 < l ≤ k and sl−1 = sk.

The loop constraints also closely follow [9] by employing k + 1 fresh loop selector
variables l0, . . . , lk. They constrain the finite path of the system to always be a (k, i)-
loop for exactly one i, in which case the variable li is true and all other l j variables
are false. Many k-dependent constraints are avoided by introducing a new special sys-
tem state sE with fresh (unconstrained) state variables acting as a proxy state for the
endpoint of the path. In the k-dependent part the proxy state sE is constrained to be
equivalent to sk. The variable InLoopi is true iff the state si belongs to the loop part of
a (k, l)-loop. These are encoded by conjuncting the constraints below and denoted by
|[LoopConstraints]|k:

Base l0 ⇔ ⊥
InLoop0 ⇔ ⊥

k−invariant li ⇒ (si−1 = sE)

1≤ i≤ k InLoopi ⇔ InLoopi−1∨ li,

InLoopi−1 ⇒ ¬li

k−dependent InLoopk ⇔ '
sE ⇔ sk

We will first give an encoding that detects minimal length counterexamples for all
WABAs, and later on show an optimisation that makes the encoding linear in the size
of the WABA if this requirement is dropped. Given a WABA A, in our new encoding
the state variables of the system are split at each time i to the actual state variables si of
the system, to the set of variables for all automata states |[sq]|di (one for 0 ≤ i ≤ k + 1
and each pair (q,d), where q ∈ Q j and 0 ≤ d ≤ d j). The encoding also contains a few
additional variables which will be referred to explicitly. The rules of the encoding are
given as a set of Boolean constraints.

The WABA constraints |[AWABA]|k are new to this work and restrict the bounded
paths defined by the model constraints and loop constraints to infinite words accepted
by WABA A. One intuition for understanding the encoding is given by the fact that
for (k, l)-loops the semantics of branching and linear time coincide. We will in fact
employ algorithmic ideas similar to those used in branching time logic CTL model
checkers.



100 K. Heljanko et al.

The transition relation of A is encoded in a straightforward manner. For each com-
ponent Q j and for each state q ∈ Q j the following constraints are created:

0≤ d ≤ d j

Base |[sq0 ]|00 ⇔', where q0 is the initial state

k−invariant,0≤ i≤ k |[sq]|di ⇔ |[δ(q)]|di

where the k−invariant encoding |[δ(q)]|di for each component Q j, and for each state
q ∈ Q j is the following:

|[δ(q)]|di 0≤ i≤ k,0 ≤ d ≤ d j

|[p]|di |[p]|di ⇔ pi

|[p]|di |[p]|di ⇔¬pi

|[q′]|di |[q′]|di ⇔ |[sq′ ]|di+1, if q′ ∈ Q j

|[q′]|di ⇔ |[sq′ ]|0i+1, if q′ �∈ Q j

|[ψ1∧ψ2]|di |[ψ1∧ψ2]|di ⇔ |[ψ1]|di ∧|[ψ2]|di
|[ψ1∨ψ2]|di |[ψ1∨ψ2]|di ⇔ |[ψ1]|di ∨|[ψ2]|di

In the encoding above pi denotes the variable holding the value of the atomic proposi-
tion p in the state si. Notice how for state q ∈ Q j the successor states q′ inside Q j get
the values from the current unrolling d while the successor states q′ outside Q j get their
values from the unrolling d = 0. The intuition for this will be explained below.

We use a proxy loop state indexed with L with associated (free) automaton vari-
ables |[sq]|dL to act as the loop state in order to make as many constraints k-invariant as
possible. For non-accepting components the k-dependent rules bind the truth values of
|[sq]|dk+1 to |[sq]|d+1

L (jump to the next unrolling level d + 1), while for accepting com-

ponents they bind the values of |[sq]|0k+1 to the value of |[sq]|0L, i.e. to the values at the
loop point state of the same unrolling. This is encoded by conjuncting the following
constraints for each component Qj and for each state q ∈ Q j:

0≤ d ≤ d j

Base |[sq]|
dj+1
L ⇔⊥, if q �∈ F

k−invariant,1≤ i≤ k li ⇒
(
|[sq]|dL ⇔ |[sq]|di

)
k−dependent |[sq]|dk+1 ⇔ |[sq]|d+1

L , if q �∈ F

|[sq]|0k+1 ⇔ |[sq]|0L, if q ∈ F

The intuitive idea behind the encoding is as follows. Our encoding can be seen as a SAT
implementation of an automata theoretic branching time model checker using WABAs
such as [18] but specialised for models induced by (k, l)-loops. Because of the compo-
nent structure of the WABA, each component Q j can assume that all other components
and atomic propositions it refers to have already been evaluated, and the results are



Bounded Model Checking for Weak Alternating Büchi Automata 101

available. This is all that is needed to evaluate the component Q j by iteratively substi-
tuting these subresults.3

Similarly to [18] we want to compute the effect of these substitutions in terms of a
fixpoint evaluation procedure. Consider a non-accepting component Q j first. We want
|[sq]|1L to evaluate to whether at the loop point L starting from a state q ∈ Q j the au-
tomaton has some run which accepts the ω-word induced by the loop. Because we do
not want to allow accepting runs to be trapped forever in a non-accepting component,
the fixpoint required is the least fixpoint, and gives us the initial approximation values

|[sq]|
d j+1
L ⇔ ⊥. By running through the loop once in the backward direction making

substitutions of known results along the way, we can get a better approximation of the

final value, namely |[sq]|
d j
L . Either we have already reached a fixpoint, or at least one of

states q′ ∈Q j has obtained the value |[sq′ ]|
d j
L =', in which case we have to resubstitute

this value by running through the loop a second time in the backward direction. Clearly
after d j = |Q j| rounds the fixpoint is guaranteed to be reached, and the values of |[sq]|1L
are exact results of the fixpoint iteration. Finally, an extra fixpoint iteration is done with
|[sq]|0i variables to get the correct final values for indices to the right of the loop point.

We could do the obvious dual greatest fixpoint iteration for the accepting compo-
nents. However, we will use the optimisation trick of employing any fixpoint instead
of the greatest fixpoint. The intuitive reason why this is sound is that any fixpoint will
in our encoding cautiously underapproximate the greatest fixpoint, (see the soundness
proof, Lemma 1 in Appendix A which never uses the fact that the fixpoint obtained for
accepting components is the greatest fixpoint). The completeness part is trivial, as the
any fixpoint enforcing constraints are strictly less constraining that the constraints that
would be needed for enforcing the exact greatest fixpoint.

We can optionally add constraints based on the monotonicity of the fixpoint approx-
imations of non-accepting components. These k−invariant propagation constraints are
as follows. For each non-accepting component Q j, and for each state q ∈ Q j, 0 ≤ i ≤
k + 1,1≤ d ≤ d j:

k−invariant |[sq]|di ⇒ |[sq]|d−1
i

Conjuncting all the constraints above the encoding |[M,AWABA]|k becomes:

|[M,AWABA]|k ⇔ |[M]|k ∧|[LoopConstraints]|k ∧|[AWABA]|k.

Theorem 1. Given a finite Kripke structure M and a WABA A, M has a path π accepted
by A iff there exists a k ∈ N such that |[M,AWABA]|k is satisfiable. More specifically, if
π = s0s1s2 . . . is a (k, l)-loop accepted by A then |[M,AWABA]|k is satisfiable. 4

Proof. Immediate by Lemmas 1 and 2 in Appendix A. ��
3 Notice the similarity to evaluating CTL formulas by substituting subformula results and prop-

agating these in the backward transition relation direction. See for example the WABA based
CTL model checking algorithm [18] as well as similar algorithms for the alternation free µ-
calculus [19]. The main difference is that we aim for an easy encoding into SAT instead of
optimal running time as in the algorithms mentioned above.

4 A direct corollary of this is that minimal length (k, l)-loop witnesses can be detected.
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The exact size of the encoding is O(|I|+k · |T |+k · |δ|+k ·∑m
j=1(d j · |δ j|)). Note that

the size is bounded from above by O(|I|+ k · |T |+ k · |Q| · |δ|), and becomes O(|I|+ k ·
|T |+ k · |δ|) when the WABA is a very weak alternating Büchi automaton (as produced
by most LTL to WABA translations). Combined with a linear size translation from an
LTL formula into a VWABA (for example a state acceptance based variant of [20] with
a symbolically encoded transition relation), bounded LTL model checking using this
approach is as compact as the approaches of [16,17,9]. In fact, by doing so the encoding
would for LTL formulas effectively become an optimised incremental variant of [16].

Trading Minimal Length Witnesses for a Smaller Encoding. Instead of quantifying
d over 0≤ d ≤ d j in the encoding above, for any non-accepting component Q j we can
instead use 0≤ d ≤ c j, where 1≤ c j ≤ d j. Now c j is the number of fixpoint iterations
made5, and we need the following constraints to guarantee correctness of the approach.
For each non-accepting component Q j, and for each state q∈Q j the following fixpoint-
enforcing constraints are added:

Base |[sq]|0L ⇔ |[sq]|1L

The constraints intuitively check that the fixpoint iteration has reached a fixpoint after
c j iterations. Thus the approach will be sound. The reason why the approach is still
complete is that by going through the loop part of a (k, l)-loop d j times one can with
c j = 1 simulate the d j fixpoint iterations done by going through the loop part only
once but with d j unrollings. Thus increasing the bound by roughly a factor of d j can
compensate for the lack of d j unrollings. By changing the quantification to, for example,
always use c j = 1 (as used in our experiments) the resulting encoding is of size O(|I|+
k · |T |+ k · |δ|), i.e. linear in the size of the WABA. The correctness of the encoding is
preserved in the sense that every witness will eventually be detected when the bound is
increased large enough (albeit with a non-minimal bound).

4 Experimental Results

We have implemented a prototype of the proposed WABA BMC encoding on top of a
development version of the NuSMV tool [21]. We use the “Sugar” tool (obtained from
http://www.prosyd.org/), by C. J. Kargl of TU Graz, as a translator from PSL
to ABAs and reuse our previous incremental SAT encoding techniques [9]. As the SAT
solver we use ZChaff version 2004.11.15 in the experiments. In order to evaluate and
validate the proposed encoding, we have also implemented two other BMC approaches
for WABAs on top of the same software platform: (i) translate the WABA to an explicit
state Büchi automaton by using the Miyano-Hayashi algorithm of the “Sugar” tool and
then do BMC by using the explicit state Büchi automaton, (ii) take the Miyano-Hayashi
translation from (W)ABA to Büchi automata given in [10, page 38] and derive a sym-
bolic BMC encoding from it.

5 The encoding of |[sq]|di with d = 0 can be seen as an “extra” fixpoint iteration. It is needed in

order to also obtain correct |[sq]|0i values for indices i to the “right” of the loop point. We use it
here to also check that the fixpoint has been reached.
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 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

B
M

C
 o

n 
B

uc
hi

 a
ut

om
at

on
 fr

om
 th

e 
W

A
B

A

new linear WABA encoding

time

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

sy
m

bo
lic

 M
iy

an
o-

H
ay

as
hi

 B
M

C
 e

nc
od

in
g

new linear WABA encoding

time

(a) (b)

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

C
A

V
’0

5 
en

co
di

ng
 fo

r 
LT

L

new linear WABA encoding

time

(c)

Fig. 1. A comparison of encoding approaches on random models and VWABAs generated from
LTL formulae. Red boxes mark cases with a counterexample while black diamonds mark cases
where none was found.

These two BMC encodings are linear in the bound k and the sizes of the transition
relations of the corresponding automata (Büchi and WABA, resp.). Unfortunately we
do not have space to explain them in more detail here. The prototype implementation
as well as the experiments are available at http://www.tcs.hut.fi/˜timo/
cav2006. The implementation also contains a (W)ABA input path, allowing alterna-
tive PSL to (W)ABA translations to be used.

Figures 1 and 2 show a comparison of encoding schemes for randomly generated
models (Kripke structures of 100 states and a single justice fairness requirement) and
WABAs generated from LTL and PSL formulae (of parse tree sizes between 3 and 14).
The time limit for each run was 10 minutes and the memory limit 1.5GiB.

In Fig. 1(a), 1(b) and 1(c), we benchmark our new algorithm on 1200 random LTL
formulae. We plot the total execution time of each run to either find a counterexample
for the property or to reach the bound limit of 50. In the plots, cases where a counterex-
ample was found are denoted by red boxes while black diamonds denote cases where
none of the approaches found a counterexample. The scales are logarithmic. Based on
Fig. 1(a), it is easy to see that the “WABA to Büchi” approach is not very competitive:
it suffers from the automata size blow-up occurring during the WABA to explicit state
Büchi automata translation. We can see that the proposed WABA BMC encoding is
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Fig. 2. A comparison of encoding approaches on random models and WABAs generated from
PSL formulae. Red boxes mark cases with a counterexample while black diamonds mark cases
where none was found.

competitive against the symbolic Miyano-Hayashi approach (Fig. 1(b)). As expected,
the specialised LTL encoding of [9] performs slightly better than the new, more general
encoding but the difference is not large: the new encoding seems to be a reasonably
good BMC algorithm for LTL, too.

In Fig. 2, we compare the encodings on 1000+ WABAs obtained by generating ran-
dom PSL formulas, translating them to ABAs using the “Sugar” tool, and picking those
instances which are WABAs that are not very weak. It is known that in the version of
the “Sugar” tool used by us there are some discrepancies with respect to the semantics
of PSL, but that does not effect our use of it as a random WABA generator. The bound
and other parameters of the setup, as well as plot point encoding, are identical to the
LTL case. We also plot the bound reached, i.e. the counterexample length, for the runs
that found one. The scales are logarithmic.

The new linear encoding performs better than the symbolic Miyano-Hayashi encod-
ing, as shown in Fig. 2(a), with comparable counterexample lengths, as can be observed
from Fig. 2(d). Comparing the two new encodings in Fig. 2(b), the linear encoding
is clearly faster but may generate significantly longer counterexamples as shown in
Fig. 2(e). If we were to model check systems with a larger transition relation, the in-
creased counterexample length as seen here might sometimes translate into a slower
running time. Comparing the new encoding that can find minimal counterexamples to



Bounded Model Checking for Weak Alternating Büchi Automata 105

the symbolic Miyano-Hayashi encoding in Figures 2(c) and 2(f) we see that there is no
clear winner in speed but that the new encoding produces shorter counterexamples.

To sum up, these results show that the proposed WABA BMC is a competitive en-
coding for WABAs generated from PSL formulas, and quite close to a state-of-the-art
BMC encoding specialised for LTL.

5 Conclusions

Our new BMC encoding for WABAs seems very competitive. With BMC using ex-
plicit state Büchi automata, it is obvious that for complicated properties the potentially
exponential conversion from a WABA will become a bottleneck. The reason why our
encoding performs better than a symbolic Miyano-Hayashi encoding is not completely
clear to us. We speculate that the more deterministic nature of our encoding generates
easier problems for the SAT solver. The fact that the new encoding can exploit the struc-
ture of WABAs unlike Miyano-Hayashi, which works for all alternating automata, may
also help. Both are linear size in the specification, but if we use a version that is in the
worst case quadratic in the number of states in the largest component of the WABA, our
new encoding is guaranteed to find minimal length counterexamples.

The proposed WABA BMC encoding can be made complete (in the sense that it can
also prove properties, not only find counterexamples) by modifying and applying the
simple-path constrains of [9] in a straightforward way.

We would like to investigate whether it is possible to modify Miyano-Hayashi to
generate tight Büchi automata. We believe that the BMC encoding of this work can be
adapted to also generate a symbolic WABA to Büchi automaton conversion procedure
(an alternative to Miyano-Hayashi for WABAs) which generates tight Büchi automata
and thus detects minimal length counterexamples along the lines of [22]. This intuition
is based on the fact that [22] is an adaptation of the PLTL BMC encoding [17] to the
symbolic Büchi automaton setting and the implementation techniques used here are
quite similar to those of [17].

Other potential future directions of research are related to succinctness. One possi-
bility would be to devise new direct BMC encodings for general, non-weak ABAs or
for alternating parity automata. Generalising the encoding to temporal logics with past
operators (e.g. PSL extended with past) may potentially involve handling of two-way
alternating automata.

Acknowledgements. The authors would like to thank I. Niemelä and H. Tauriainen for
interesting discussions and pointers on the topic. Thanks also to R. Bloem and other
contributors of the Prosyd project for their freely available PSL translation tool as well
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Appendix A - Proofs

Here we prove the soundness and completeness of the encoding.

Lemma 1. Given a finite Kripke structure M, a WABA A and a k ∈ N, if |[M,AWABA]|k
is satisfiable then there is an initialised infinite path π through M such that the induced
word w is accepted by A.
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Proof. Suppose |[M,AWABA]|k has a satisfying truth assignment β for its variables. Since
β satisfies |[M]|k there are states s0s1 . . .sk that form an initialised finite path in M. Note
that |[LoopConstraints]|k requires that there is 0 < l ≤ k such that sk = sl−1. Let π now
be the initialised infinite path s0 . . .sl−1(sl . . .sk)ω through M. It remains to be seen that
the corresponding word w is accepted by A.

We will prove the following stronger statement from which the claim of the the-
orem follows because of the base constraint for the initial state q0. For a word w =
w0w1w2 . . . ∈ Σω let w(i) denote the suffix of w starting from wi. We use Aq to denote
the WABA that results from A by making q the initial state. For all components Qj of

A, all 0 ≤ d ≤ d j, all q ∈ Q j, and all 0 ≤ i ≤ k: if β(|[sq]|di ) = ' then w(i) is accepted
by Aq.

Note that the topological order on A’s components is well-founded. Hence, we can
use Noetherian induction assuming that the statement has been proved for all lower
components already.

Let Q j be a final component. Take any q∈Q j and assume β(|[sq]|0i )=' for some 0≤
i≤ k. It is straightforward to construct a run dag for Aq and w(i) starting with the node
(q, i). The constraints for δ then require β(|[δ(q)]|0i ) = '.6 Since Boolean connectives
in δ are uniformly translated in the constraints for δ, there must be a model Q′ of δ(q).
The construction of the run dag is then iterated on the next level with nodes (q′, i + 1)
for some q′ ∈ Q′. Note that the constraints always ensure that there are models of δ(q)
for each q that occurs in this construction. This continues on each infinite path of the
run ad infinitum or until a state q′ is reached such that q′ �∈ Q j. But then, by weakness,
q′ must belong to some component for which an accepting run dag has already been
constructed by the induction hypothesis. Note that all the states on such infinite paths
that remain in component Q j are final. Hence, the run dag is accepting, and we have
w(i) is accepted by Aq.

Now let Q j be a non-final component. Again, take any q ∈ Q j but now assume
β(|[sq]|di ) = ' for some 0 ≤ i ≤ k and some 0 ≤ d ≤ d j. Again, we construct a run
dag for Aq and w(i) starting with the node (q, i). As above, the constraints for δ always
ensure the existence of a model for a node on some level of this run which creates the
nodes on the following level. But note that the index d is increased in each transition

from sk to sl . Since β(|[sq]|
d j+1
L ) =⊥ is ensured by the constraints of the encoding, each

infinite path in this run dag will eventually leave the component Q j. By weakness, each
infinite path proceeds into another component for which an accepting run dag has al-
ready been created by the induction hypothesis. Since a finite prefix of non-final states
on any such an infinite path does not harm the acceptance condition, this run dag is
accepting, too, and we have w(i) is accepted by Aq. ��

Lemma 2. Given a finite Kripke structure M and a WABA A, if there is an initialised
infinite path π through M such that the corresponding word w is accepted by A then
there is a k ∈ N such that |[M,AWABA]|k is satisfiable.

6 According to this, implications from left to right instead of bi-implications in the constraints
for δ would already suffice. It is also not hard to see that this does not destroy completeness:
if there is an assignment satisfying the bi-implications then this assignment would also satisfy
the weaker implications.
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Proof. Suppose there is an infinite path π such that the corresponding word w is ac-
cepted by A. Since the class of languages accepted by weak alternating Büchi automata
are the ω-regular languages we can without loss of generality assume π to be a (k, l)-
loop for some 0 < l ≤ k. Furthermore, without loss of generality we can assume that
π is minimal in the following sense. There is no infinite path π′ through M such that
the corresponding word w′ is accepted by A and π′ is a (k′, l′)-loop for some k′ < k and
some l′.

It remains to be seen that |[M,AWABA]|k is satisfiable. Hence, we need to construct
a truth assignment β to the variables s0s1 . . . sk, InLoopi for each 0 ≤ i ≤ k as well as
|[sq]|di for each component Q j of A, each q∈Q j, each 0≤ d≤ d j, and each 0≤ i≤ k+1.
Note that the values of the other variables are determined by the values of these.

The values for the former are immediately given by the (k, l)-loop w. This shows
satisfaction of the conjuncts |[M]|k and |[LoopConstraints]|k.

For the rest of the variables we only give a proof sketch due to space considerations.
After fixing w we can see A as a WABA tree automaton running on word (degenerate
tree) w. Simplifying the encoding of δ with the values given by w to variables in the
first phase above implements the tree WABA product construction in similar fashion
as in Section 3.2 of [18] and thus the rest of the encoding solves the 1-letter WABA
emptiness problem of a 1-letter product WABA induced by w. Now the rest of the
encoding is basically a SAT implementation of a variant of the fixpoint computation
algorithm of Theorem 4.7 in [18] to solve the 1-letter emptiness problem for WABAs.
The non-accepting components correspond to least fixpoints and the accepting com-
ponents correspond to greatest fixpoints. We can do an induction which processes one
component at a time as in the proof of soundness above.

For an accepting component Qj the values |[sq]|0i can be set to be identical to the
final values computed by the algorithm of Theorem 4.7 in [18], thus obtaining a fixpoint
which is easily checked to be a satisfying truth assignment.

For a non-accepting component Q j the values |[sq]|0i can also be set to be identical to
the final values computed by the algorithm of Theorem 4.7 in [18]. However, the values
of |[sq]|di with 1 ≤ d ≤ d j are set to be the values obtained by a fixpoint approximation

procedure which starts from the initial values given by β(|[sq]|
d j+1
L ) =⊥ and for all i,d

pairs proceeds for i from k + 1 towards 0, and for d from d j towards 1. It is easy to
check that after at most d j = |Q j| iterations through the loop in the backward direction
final values have been obtained at the loop point i = l,d = 1 (recall that w is fixed
and thus also the simplified form of δ is monotone and fixed according to w at each
point of computing the fixpoint approximations), and thus we obtain a satisfying truth
assignment for all the constraints concerning non-accepting components.

By the above and the fact that the algorithm of Theorem 4.7 in [18] computes ' to
the initial state iff w is accepted by A, we finally obtain β(|[sq0 ]|

0
0) = ', and thus all

constraints of the encoding are satisfied. ��

As a consequence of the proof, the encoding detects witnesses π that are (k, l)-loops at
minimal parameter k.
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Abstract. The problem of finding a small unsatisfiable core of an un-
satisfiable CNF formula is addressed. The proposed algorithm, Trimmer ,
iterates over each internal node d in the resolution graph that ‘consumes’
a large number of clauses M (i.e. a large number of original clauses are
present in the unsat core only for proving d) and attempts to prove them
without the M clauses. If this is possible, it transforms the resolution
graph into a new graph that does not have the M clauses at its core.
Trimmer can be integrated into a fixpoint framework similarly to Ma-
lik and Zhang’s fix-point algorithm (run till fix). We call this option
trim till fix. Experimental evaluation on a large number of industrial
CNF unsatisfiable formulas shows that trim till fix doubles, on aver-
age, the number of reduced clauses in comparison to run till fix. It is
also better when used as a component in a bigger system that enforces
short timeouts.

1 Introduction

Given an unsatisfiable CNF formula, an unsatisfiable core (UC) is any subset
of these clauses that is still unsatisfiable. The problem of finding a minimum,
minimal or just a small UC has been addressed rather frequently in the last
few years [2,10,16,11,6], partially due to its increasing importance in formal
verification.

The decision problem corresponding to finding the minimum UC is a Σ2-
complete problem [5] and we are not aware of an algorithms for finding it that
scales. Finding a minimal UC (any subset of clauses such that the removal of
any one of them makes the formula satisfiable), according to Papadimitriou and
Wolfe [12], is DP -complete1.

It is questionable whether finding a minimal UC has a practical value, how-
ever, since a non-minimal UC can be smaller than a minimal one, as long as it is
not contained in it. Therefore heuristics that do not guarantee minimality, can
be both faster and better than those that guarantee minimality. The latter are
useful only when their result is compared to the core from which they started,

1 DP is the class containing all languages that can be considered as the difference
between two languages in NP, or equivalently, the intersection of a language in NP
with a language in co-NP.
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and thus can be used, for example, after another, faster algorithm, has already
extracted a small core and cannot find a smaller one.

Typically UCs are needed as part of a larger system (such as an abstrac-
tion/refinement loop as we will soon describe), and the influence of the size of
the UC on the other parts of the system is only vaguely known. Hence, although
more computation time can lead to finding smaller cores, it is not clear whether
it is cost-effective in the overall system. This suggests once again that minimal-
ity per-se is not so important in practice. Algorithms for extracting small cores
should be measured instead by their velocity: how many clauses they remove
from the initial formula per time unit, on average. They should also be mea-
sured by how small they can make the core within a time limit, in comparison
with other algorithms, and whether they can contribute to a setting in which
several of these algorithms are run sequentially or even in parallel. In Section 6
we measure our suggested technique, called Trimmer , with these criteria.

Before we describe previous work on this problem, let us mention some of
the typical usages of UCs. A small unsatisfiable core reflects a more precise and
focused explanation of the unsatisfiability of a given formula. In verification, it is
used in several contexts, some of which are the following. Amla and McMillan [1]
suggest to use UCs for a proof-based abstraction-refinement model-checking pro-
cess: the UC of an unsatisfiable BMC instance contains information on the state
variables that are sufficient for proving that no bug can be found up to a given
depth; based on these state variables they build a refined abstract model and
continue to iterate. Kroening et al. [8] use unsatisfiable cores for an iterative pro-
cess of solving Presburger formulas: the UC is used for checking whether certain
under-approximating restrictions on the solution space were used in the proof of
unsatisfiability. If the answer is yes, these restrictions should be relaxed. A similar
usage of UCs is by Grumberg et al. [4], in a process of under-approximation and
widening of BMC formulas corresponding to a multi-threaded process. Outside
verification, the identification of an inconsistent kernel can be important for solv-
ing the inconsistency in any constraints satisfaction problem. Further, looking
beyond the Propositional world, finding a small unsatisfiable set of constraints
is important for the efficiency of decision procedures like MathSat and CVC[15]
that rely on explanations of the reason of unsatisfiability in order to prune the
search space. The techniques we will discuss in this paper are equally relevant
to such systems as they are for systems based on propositional reasoning.

Related Work. Lynce and Silva [10] suggested an approach for finding a mini-
mal UC, in which a new ‘clause selector’ variable csi, 1 ≤ i ≤ m, is added to each
of the m clauses of the formula (for example, the ith clause (l1 ∨ l2) is replaced
with (csi ∨ l1 ∨ l2)). The cs variable is set to true iff the clause is not selected.
They then use a SAT solver that decides first on the cs variables. If all the
clauses become satisfied, it backtracks to the most recent cs variable set to true.
If the solver reaches a conflict and consequently backtracks to the cs variables,
it means that an unsatisfiable core was found. In such a case it records the size
of the core and continues to search for a smaller one, after adding a clause over
the cs variables that blocks the solver from repeating the same core. A similar
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process was suggested also by Oh et al. [11] (the ‘Amuse’ algorithm), although
they modify the backtracking mechanism so it performs a bottom-up search for a
UC instead of searching for a satisfying assignment. Different decision heuristics
result in different UCs, which are not necessarily minimal.

Huang suggests the ‘MUP’ (Minimal Unsatisfiability Prover) algorithm in [6].
Rather than using m clause selector variables, he suggests to augment the clauses
with minterms over log(m + 1) variables. The augmented formula, he proves,
is minimally unsatisfiable iff there are exactly m models over the y variables
(because in this case every clause that is removed makes the formula satisfiable).
Hence, the problem of proving that an existing set is minimal is reduced to that of
model-counting, which MUP performs with a variable elimination technique over
BDDs. This technique can be taken one step further towards finding a minimal
core, by running it not more than m times. MUP shows better experimental
results than run till fix (see below), but only, apparently, on hand-made and
relatively small formulas, like the pigeonhole problem. None of the benchmarks
reported in [6] has more than several thousand clauses, and it is not clear how
it scales to industrial problems.

A more practical approach is to find a small core without guaranteeing mini-
mality, while attempting to be efficient and produce intermediate valuable results
in case the external process does not wish to wait for the final result. Zhang and
Malik [16] were the first in the verification community, as far as we know, to ad-
dress this problem from a practical point of view. They suggested a simple and
effective iterative procedure for deriving a small unsatisfiable core: they extract
an unsatisfiable core from an unsatisfiability proof of the formula provided by a
SAT solver and then they run the SAT solver again starting from this core, which
may result in an even smaller core. Their script run till fix repeats this pro-
cess until the core is equal to a core derived in the previous iteration, or, in other
words, until it reaches a fixpoint. The solution and its implementation seem to
be the most practical one available, and is indeed widely used. The experimental
results that we present in Section 6 are compared against run till fix.

What Is This Article About? We describe a new heuristic, called Trimmer ,
for finding a small UC. Trimmer takes the role of zVerify in run till fix.
It can be either applied once (and generate a core smaller or equal to that
generated by zVerify) or as part of a fixpoint computation, in an algorithm we
call trim till fix. We will concentrate on Trimmer from hereon and return to
trim till fix in the description of the experimental results.

We assume from here on that the reader is familiar with the basic inner-
workings of modern DPLL-based SAT solvers, and hence describe those parts of
the solver that our algorithm relies on only in general, abstract terms.

New conflict clauses are derived in a process called Conflict Analysis, by (con-
ceptually) traversing backwards the conflict graph and locating the reason for
the conflict. This process can be interpreted as a series of resolution steps [16].
The SAT solver can output a graph reflecting the resolution steps, known as the
resolution graph. The nodes of a resolution graph represent clauses, and the sin-
gle sink node of this graph represents the empty clause. Each internal node has
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two parents, which represent the clauses from which it was resolved. In practice
this graph can represent Hyper-resolution (a result of several resolution steps)
and hence each node can have more than two parents. The general idea of the
Trimmer algorithm, described in detail in Section 4, is the following. Trimmer
locates internal nodes in the resolution graph that dominate other nodes, called
the minions (i.e., all the paths from a minion node to the sink node go through
the dominator), and checks whether they can be proved without their minions.
If the answer is yes, the minions can be removed, and consequently the size of
the UC is decreased. In such a case the resolution graph has to be transformed
so it reflects the new proof. This transformation is the subject of Section 4.1.
Trimmer repeats this process until no changes in the graph can be made. Ex-
perimental results show that integrating this procedure in a fixpoint script in
the style of run till fix, is better than run till fix, at least with the rela-
tively short timeouts we tried (30 and 60 minutes). Trimmer has the advantage
that it generates intermediate results rather fast. Hence, while in many cases
run till fix times out (i.e. it cannot finish the first iteration after the initial
core within the time limit), Trimmer almost always finishes several iterations by
that time, even if in the long run run till fix produces smaller cores.

2 Preliminaries

Resolution is a proof system for CNF formulas with one inference rule:

(A ∨ x) (B ∨ ¬x)
(A ∨B)

where A,B are disjunctions of literals (possibly with 0 disjuncts, i.e. the constant
false). The clause (A ∨ B) is the resolvent, and (A ∨ x) and (B ∨ ¬x) are the
resolving clauses. The resolvent of the clauses (x) and (¬x) is the empty clause
(⊥). Each application of the resolution rule is called a resolution step.

Lemma 1. A Propositional CNF formula is unsatisfiable if and only if there
exists a finite sequence of resolution steps ending with the empty clause.

A sequence of resolution steps, each one uses the result of the previous step as
one of the resolving clauses of the current step, is called Hyper-resolution. For
example, from

(x1 ∨ x2 ∨ x3)(¬x1 ∨ x4)(¬x2 ∨ x5)

we can derive (x3 ∨x4 ∨x5) by two resolution steps (first over x1, then over x2),
or by one hyper-resolution step.

The hyper-resolution steps leading to the derivation of the empty clause can
be depicted in a Hyper-resolution graph (or, simply, a resolution graph). From
hereon, we use the terms node and clause interchangeably, since every node
represents a clause.
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Definition 1. A Hyper-resolution graph corresponding to an unsatisfiability
proof by resolution, is a Directed acyclic Graph G(V,E, s) with a single sink
node s ∈ V , in which the nodes represent CNF clauses: the leaf nodes (the
sources) represent original clauses, the inner nodes represent clauses derived by
resolution, and the sink represents the empty clause. Each node can be inferred
from its parent nodes by some sequence of resolution steps.

Modern DPLL-based SAT solvers can output a Hyper-resolution proof of un-
satisfiability. The intermediate clauses in this proof are the conflict clauses that
were generated during the run, and that are on a path from the leafs to the
empty clause.

We now generalize resolution graphs to Clause Implication Graphs:

Definition 2 (Clause Implication Graph). A Clause-Implication Graph
(CIG) G(V,E, s) is a directed acyclic graph with a single sink node s ∈ V ,
in which the nodes represent CNF clauses, and each node is logically implied by
the conjunction of clauses represented by its parents.

A CIG is less restrictive than hyper-resolution graphs. They can have edges such
as

– Subsumption ((Φ), (Φ ∨ x))
– Reflexive implication ((Φ), (Φ))
– Resolution + Subsumption ((Φ1 ∨ x), (Φ1 ∨ Φ2 ∨ p)) together with

((Φ2 ∨ ¬x), (Φ1 ∨ Φ2 ∨ p))

where Φ1, Φ2 are disjunctions of literals, and p, x are variables. Other implications
forbidden by hyper-resolution are also possible. Figure 1 (left) depicts an example
of a Clause Implication Graph.

Let L denote the leaf nodes of a CIG, and assume that s represents the empty
clause. By definition of CIG, the conjunction of the L clauses is unsatisfiable,
and hence there exists a corresponding resolution proof of unsatisfiability starting
from the same nodes. Therefore, for the purpose of finding small UCs, CIGs are
sufficient for the analysis. Our construction will begin from the hyper-resolution
graph, which can be derived from the resolution trace given to us by the SAT
solver, but will transform it to a CIG as the algorithm progresses.

3 Dominators

Prosser [13] introduced the notion of dominance in the context of Flowgraph
analysis (originally a term related to code analysis and compilers).

A Flowgraph G = (V,E, r) is a directed graph such that every vertex is
reachable from a distinguished root vertex r ∈ V . A vertex d ∈ V dominates
v ∈ V, v �= d, if every path from r to v includes d. d immediately dominates v
if it dominates v and there is no other node on the path between them that
dominates v. We name v a minion of d. The set of minions of d is denoted by
M(d). A node is called a dominator if it dominates at least one node.
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In order to adapt the notion of dominators to CIGs, we conceptually reverse
the edges of the CIG. Thus, the sink node now becomes the root. Figure 1
(right) presents a Dominator Tree, which represents the immediate dominance
relation, of a CIG.

Fig. 1. (Left) A Conflict Implication Graph (CIG) (Right) A Dominator Tree over a
reversed CIG. Solid edges belong to the CIG, dashed edges belong to the Dominator
Tree. There is a dashed arrow from clause c to c′ in Dominator Tree if c is the immediate
dominator of c′.

For each vertex in a flowgraph v ∈ V , the set of all vertices dominated by v
can be found in polynomial time.

Dominators in a Clause-Implication Graph. We will refer from hereon to
a clause set and the formula obtained by conjoining the clauses in the set as the
same thing, when the meaning is clear from the context.

Let LM(d) ⊆ L denote the leaf minions of some dominator d. By definition of
a CIG,

∧
l∈L l |= s. The significance of a dominator d ∈ V in a CIG is that if L \

LM(d) |= d, then
∧

l∈(L\LM(d)) l |= s. In other words, if d is implied by the leafs
which are not its minions, then LM(d) are redundant in the Unsatisfiable Core.
Yet removing LM(d) from the CIG is not sufficient, if we want to repeat this
process. The problem is that such a removal does not leave us with a valid CIG.
The Trimmer algorithm, presented in the next section, iterates over dominators
in the CIG, and substitutes whenever possible (i.e. when L \ LM(d) |= d) the
old proof of the dominator d with a proof of L \ LM(d) |= d.

4 The Trimmer Algorithm

Our algorithm for decreasing the size of the UC is sketched in Figure 2.
Until Step 5 Trimmer is self explanatory. Step 6 Checks whether a dominator

d has an alternative proof without LM(d), which amounts to checking the satis-
fiability of ϕ′ : ((L \LM(d))∪{¬d}), where {¬d} denotes the set of unit clauses
corresponding to the negation of the clause d. For example, if d = (z1 ∨ . . .∨ zn)
is a dominator, then {¬d} are the clauses (¬z1) . . . (¬zn), which, for a reason
that will soon be clear, we refer to as the assumptions. If ϕ′ is satisfiable, the
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Fig. 2. The Trimmer algorithm

attempt failed and it proceeds to the next dominator in the queue. Otherwise,
relying on the equivalence

((L \ LM(d)) ∪ {¬d}) |= ⊥ ⇐⇒ L \ LM(d) |= d,

in Step 8 Trimmer transforms the hyper-resolution graph Rd into a proof of d,
and builds a corresponding CIG TRd. A transformation is needed because the
proof of ϕ′’s unsatisfiability, as generated by the SAT solver, is a proof of the
empty clause that uses assumptions. We have to transform it into a proof of d
without the assumptions. We discuss two different methods for performing this
transformation in Section 4.1. In step 9 Trimmer removes from R the graph
elements corresponding to the old proof of d and replaces it with the new one,
TRd, in step 10. That is, it removes all the minions of d together with their
adjacent edges and incoming edges to d, and embeds TRd into R instead.

Definition 3 (Graph embedding). The embedding of a graph G(V,E) in a
graph G′(V ′, E′), is a graph G′′(V ′′, E′′) such that V ′′ = V ∪V ′ and E′′ = E∪E′.

After the old proof is replaced with the new one, the new graph is still a CIG, but
has fewer leafs, and hence a smaller unsatisfiable core than the original graph.

4.1 Transforming the Resolution Graph

Recall that in Step 8 Trimmer is required to transform the resolution graph Rd,
corresponding to a proof of ((L \ LM(d)) ∪ {¬d}) |= ⊥, into a CIG TRd that
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corresponds to a proof of L\LM(d) |= d. We present two possible ways to derive
TRd from Rd. Let d = (z1 ∨ . . .∨ zn) be the dominator, and assume that no two
literals in this clause are the same. As before we call the unit clauses in {¬d},
assumptions.

The Simple Transformation. When ((L \ LM(d)) ∪ {¬d}) is proven to be
unsatisfiable, a subset L′ ⊆ L \ LM(d) has paths to the empty clause in the
resolution graph. This implies that L′ ∪ {¬d} is unsatisfiable, or equivalently,
that L′ implies d. Thus, TRd(V,E) is defined by V = L′ ∪ d and for all l′ ∈ L′,
(l′, d) ∈ E. Embedding this graph into R corresponds to adding edges from the
L′ clauses to d itself. The following drawing illustrates a simple transformation
and embedding for dominator node 13:

The disadvantage of the simple transformation is that it is too coarse. Since
it disregards the conflict clauses, it loses the information about the way these
original clauses imply the dominator. Consequently it provides little opportunity
for removing more dominators in the main resolution graph. On the other hand,
we cannot simply add the conflict clauses, because some of them are derived
from the assumptions. What we need is a method for deriving a resolution proof
of d from L′. We suggest the Bubble transformation method for this derivation.

The Bubble Transformation. For a given clause d = {z1, ..., zk} and clauses
{c1, ..., cn} we build an assumption set A = {(¬z1), ..., (¬zk)} and a new formula
F = {c1, ..., cn} ∪A.

The Convert recursive transformation, which appears below, converts a res-
olution proof Π of the unsatisfiability of F provided by a SAT solver, to a new
proof of d. It is initially called with the empty clause. Note that Convert is never
called with an assumption leaf (these are taken care of in lines 3 and 4), and that
the assumption leaves do not participate in the transformed graph. The Resolve
step resolves between two transformed clauses on the same variable as the orig-
inal resolution variable, if it still exists in both clauses in different polarity. In
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the end of this section we give an intuitive description of an implementation of
this procedure, while for now we concentrate on correctness. The relevance of
this general procedure to our case is clear: d is the dominator, A is {¬d} and
{c1, . . . , cn} are the clauses of L \ LM(d).

1: procedure Convert(Node: n )
2: if n is leaf then return NewNode( n )
3: if left(n) = (¬zi) then return Convert(right(n))
4: if right(n) = (¬zi) then return Convert(left(n))
5: return NewNode( Resolve(Convert(right(n), Convert(left(n)))) )

The following drawing demonstrates a bubble transformation with Convert,
where z ∈ d:

(a V z) (¬a V b)

(z V b)

( )

(¬b)

(b)

(¬z) (a V z) (¬a V b)

(z V b)

( z )

(¬b)

Transformation

Fig. 3. A bubble proof transformation, where z ∈ d

The following drawing illustrates a bubble transformation and embedding for
dominator node 13:

Proposition 1. Let ⊥ denote the empty clause of the proof Π (the proof of
F ’s unsatisfiability). Then Convert(⊥) returns a valid resolution proof Π ′ of
{c1, . . . , cn} |= d′, s.t. literals(d′) ⊆ literals(d).
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Proof. We use the term proof of unsatisfiability in order to emphasize that
our proof is based on a resolution graph, not a hyper-resolution graph. The
information provided by the SAT solver is enough for reconstructing any of
these graphs. In order to simplify presentation of the proof even more, we use
set notation for clauses to represent their literal sets.

Let n′ = Convert(n). We will prove the proposition by induction on the
resolution graph structure using the following invariant:

– n′ is well-defined
– n ⊆ n′ ⊆ (n ∪ d).

Base step: if n is a leaf then n′ = n, which is well-defined and, trivially,

n ⊆ n′ ⊆ (n ∪ d)

Induction step: there are two different cases - one for lines 3 and 4, and the other
- for line 5.

Lines 3 and 4: Suppose that n is an inner node that was resolved by the
two clauses nl and nr using the resolution variable t. Let n′

r = Convert(nr)
and n′

l = Convert(nl). If, w.l.o.g. nl = (¬zi), then, according to the algorithm:
(1) n′ = n′

r. Since the proof is a DAG, n′ is well-defined by the induction
hypothesis. Also, by induction: (2) nr ⊆ n′

r ⊆ (nr ∪ d). It must hold that t = zi,
since this is the only variable common to nl and nr. Therefore: (3) n∪{zi} = nr.
Combining these expressions we get

n
(3)
⊆ nr

(2)
⊆ n′

r

(2)
⊆ (nr ∪ d)

(3)
= (n ∪ {zi}) ∪ d

zi∈d= (n ∪ d)

Therefore
n ⊆ n′

r

(1)
= n′ ⊆ (n ∪ d)

Line 5: Assuming that the invariant holds for n′
r and n′

l, we need to prove
that a resolution step is valid on clauses n′

r and n′
l, i.e. that, they have opposite

literals of at least one variable. Now, since Π was a valid proof, it must hold
that there exists a literal t so that w.l.o.g t ∈ nr and ¬t ∈ nl. Since nr ⊆ n′

r

and nl ⊆ n′
l, it holds that t ∈ n′

r and ¬t ∈ n′
l. Therefore n′ can be derived by

resolution between n′
l and n′

r on the same t, and n′ is well-defined.
We need to prove that n ⊆ n′ ⊆ (n ∪ d). Indeed,

n
Resolution= ((nr ∪ nl) \ {t,¬t})

Induction
⊆ ((n′

r ∪ n′
l) \ {t,¬t})

Resolution= n′

n′ = ((n′
r ∪ n′

l) \ {t,¬t})
Induction
⊆ (((nr ∪ d) ∪ (nl ∪ d)) \ {t,¬t})

= (((nr ∪ nl) \ {t,¬t}) ∪ (d \ {t,¬t})) = (n ∪ (d \ {t,¬t})) ⊆ (n ∪ d)

Specially, the invariant implies that for the empty clause ⊥ :

Convert(⊥) ⊆ (⊥∪d) = d ��
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It is easy to show that the resulting graph is a CIG (a resolution graph,
actually).
Convert can also be implemented with the following, more intuitive procedure:
1: for each assumption (¬zi), 1 ≤ i ≤ n in Rd do
2: Add zi to all clauses on all the paths from (¬zi) to the sink node.
3: Remove the assumption (¬zi) from the graph.

It can be proven that the two procedures are equivalent up to reflexive implica-
tions, although this is beyond the scope of this article.

5 Optimizations

Our tool includes the following optimizations.

1. In step 6 of the algorithm (Figure 2) rather than checking
((L \ LM(d)) ∪ {¬d}), Trimmer conjoins with this formula all the conflict
clauses in R that are not on any path from the minions to the sink node.
This addition does not change the satisfiability of the formula, because these
clauses are logically implied by L \ LM(d). But they make the SAT solving
stage incremental[14], and hence far more efficient.

2. In step 8, if none of the assumptions participate in the proof, Trimmer takes
a different route. In this case Rd, which is the proof of unsatisfiability of
((L \ LM(d)) ∪ {¬d}), can also be seen as the proof of unsatisfiability of
L \ LM(d), which are a subset of the clauses in the original formula. Let
L′ ⊆ L \ LM(d) be the leafs of Rd. L′ is a UC of L \ LM(d), but also of
the original formula, and it is smaller than the smallest core known so far
(because the core of the current R is L). So, Trimmer assigns R = Rd and
returns to line 2.

6 Experimental Results

The implementation of the dominator algorithm in our tool Trimmer is the
SLT variant of the Lengauer-Tarjan algorithm[9] (which runs in O(|E| log |V |)
time), as provided by the authors of [3] and published on their web site. We used
version 2004.11.15 of zChaff, zVerify and run till fix for both the comparison
and the extraction of the resolution traces.

The benchmark suite is composed of 75 unsatisfiable CNF instances from the
industrial category of the SAT competitions in the last two years, from IBM
formal verification benchmarks, and BMC instances from the Sun’s PicoJava
benchmarks that were used in [1]. We did not include benchmarks that timed-
out with both Trimmer and run till fix. The initial number of clauses ranges
from 1, 300 to 800, 000, and the largest initial core size, which is our starting
point, has around 160,000 clauses.

We measured two parameters: core reduction (the difference between the final
and the initial number of clauses) and average velocity (core reduction divided
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by the time spent on the reduction). We used two different timeouts - 1, 800
seconds and 3, 500 seconds. Since UCs are typically used within a larger sys-
tem in which they are extracted many times, relatively short timeouts reflect
what is practically done for best overall tuning. For such systems velocity seems
to be more relevant, assuming the process of decreasing the size of the UC is
interrupted after a while, without waiting for the smallest core possible. The
timeouts do not include the time of the first run of the solver that extracts the
first resolution trace, since this step is common to all tools.

The competing systems in our benchmark are:

(Z) run till fix.
(A) trim till fix: running Trimmer until it terminates, then running

zChaff on the new core, then rerunning (T) starting from the new reso-
lution graph, and so on until either a fixpoint or a timeout is reached.

(A‖Z) Running (A) and (Z) in parallel (on different machines) until the first
one stops or a timeout is reached. The smallest core produced by the
two programs so far is the resulting core of (A‖Z). This approach can be
useful if (A) and (Z) are sufficiently different, and neither one dominates
the other.

(T) A single run of Trimmer.

The following table summarizes our results with time out of 3500 sec. Core
reduction measures the number of clauses removed from the initial core, hence
a larger number is better. An intriguing result is the superiority of (A) over
(A‖Z) when it comes to clause reduction. This is because the number of clauses
counted for (A‖Z) is due to the system that finishes first, which may remove
fewer clauses than the other system.

The comparison between (Z) and (A) reveals that trim till fix removes
twice as many clauses on average as run till fix but run till fix is 50%
faster. Note, however, the medians: the median of trim till fix is 5 times
larger on core reduction and 14 times larger on velocity, which is important
in the realm of short timeouts. In other words, if we ran these benchmarks
with a shorter timeout, the results would favor trim till fix much stronger.
This is also evident from Figure 5: although (Z)’s velocity is typically better, it
suffers from a large number of timeouts, which is counted as 0 velocity in our
calculations.

System Velocity Core Reduction
Med. Avg. Med. Avg.

(Z) 1.1 200.8 729 3126.8
(A) 14.5 130.3 3404 6212.1
(A‖Z) 14.6 239.3 3310 5985.3
(T) 33.0 160.8 1464 3863.1

We also ran a detailed statistical analysis on the results, with the ordinary
sign test – see [7] for more details. The results, referring to the differences in the
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A

Z

Velocity

med = 5.76
p’ = 0.79

(med = 5.65)
( p’ = 0.79 )

med = 1.13
p’ = 0.74

(med = 0.94)
( p’ = 0.74 )

med = 1.77
p’ = 1.00

(med = 1.31)
( p’ = 1.00 )

med = 7.51
p’ = 0.79

(med = 5.42)
( p’ = 0.78 )

med = 0.00
p’ = 0.92

(med = 0.00)
(  p’ = 0.92 )

A||Z

Core Reduction

med = 261
p’ = 0.82

(med = 233)
( p’ = 0.83 )

med = 200
p’ = 0.84

(med = 158)
( p’ = 0.85 )

med = 970
p’ = 0.99

(med = 922)
( p’ = 1.00)

med = 887
p’ = 0.92

(med = 811)
( p’ = 0.92 )

med = 0
p’ = 0.77

(med = 0 )
(p’ = 0.78)

A||Z

T Z

A T

Fig. 4. Results summary of the statistical analysis of the difference in median values
of velocity and core reduction. The nodes represent the competing systems, and an
edge from a to b represents 99% confidence (i.e. α = 0.01) in a’s superiority over b.
med is the median of the difference of values between the parent and its child. p′ is
the estimated probability of the parent’s success (which is equal to the ratio of its
success). The results without parentheses correspond to a timeout of 3, 500 sec., and
within parentheses to 1, 800 sec. (A) is the ultimate leader in core reduction, and (T)
and A‖Z are the fastest.
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Fig. 5. Core Reduction (top) and Velocity (bottom) of A, A‖Z and T Compared to Z

medians of velocity and core reduction, are summarized in Figure 4. We see that
there is a statistically significant difference between the competing programs
both in velocity and in core reduction, with (A) and (A‖Z) being the winners.
Note that this result is consistent with our previous conclusions.

As future work we plan to analyze acceleration, i.e. the velocity as a function
of the elapsed time: this information can lead to new strategies and help choosing
the best timeout.
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Lazy Abstraction with Interpolants

Kenneth L. McMillan

Cadence Berkeley Labs

Abstract. We describe a model checker for infinite-state sequential pro-
grams, based on Craig interpolation and the lazy abstraction paradigm.
On device driver benchmarks, we observe a speedup of up to two orders
of magnitude relative to a similar tool using predicate abstraction.

1 Introduction

Craig interpolants derived from proofs have been shown to provide an efficient
method of image approximation in finite-state symbolic model checking [10]. In
this paper, we extend the interpolation-based model checking approach from
finite- to infinite-state systems, in particular to the verification of sequential
programs. The approach applies an interpolating prover [11] in the lazy abstrac-
tion paradigm [7]. Instead of iteratively refining an abstraction, lazy abstraction
refines the abstract model on demand, as it is constructed. Up to now, this
refinement has been based on predicate abstraction [12]. Here, we refine the ab-
straction using interpolants derived from refuting program paths. This avoids
the high cost of computing the predicate image (or abstract “post”) operator,
yielding a substantial performance improvement.

To illustrate the algorithm, we will use the simple C fragment of Figure 1
(borrowed from [7]). We model the functions lock and unlock by setting and
resetting a variable L representing the state of the lock. We would like to prove
that L is always zero on entry to lock. A control-flow graph for the function is
shown in the figure. We have initialized L to zero and added a transition to an
error state when lock is called and L is non-zero. Our algorithm unwinds the
control-flow graph of the program into a tree. Each vertex in the tree corresponds
to a program control location, and is labeled with a fact about the program
variables that is true at that point in the execution of the program. Each vertex
is initially labeled True. When we reach a vertex corresponding to the error
location, we strengthen the facts along the path to that vertex, so as to prove
the error vertex unreachable.

For example, suppose we first expand the path that branches to the error
location on entering the loop (Figure 2a). We wish to label the error vertex
False, thus proving it unreachable. This is done by generating an interpolant
for the path to the error state. An interpolant for a path is a sequence of for-
mulas assigned to the vertices, such that each formula implies the next after
executing the intervening program operation, and such that the initial vertex is
labeled True and the final vertex False. Existence of an interpolant implies

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 123–136, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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do{
lock();
old = new;
if(*){
unlock;
new++;

}

} while (new != old);

L=0

L=1;
old=new

[L!=0]

L=0;
new++

[new==old]

[new!=old]

(a)  program fragment (b)  control-flow graph

ERR

Fig. 1. A simple example program

(a)  first error (b)  second error
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T

8

9

[new!=old]

10
[L!=0]

ERR

F

old=new

F

(c)  termination

T T

Fig. 2. Stages of the unwinding (vertex labels in italics)

that the final (error) vertex is unreachable. An interpolant can be derived from
a refutation of the path generated by a theorem prover [11,6]. In Figure 2a, an
interpolant would be: True,L = 0,False. In Figure 2b, we have strengthened
the labeling on the error path with this interpolant (ruling out the error) and
backtracked to explore the non-error branch. We pass through the loop, calling
lock and unlock, then return to the top, taking the error branch again. In this
case, our interpolant labels vertices 4 and 5 with L = 0 (again labeling the error
vertex False). Notice that vertices 5 and 1 correspond to the same location (the
top of the loop) and that the label of vertex 5 implies the label of vertex 1. We
say that vertex 1 covers vertex 5, and we cease expanding descendants of the
covered vertex. However, if vertex 1 were to be strengthened in the future, it
might cease to cover vertex 5, and we would have to continue expanding it.

Figure 2c shows the remainder of the unwinding, indicating coverings with
dotted lines. We backtrack, expanding the path that falls out of the loop, and
then the path that skips the call to unlock. In the latter case, we again reach
an error state, strengthening the path. This labels vertex 9 with False, thus
it is also covered by vertex 1. At this point all unexpanded states are covered,
so the procedure terminates. At termination, the disjunction of the labels for a
given location is an invariant for that location. Notice also that the labels use
the atomic predicates L = 0 and old = new, but are not the strongest facts ex-
pressible using those predicates (as we would obtain with predicate abstraction).
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Rather, they are just strong enough to allow us to label the error vertices False.
Notice that we could also strengthen a path by computing strongest postcondi-
tions or weakest preconditions along the path (these are, in fact, the strongest
and weakest interpolants respectively). However, by deriving interpolants from
proofs, we exploit the prover’s ability to focus on relevant facts, and thus avoid
deducing irrelevant information that could complicate the analysis, or even lead
to divergence.

Related Work. The most closely related technique is predicate abstraction [12].
This is implemented using the lazy paradigm in the Blast model checker [7],
and in a number of software model checkers [2,4,3] using a counterexample-
based refinement loop. The advantage of the present method over predicate
abstraction is that it avoids computing the abstract “post” operator. That is,
in predicate abstraction, computing the set of successors of a set of abstract
states requires an exponential number of calls to a decision procedure in the
worst case. Because of this, weak approximations are typically used, such as
the Cartesian or “Boolean Programs” approximations [1], with the associated
need for refinement in case of failures. Even with approximations, computing the
abstract post operator (or abstract transition relation) is still the dominant cost.
By contrast, the present method requires just one call to a decision procedure
for each error vertex reached, and one for each covering test.

The method is also closely related to the interpolation-based model check-
ing method of [10]. That work only treated finite-state systems. In principle the
method could be generalized to infinite-state programs, however it would require
applying a decision procedure to an unfolding of the entire program up to some
depth k. This would almost certainly be impractical. Using the lazy abstrac-
tion method, we only apply the decision procedure to individual program paths
leading to error locations, greatly reducing the burden on the prover.

Outline of the Paper. In section 2, we will formalize the lazy interpolation-
based model checking procedure, proving some results about soundness and ter-
mination. Then in section 3, we describe an implementation of the procedure
in a software model checking tool called Impact, and compare the performance
of this tool to the lazy predicate abstraction approach implemented in Blast.
Experiments using a small set of device driver benchmarks show a performance
improvement of one to two orders of magnitude using the new method. Finally
in section 4, we conclude and consider some future directions for research.

2 Lazy Interpolant-Based Model Checking

Throughout this paper, we will use standard first-order logic (FOL) and the
notation L(Σ) to denote the set of well-formed formulas (wff’s) of FOL over a
vocabulary Σ of non-logical symbols. For a given formula or set of formulas φ,
we will use L(φ) to denote the wff’s over the vocabulary of φ.

For every non-logical symbol s, we presume the existence of a unique sym-
bol s′ (that is, s with one prime added). We think of s with n primes added
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as representing the value of s at n time units in the future. For any formula or
term φ, we will use the notation φ〈n〉 to denote the addition of n primes to every
symbol in φ (meaning φ at n time units in the future). For any set Σ of symbols,
let Σ′ denote {s′ | s ∈ Σ} and Σ〈n〉 denote {s〈n〉 | s ∈ Σ}.

Modeling Programs. We use FOL formulas to characterize programs. To this
end, let S, the state vocabulary, be a set of individual variables and uninterpreted
n-ary functional and propositional constants. A state formula is a formula in
L(S) (which may also include various interpreted symbols, such as = and +). A
transition formula is a formula in L(S ∪ S′).

For our purposes, a program is a tuple (Λ,∆, li, lf), where Λ is a finite set
of program locations, ∆ is a set of actions, li ∈ Λ is the initial location and
lf ∈ Λ is the error location. An action is a triple (l, T,m), where l,m ∈ Λ
are respectively the entry and exit locations of the action, and T is a transition
formula. A path π of a program is a sequence of transitions of the form (l0, T0, l1)
(l1, T1, l2) · · · (ln−1, Tn−1, ln). The path is an error path when l0 = li and ln = lf .
The unfolding U(π) of path π is the sequence of formulas T 〈0〉

0 , . . . , T
〈n−1〉
n , that

is, the sequence of transition formulas T0 . . . Tn−1, with each Ti shifted i time
units into the future.

We will say that path π is feasible when
∧
U(π) is consistent. We can think of

a model of
∧
U(π) as a concrete program execution, assigning a value to every

program variable at every time 0 . . . n. A program is said to be safe when every
error path of the program is infeasible. An inductive invariant of a program is
a map I : Λ→ L(S), such that I(li) ≡ True and for every action (l, T,m) ∈ ∆,
I(l)∧T implies I(m)′. A safety invariant of a program is an inductive invariant
such that I(lf ) ≡ False. Existence of a safety invariant of a program implies
that the program is safe.

To simplify presentation of the algorithms, we will assume that every loca-
tion has at least one outgoing action. This can be made true without affecting
program safety by adding self-loops.

Interpolants from Proofs. Given a pair of formulas (A,B), such that A ∧
B is inconsistent, an interpolant for (A,B) is a formula Â with the following
properties:

– A implies Â,
– Â ∧B is unsatisfiable, and
– Â ∈ L(A) ∩ L(B).

The Craig interpolation lemma [5] states that an interpolant always exists for
inconsistent formulas in FOL. To handle program paths, we generalize this idea
to sequences of formulas. That is, given a sequence of formulas Γ = A1, . . . , An,
we say that Â0, . . . Ân is an interpolant for Γ when

– Â0 = True and Ân = False and,
– for all 1 ≤ i ≤ n, Âi−1 ∧Ai implies Âi and
– for all 1 ≤ i < n, Âi ∈ (L(A1 . . . Ai) ∩ L(Ai+1 . . . An)).
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That is, the i-th element of the interpolant is a formula over the common vo-
cabulary the prefix A0 . . . Ai and the suffix Ai+1 . . . An, and each interpolant
implies the next, with Ai. If Γ is quantifier-free, we can derive a quantifier-free
interpolant for Γ from a refutation of Γ , in certain interpreted theories [11].

Program Unwindings. We now give a definition of a program unwinding,
and an algorithm to construct a complete unwinding using interpolants. For two
vertices v and w of a tree, we will write w � v when w is a proper ancestor of v.

Definition 1. An unwinding of a program A = (Λ,∆, li, lf ) is a quadruple
(V,E,Mv,Me), where (V,E) is a directed tree rooted at ε, Mv : V → Λ is the
vertex map, and Me : E → ∆ is the edge map, such that:

– Mv(ε) = li
– for every non-leaf vertex v ∈ V , for every action (Mv(v), T,m) ∈ ∆, there

exists an edge (v, w) ∈ E such that Mv(w) = m and Me(v, w) = T .

Definition 2. A labeled unwinding of a program A = (Λ,∆, li, lf) is a triple
(U,ψ, �), where

– U = (V,E,Mv,Me) is an unwinding of A
– ψ : V → L(S) is called the vertex labeling, and
– � ⊆ V × V is called the covering relation.

A vertex v ∈ V is said to be covered iff there exists (w, x) ∈ � such that w � v.
The unwinding is said to be safe iff, for all v ∈ V , Mv(v) = lf implies ψ(v) ≡
False. It is complete iff every leaf v ∈ V is covered.

Definition 3. A labeled unwinding (U,ψ, �) of a program A = (Λ,∆, li, lf ),
where U = (V,E,Mv,Me), is said to be well-labeled iff:

– ψ(ε) ≡ True, and
– for every edge (v, w) ∈ E, ψ(v) ∧Me(v, w) implies ψ(w)′, and
– for all (v, w) ∈ �, ψ(v) ⇒ ψ(w), and w is not covered.

Notice that, if a vertex is covered, all its descendants are also covered. Moreover,
we do not allow a covered vertex to cover another vertex. To see why, consider
the unwinding of Figure 3. Here, vertex y covers x, but is itself covered, since
its ancestor v is covered by w. This might seem acceptable, since any states
reachable from y should be reachable from w through its descendant z. However,
this is not the case. Because the vertex labels are approximate, it may be that
ψ(y) �⇒ ψ(z). Thus, z may not reach all states reachable from x.

Theorem 1. If there exists a safe, complete, well-labeled unwinding of program
A, then A is safe.

Proof. Let U be the set of uncovered vertices, and let function M map location
l to

∨
{ψ(v) | Mv(v) = l, v ∈ U}. M is a safety invariant for A. �

We now describe a semi-algorithm for building a complete, safe, well-labeled
unwinding of a program. The algorithm terminates if the program is unsafe,



128 K.L. McMillan

z y x

vw

TT

p
p

p

Fig. 3. Example showing why covered vertices must not cover others

global variables: V a set, E ⊆ V × V , 	 ⊆ V × V and ψ : V → wff

procedure Expand(v ∈ V ):
if v is an uncovered leaf then

for all actions (Mv(v), T, m) ∈ ∆
add a new vertex w to V and a new edge (v, w) to E;
set Mv(w) ← m and ψ(w) ← True;
set Me(v, w) ← T

procedure Refine(v ∈ V ):
if Mv(v) = lf and ψ(v) �≡ False then

let π = (v0, T0, v1) · · · (vn−1, Tn−1, vn) be the unique path from ε to v

if U(π) has an interpolant Â0, . . . , Ân then
for i = 0 . . . n:

let φ = Â
〈−i〉
i

if ψ(vi) �|= φ then
remove all pairs (·, vi) from 	
set ψ(vi) ← ψ(vi) ∧ φ

else abort (program is unsafe)

procedure Cover(v, w ∈ V ):
if v is uncovered and Mv(v) = Mv(w) and v �� w then

if ψ(v) |= ψ(w) then
add (v, w) to 	;
delete all (x, y) ∈ 	, s.t. v � y;

Fig. 4. Three basic unwinding steps

but may not terminate if it is safe (which is expected, since program safety is
undecidable). We first outline a non-deterministic procedure with three basic
steps: Expand, which generates the successors of a leaf vertex, Refine, which
refines the labels along a path, labeling an error vertex False, and Cover,
which expands the covering relation. These steps are shown in Figure 4.

The interpolant in Refine can be generated from a refutation of U(π), by
the method of [11]. Each of the three steps preserves well-labeledness of the
unwinding. In Refine, the first two well-labeledness conditions are guaranteed
by the properties of interpolants (i.e., Â0 = True and each interpolant formula
implies the next). When we strengthen ψ(v), we remove all arcs (·, v) in the
covering relation, since a vertex covered by v may no longer be covered after
strengthening v. In Cover, if a vertex v becomes covered, then all descendants
of v are also covered. This means that any existing covering arcs (x, y) where
v � y must be removed to maintain well-labeledness. If Refine succeeds, then
ψ(v) must be False (since Ân is always False). Thus, to make the unwinding
safe, we have only to apply Refine to every error vertex. Finally, when none of
the three steps can produce any change, the unwinding is both safe and complete,
so we know the original program is safe.
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procedure Close(v ∈ V ):
for all w ∈ V s.t. w ≺ v and Mv(w) = Mv(v):

Cover(v, w)

recursive procedure DFS(v ∈ V ):
Close(v)
if v is uncovered then

if Mv(v) = lf then
Refine(v);
for all w � v: Close(w)

Expand(v);
for all children w of v: DFS(w)

procedure Unwind:
set V ← {ε}, E ← ∅, ψ(ε) ← True, 	 ← ∅
while there exists an uncovered leaf v ∈ V :

for all w ∈ V s.t. w � v: Close(w);
DFS(v)

Fig. 5. DFS unwinding strategy

To build a well-labeled unwinding, we now have only to choose a strategy for
applying the three unwinding rules. The most difficult question is when to apply
Cover. Covering one vertex can result in uncovering others. Thus, applying
Cover non-deterministically may not terminate. To avoid this possibility, we
define a total order ≺ on the vertices. This order must respect the ancestor
relation. That is, if v � w then v ≺ w. For example, we could define ≺ by a
pre-order traversal of the tree, or by numbering the vertices in order of creation.
We then restrict Cover to pairs (v, w) such that w ≺ v. Now suppose that in
adding a covering arc (v, w), we remove (x, y), where v � y. Then by transitivity,
we must have v ≺ x. Thus, covering a vertex v can only result in uncovering
vertices greater than v. This implies that we cannot apply Cover infinitely.

We will say that a vertex v is closed if either it is covered, or no arc (v, w)
can be added to � (while maintaining well-labeledness). The procedure Close
of Figure 5 closes a vertex. We would like to guarantee that when a vertex is
expanded, all of its ancestors are closed, thus we do not expand a vertex that
could be covered instead. We could, of course, call Close on all the ancestors of
a vertex v before expanding it. This would be costly, however. A more efficient
strategy is shown in Figure 5. The procedure Unwind locates an uncovered leaf,
then performs a local depth-first search around that leaf. During the search, it
maintains the invariant that all ancestors of the currently visited leaf vertex v
are closed. Moreover, all the vertices on the DFS stack are children of ancestors
of v. Thus, when we pop a vertex off of the stack, we have only to call Close
on the new vertex to re-establish the invariant. After calling Refine on an error
vertex, the procedure calls Close on all of the ancestors v. This can be improved
somewhat by only re-closing those vertices that were actually strengthened by
Refine.

Theorem 2. If procedure Unwind terminates without aborting on program A,
then A is safe.

Proof. Since only the operations Expand, Refine and Cover alter the unwind-
ing, and these preserve well-labeledness, the resulting unwinding is well-labeled.
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Further, since all error vertices are refined, the unwinding is safe. Since the pro-
cedure terminates only when there are no uncovered leaves, the final unwinding
is complete. Thus, by Theorem 1, program A is safe. �

Termination. Due to decidability considerations, we do not expect the un-
winding to terminate in all cases. However, in the finite-state case, or in general
when the language L(S) has bounded ascending chains, we can show termina-
tion. A finite ascending chain is a sequence of formulas φ0, φ1, . . . , φn such that
for all 0 ≤ i < j ≤ n, φj �⇒ φi. We will say that a language L is k-bounded, for
integer k, if all ascending chains in L have length at most k. For example, the
Boolean formulas over n variables are 2n + 1-bounded.

Theorem 3. If L(S) is k-bounded, then procedure Unwind terminates or
aborts.

Proof. Procedure DFS maintains the invariant that all ancestors of v are closed.
Thus, there are no x � w � v such that Mv(x) = Mv(w) and ψ(w) ⇒ ψ(x)
(else w would not be closed). Thus, for any location l, the formulas φ(w) where
Mv(w) = l and w � v form an ascending chain. Since L(S) is k-bounded, it
follows that the path from ε to v contains at most |Λ| ·k vertices. Thus the depth
of the tree is bounded. As argued above, Cover cannot continue to cover vertices
infinitely. Thus, in the main loop, always eventually Close fails to cover a new
vertex, or the loop terminates. In the former case, vertex v remains uncovered,
and is thus expanded in procedure DFS. However, we cannot expand vertices
infinitely, since the tree depth is bounded. Thus, the loop must terminate (or
abort in Refine). �

A Weak Notion of Completeness. In general, the FO formulas over a given
vocabulary S have infinite ascending chains. Thus, the above termination result
is not generally applicable. However, by restricting the language of the inter-
polants, we can force termination (perhaps without deciding safety). That is,
given a language L, an L-restricted interpolant for a sequence Γ is an inter-
polant for Γ in which all formulas are contained in L. Techniques for comput-
ing L-restricted interpolants are described in [9]. Given a language L, let us
define an unwinding procedure Unwind(L) that differs from Unwind only
in that “interpolant” in procedure Refine is replaced by “L-restricted inter-
polant”. If language L is k-bounded, then Unwind(L) must terminate or abort.
Moreover, in [9] it is shown that if program A has an inductive invariant ex-
pressible in L, then every error path of A has an L-restricted interpolant. Thus
Unwind(L) cannot abort, and must terminate proving safety.

We can use this idea to create a procedure that is complete in the limited
sense that it eventually verifies all programs that have inductive invariants ex-
pressible as quantifier-free formulas in a suitable FO theory. That is, we define
an infinite chain of k-bounded, quantifier-free restriction languages L0 ⊆ L1 · · ·,
such that every formula is contained in some Lk.1 If a program has a quanti-
1 Quantifier-freeness is required so that the entailment tests in Refine and Close are

decidable. Otherwise completeness is relative to an oracle for the theory.
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procedure ForceCover(v, w ∈ V )
let x be the nearest common ancestor of v and w
let π = (v0, T0, v1) · · · (vn−1, Tn−1, vn) be the unique path from x to v

let Γ = ψ(x) · U(π) · ¬ψ(w)〈n〉

if Γ has an interpolant Â0, . . . , Ân+2 then
for i = 0 . . . n:

let φ = Â
〈−i〉
i+1

if ψ(vi) �|= φ then
remove all pairs (·, vi) from 	
set ψ(vi) ← ψ(vi) ∧ φ

Fig. 6. Procedure to force covering of one vertex by another

fier free safety invariant in the theory, then it has an invariant in some Lk. We
start with L0 and each time Unwind(Li) aborts, we move on to Li+1. When we
reach Lk, the Unwind(Lk) must terminate. Thus, our approach is complete in
the limited sense that it verifies (eventually) any program with a quantifier-free
safety invariant in the theory (this is precisely the set of programs that we can
verify with predicate abstraction if we can guess the right atomic predicates).
Of course, in practice we must choose the restriction languages Lk carefully, so
that termination occurs for a small value of k.

Forced Covering. To speed convergence of the unwinding procedure, we can
use interpolant-based refinement to force a vertex v to be covered by some other
vertex w. We will call this a forced covering. Suppose that v and w have nearest
common ancestor x in the unwinding. We construct the characteristic formula for
the path from x to v, asserting ψ(x) at the beginning, and ¬ψ(w) at the end. If
this is infeasible (meaning ψ(w) must hold at v) we strengthen all the vertices on
the path from x to v by the corresponding interpolant formulas. Thus, we ensure
that w covers v. This procedure is depicted in Figure 6. Clearly, attempting all
possible forced coverings could be costly. In practice, before expanding a vertex
we attempt a forced covering by a few recently generated vertices representing
the same program location. This substantially reduces the part of the unwinding
that we must explore.

Other Optimizations. As in other work using interpolants [6,8], we generate
the characteristic formula of a path in static single-assignment (SSA) form. That
is, we create a new instance of a program variable only when that variable is
modified. This eliminates a large number of constraints of the form x〈i+1〉 = x〈i〉

that occur when a variable is unmodified by a program statement.When refining
a program path, we also use a simple slicing (or “cone-of-influence” reduction) to
remove from the program path any assignments that cannot affect the feasibility
of the path. Slicing typically removes a large fraction of the assignments in
the path, especially initializations of global variables that are not referenced.
It should be noted, however, that slicing can affect completeness, since it is
possible that a variable that is not referenced is nonetheless necessary to express
an inductive invariant (it might even be an auxiliary variable added by the user
for this purpose). In practice, however, this has not been observed to occur, and
slicing yields a substantial performance improvement.
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Finally, in the Refine and Cover steps, we must test whether one formula
entails another, using a decision procedure. Since the same test tends to occur
many times, it pays to memoize the decision procedure calls.

3 Experiments

The lazy interpolation-based unwinding procedure is implemented in a soft-
ware model checking tool called Impact2 (carrying on the tradition of vio-
lent acronyms for software model checkers). In this section, we compare the
interpolant-based method of Impact with the predicate abstraction approach of
Blast. The benchmarks we use are device drivers from the Microsoft Windows
DDK, written in C. They were used as test cases in [6]. Each driver is pro-
vided with a test harness (i.e., a main program that calls the driver functions
appropriately in a non-deterministic manner) and is instrumented with auxil-
iary variables and safety assertions that test whether whether certain rules are
obeyed in calling the kernel API functions.3 All six of the example programs are
safe. To check the implementation of Impact, however, we inserted three errors
into each example program. Impact detected all 18 errors, each in at most a few
seconds. Performance data are reported only for the safe versions.

Impact is based on the interpolating prover of [9]. This prover supports a
first-order theory with equality, uninterpreted function symbols, and integer
difference-bound arithmetic (i.e., predicates of the form x − y ≤ c, x ≤ c or
x ≥ c, where c is a constant). It also supports first-order arrays, with inter-
preted “select” and “store” functions. Support for full linear arithmetic is also
possible, but currently not for integer models.

To handle C programs, we first reduce them to Simple Goto Programs
(SGP’s). These are programs containing only conditional goto statements, as-
signments and assertions, and whose only data types are unbounded integers and
arrays of unbounded integers. Pointers and records are eliminated by this trans-
lation, and function calls are in-lined. This reduction was done using a modified
version of the SATABS infrastructure [4]. Unfortunately, space does not permit
a description of the translation process here.

Once a C program has been translated to a simple goto program, we can model
it formally in the logic of the prover. The logic contains operations on arrays, as
well as limited arithmetic. We model the unsupported integer operations (such
as the bit-wise operators) with uninterpreted functions (thus we may fail to
prove safety if it depends on properties of these operators). An assertion in the
program is modeled by a conditional branch to the error state lf . Transitions in
the model correspond to basic blocks in the goto program. Having modeled the
program, we can then verify safety using procedure Unwind(L), where L is the
restriction language for interpolation. We use the same sequence of restriction
languages Lk as in [9]. This restricts the constants in arithmetic formulas to fall
in a certain finite set that depends on k, and also restricts depth of function
2 Interpolating software Model checker without Predicate abstrACTion.
3 Benchmarks available from the author.
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Table 1. Performance statistics on device driver benchmarks

source SGP Blast Impact Blast Blast Impact Blast Impact
name loc loc time(s) time(s) speedup preds post(s) interp(s) vtcs vtcs

kbfiltr 12K 2.3K 26.3 3.15 8.3 25 23.3 2.2 1651 744
diskperf 14K 3.9K 102 20.0 5.1 84 92.2 19.3 3232 3885
cdaudio 44k 6.3K 310 19.1 16.2 108 265 11.9 5253 3257
floppy 18K 8.7K 455 17.8 25.6 105 404 16.9 9573 2518
parclass 138K 8.8K 5511 26.2 210 162 5302 22.9 8612 3720
parport 61K 13K 8084 37.1 218 224 7965 31.0 63.5K 12.7K

symbol nesting as a function of k. In fact, all of the example programs can be
verified with restriction language L0.

For comparison to predicate abstraction approach, we use the Blast software
model checker [7]. This tool is in some ways a good comparison, since it is also
based on the “lazy abstraction” paradigm (using predicate abstraction instead of
interpolation to refine paths). In addition, it uses the same interpolating prover
to generate atomic predicates that Impact uses for path refinement. Thus in
principle both tools should be able to construct the same class of safety in-
variants. On the other hand, the implementations are independent, so observed
performance differences may be due in part to implementation efficiencies. In
principle the closest comparison could be obtained by running both programs
on the same SGP. However, as it turns out the performance of Blast was signif-
icantly better when run on the original C source code. This may be because the
elimination of pointers prevented the use of some pointer-based optimizations
in Blast. For this reason, we present performance numbers for Blast as run
on the original source code. We use the standard Blast option that assigns to
each new vertex all of the predicates that have been used for program locations
in the same function scope. This tends to increase the number of predicates at
each vertex, but reduces the number of refinements needed, thus yielding better
performance.4

Table 1 compares the run time performance of Blast and Impact on the six
device driver examples. The first three columns show the name of the example,
the number of textual lines in the source code, and the number of lines in the
SGP. The last probably provides a better representation of the code size, since
the source code contains much white space and many redundant declarations.
The next two columns provide the run times for Blast and Impact. Both are
run on a 3GHz Intel Xeon processor. These times represent only the model
checking process, and do not include time for parsing or translation to an SGP.
The next column shows the speedup of Impact relative to Blast. For the small
examples, Impact has about an order of magnitude advantage, which increases
to two orders of magnitude for the large examples.

The explanation for the performance difference may lie in the fact that the
abstract post computation becomes increasingly expensive as the programs get
4 The Blast options used were -msvc -nofp -dfs -tproj -cldepth 1 -predH 6
-scope -nolattice -clock.
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Table 2. Performance statistics for revised Blast

source SGP Blast Impact Blast Blast Impact Blast Impact
name loc loc time(s) time(s) speedup preds post(s) interp(s) vtcs vtcs

kbfiltr 12K 2.3K 11.9 3.15 3.8 38 6.6 2.2 1009 744
diskperf 14K 3.9K 117 20.0 5.9 119 49.8 19.3 1855 3885
cdaudio 44k 6.3K 202 19.1 10.6 180 114 11.9 3400 3257
floppy 18K 8.7K 164 17.8 9.2 154 77.9 16.9 2856 2518
parclass 138K 8.8K 463 26.2 17.7 242 175 22.9 5003 3720
parport 61K 13K 324 37.1 8.7 280 156 31.0 10.4K 12.7K

larger and the number of predicates increases. The table shows some run-time
statistics that bear this out. Columns 7–9 show the number of atomic predicates
used by Blast, the amount of time spent by Blast in the predicate image com-
putation, and the amount of time spent by Impact in computing interpolants
for path refinement. It is clear that avoiding the predicate image computation
provides a significant advantage. The last two columns of the table show the
number of vertices in the final unwinding for both Blast and Impact. Blast
expands more vertices (though not enough to fully account for the performance
difference). This may be because the predicate images computed by Blast are
stronger than necessary. Thus Blast distinguishes states that need not be dis-
tinguished, resulting in a larger unwinding.

After this paper was originally submitted, Ranjit Jhala improved the per-
formance of Blast by making it less “lazy”. In this version, each new vertex
in the unwinding is assigned all the predicates seen thus far for the same pro-
gram location, or if there are none, then predicates of its parent. This slightly
“eager” approach greatly reduces the number of refinement steps. The reduc-
tion in refienements makes it practical to use only the predicates from the same
location, rather than the same function scope, which reduces the number of pred-
icates per vertex and thus speeds the predicate image computation substantially.
Table 2 shows comparison data for this new version.5 The performance gap be-
tween Blast and Impact is now considerably smaller (only one order of mag-
nitude). It could be that computing some state information in an eager manner
would reduce the number of refinement steps of Impact as well. We leave this
question for future research.

4 Conclusion

We have described a method that uses interpolation rather than predicate ab-
straction in the lazy abstraction paradigm. This avoids the most costly opera-
tion of predicate abstraction, the abstract image computation. In contrast to the
interpolation-based model checking method of [10], it avoids constructing and
refuting an unfolding of the entire program. Instead, the interpolating prover is
5 Blast options for this experiment were -msvc -nofp -craig 2 -scope -cldepth
1 -bfs except for cdaudio, which also required -clock. No single set of options was
able to verify all the examples.
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applied only to individual program paths, greatly lessening the burden on the
prover. This makes it possible to apply the interpolation-based approach to the
verification of infinite-state sequential programs. For a small collection of device
driver examples, a run-time improvement of one to two orders of magnitude
was obtained, relative to the lazy predicate abstraction approach. Although a
greater variety of examples is clearly needed to study the trade-offs between
the two methods, the experiments show that the interpolation method has the
potential to provide a substantial performance improvement.

There are several potentially interesting topics for future research. Consider,
for example, the following simple C program fragment:

for(i = 0; i < n; i++) x[i] = 0;
for(i = 0; i < n; i++) assert(x[i] == 0);

A safety invariant of this program requires a universal quantifier over the index of
the array. Thus, predicate abstraction methods that use atomic predicates cannot
verify this program. However, in [11] it is shown that an interpolating prover can
be used to generate interpolants with quantifiers. This opens the possibility of
generating quantified inductive invariants with the present method. There are
several challenges involved in this. First the decision procedure must handle
quantified formulas. Since the validity of quantified formulas is undecidable,
we must have heuristics to instantiate quantifiers. Second, we must somehow
prevent the number of quantifiers in the interpolants from increasing without
bound. Although these problems remain to be solved, using a näıve approach to
quantifier instantiation it is possible to verify simple programs like the above.
Thus, it may be possible to use the method to verify properties that depend, for
example, on the contents of arrays.

It also seems possible that the interpolation approach can be made to scale
better by using function summaries, in an approach that might be called “sum-
maries on demand”. If we refute a program path that contains the expansion of
a procedure call, we can derive an interpolant that is an over-approximation of
the transition relation of the procedure (in the same way that transition rela-
tion approximations are derived in [8]). This approximation can be used as an
abstraction (summary) of the procedure. When an error path is found not to be
refutable, it might be refined by expanding one or more summarized functions,
which would strengthen the summaries of the expanded functions. Thus, there
seems to be scope for both enriching the class of properties that can be verified,
and for improving the performance of the method on large programs.

Acknowledgments. Thanks to Daniel Kröning for providing the SATABS tool
infrastructure used in this work, to Ranjit Jhala for help with Blast, and to
the anonymous reviewers for useful comments and corrections.
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Abstract. Predicate abstraction is a powerful technique for extracting finite-state
models from often complex source code. This paper reports on the usage of stat-
ically computed invariants inside the predicate abstraction and refinement loop.
The main idea is to selectively strengthen (conjoin) the concrete transition rela-
tion at a given program location by efficiently computed invariants that hold at
that program location. We experimentally demonstrate the usefulness of transi-
tion relation strengthening in the predicate abstraction and refinement loop. We
use invariants of the form ±x± y ≤ c where c is a constant and x,y are program
variables. These invariants can be discovered efficiently at each program location
using the octagon abstract domain. We observe that the abstract models produced
by predicate abstraction of strengthened transition relation are more precise lead-
ing to fewer spurious counterexamples, thus, decreasing the total number of ab-
straction refinement iterations. Furthermore, the length of relevant fragments of
spurious traces needing refinement shortens. This leads to an addition of fewer
predicates for refinement. We found a consistent reduction in the total number of
predicates, maximum number of predicates tracked at a given program location,
and the overall verification time.

1 Introduction

Predicate abstraction [13] is a powerful technique for extracting finite-state models from
often complex source code. It abstracts data by keeping track of certain predicates on
the data. Each predicate is represented by a Boolean variable in the abstract program,
while the original data variables are eliminated. In most predicate abstraction and re-
finement based tools [4,14,6,17], spurious behavior in the abstract model is removed
by adding new predicates or making the relationships between existing predicates more
precise. Thus, even the information that can be discovered efficiently using other ab-
stract domains (e.g., numerical abstract domains [10,22]) is learned only through mul-
tiple refinement iterations in the form of new predicates.

A large number of predicates poses a problem as both the predicate abstraction com-
putation and the model checking of the abstraction are exponential in the number of
predicates. In the SLAM [4] toolkit, this problem is handled by generating coarse ab-
stractions using techniques such as Cartesian approximation and the maximum cube
length approximation. These techniques limit the number of predicates in each theorem
prover query. The refinement of the abstraction is carried out by adding new predicates.
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If no new predicates are found, the spurious behavior is due to inexact predicate re-
lationships. Such spurious behavior is removed by making the relationships between
existing predicates more precise.

The BLAST toolkit [14] introduced the notion of lazy abstraction, where the ab-
straction refinement is completely demand-driven to remove spurious behaviors. When
refining an infeasible (spurious) sequence of program statements, BLAST adds new
predicates only to basic blocks occurring in the infeasible trace [15]. We refer to this
as localization of predicates. While BLAST makes use of interpolation, localization
of predicates can also be carried out using weakest pre-conditions [17]. On average the
number of predicates tracked at each program location is small and thus, the localization
of predicates enables predicate abstraction to scale to larger programs.

The techniques described above employ over-approximations of the most precise ab-
stract models to ensure scalability of the individual steps in the abstraction refinement
loop. However, over-approximations introduce more spurious counterexamples result-
ing in an increase in the number of refinement iterations. Even though the refinement
process is completely automatic, a large number of refinement iterations can make the
entire predicate abstraction and refinement loop inefficient, and often intractable.

This paper makes the following contributions:

• Our main idea is to strengthen the concrete transition relation at a given program lo-
cation l using invariants that hold at l. In standard predicate abstraction approaches
(not using invariants) each program location is abstracted in isolation, that is, no
relationships are assumed between the variables read at that location. Strengthening
of the concrete transition relation using invariants provides additional relationships
between the variables read at a program location. Thus, the abstract model produced
using the strengthened transition relation can be more precise leading to fewer spu-
rious counterexamples as compared to standard approaches.

• We show the efficacy of the above idea by incorporating an abstract domain, namely
the octagon abstract domain [21,22], into the predicate abstraction and refinement
loop. Octagonal invariants are invariants of the form ±x± y≤ c, where x and y are
numerical program variables and c is a numerical constant. These invariants can
be computed efficiently by the octagon abstract domain. The octagon abstract do-
main has been used within Astrée [11], and was shown instrumental in reducing
the number of false alarms when detecting runtime errors in critical embedded soft-
ware [22]. The following ideas are needed to make strengthening using octagonal
invariants beneficial in practice.

• Invariant Generation: Tracking octagonal relationships between a large number of
program variables is expensive. In Astrée, the set of program variables is clustered
into various sets of related variables known as octagon packs. The octagonal re-
lationships between all octagon pack variables are computed separately for each
octagon pack. The size of each octagon pack is kept small, so that the computation
of octagonal relationships between the variables of an octagon pack does not be-
come a bottleneck. We describe a new clustering strategy which attempts to create
octagon packs containing program variables which may likely appear in predicates
and their weakest pre-conditions through abstraction refinement.
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• Invariant Selection: After invariant generation there can be many octagonal rela-
tionships that hold at each program location. Using all invariants that hold at pro-
gram location l to strengthen the transition relation at program location l may not
be beneficial. This is because providing too many additional relationships in form
of invariants can potentially increase the burden on the decision procedure used for
abstraction computation and simulation of abstract counterexamples. We describe
a heuristic for selecting the invariants that are used for strengthening the transition
relation at a given program location.

Further Related Work: The idea of using statically computed invariants during abstrac-
tion has been mentioned before [5,9,23]. Both Bensalem et al. [5] and Saı̈di [23] note
that using invariants during abstraction can produce abstract models with fewer tran-
sitions and less reachable states. However, in [5,9] the invariants to be used during
abstraction need to be supplied by the user. An invariant generation technique is pro-
posed in [23] which produces quantified invariants at each program location. However,
the tradeoffs involved in efficiently using the computed invariants in the abstraction
refinement loop are not discussed.

Constraints of the form ±x± y≤ c arise frequently in software verification. Seshia
et al. [24] observe that most of the linear arithmetic constraints arising in software
verification have the form x− y < c. Ball et al. [3] report that most of the queries that
arise during the refinement process of SLAM are of the form ±x± y ≤ c. However,
to the best of our knowledge none of the predicate abstraction and refinement tools
for C code [4,14,6,17] use (octagonal) invariants during verification. Fischer et al. [12]
describe a technique for obtaining a path sensitive version of any data flow analysis by
using predicated lattices. Instead, we use transition relation strengthening as a means of
incorporating information from other data flow analysis into the predicate abstraction
and refinement loop.

2 Motivating Example

We use the counterexample-guided abstraction and refinement loop [19,7,4] to check
safety properties (such as unreachability of error labels) in C programs. Consider the
C program shown in Fig. 1(a) with variables x,y,z considered as integers. Assume that
the statements not shown do not affect the variables x,y,z. Predicate abstraction of the
C program with respect to an empty set of predicates is shown in Fig. 1(b). Observe
that the control flow in both the abstract model and the C program is the same. Since
the initial set of predicates is empty we cannot track the value of the conditions at
program locations 1 and 10 in the abstract model precisely. Thus, the conditions at
program locations 1 and 10 in the C program are replaced by non-deterministic choice
(represented as * in the figure) in the abstract model. All assignments in the C program
are replaced by skip statements in the abstract model. A skip statement at a program
location l in the abstract model means that the statement at program location l in the C
program has no effect on the predicates being tracked in the abstract model. The ERROR
label in the C program is preserved in the abstract model.

Model checking of the abstraction in Fig. 1(b) produces an abstract counterexample
which goes through all program locations starting from 1 to 11 (ERROR). Since the ab-
stract counterexample may or may not correspond to a real bug in the C program, it is
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PC
1: if (x > y) {
2: y = y + 1;
...
5: z = y;
...
10: if (x < z)
11: ERROR:;
12: }

(a)

PC
1: if (*) {
2: skip;
...
5: skip;
...
10: if (*)
11: ERROR:;
12: }

(b)

PC
1: assume (x > y);
2: y = y + 1;
...
5: z = y;
...
10: assume (x < z);

(c)
PC Invariants
1:
2: x>y
.. x>y-1
5: x>y-1
.. x>y-1, z=y, x>z-1
10: x>y-1, z=y, x>z-1
11:
12:

(d)

PC
1: if (*) {
2: skip;
...
5: skip;
...
10: if (b) [(PC = 10)→¬b]
11: ERROR:;
12: }

(e)

Fig. 1. PC stands for program counter. (a) C program. (b) Abstraction of C program with respect to
an empty set of predicates. (c) Infeasible program trace corresponding to abstract counterexample
in (b). (d) The computed invariants at every program location. (e) Refined abstraction with the
use of invariants. This abstract model has no path to the ERROR label.

checked if there is a feasible sequence of statements in the original C program leading
to the ERROR label and having the same control flow as the abstract counterexample.
The feasibility check is carried out using a decision procedure. For the abstract coun-
terexample produced by model checking the abstraction in Fig. 1(b), the corresponding
sequence of statements in the C program is shown in Fig. 1(c). The assume statement
shows which branch of the if statement was taken in the abstract counterexample.

Consider the program trace shown in Fig. 1(c). The relationship x > y holds at the
program location 2 (before y=y+1 is executed). Variable y is incremented at program
location 2, thus, x > y− 1 holds after program location 2 (after y=y+1). Variable z is
assigned y at location 5, so x > z− 1 holds after program location 5. Since x,y,z are
integers, we have x≥ z after program location 5. The relationship x≥ z contradicts with
the assume statement at location 10 (x < z). Thus, the trace in Fig. 1(c) is an infeasible
trace. In order to eliminate the infeasible trace shown in Fig. 1(c) the refined abstract
model needs to track the value of the condition x < z at program location 10 precisely,
as it guards the ERROR label. This is done by introducing new predicates in most tools.

Using the technique described in [15,17] the infeasible trace shown in Fig. 1(c) can
be removed by tracking exactly one predicate at each program location from 1 to 10.
The technique of [17] will track the following relationships in the abstract model: x <
y+1 is false at program location 2 (before y=y+1), x < y is false from location 3 till 5,
x < z is false from location 6 to location 10. Note that even though three new predicates
(x < z,x < y,x < y + 1) are introduced only the value of one predicate needs to be
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tracked at each program location. The drawback of these techniques is that predicate
relationships need to be tracked for the entire infeasible trace, even at the program
locations (3,4,6,7,8,9) not directly involved in the infeasibility of the program trace.

Next we show how the use of efficiently computable invariants (such as octagonal in-
variants) can improve the above techniques. The two variable invariants that hold at var-
ious program locations of the program in Fig. 1(a) are shown as annotations in Fig. 1(d).
For example, at the program location 10 the relationships x> y−1,x> z−1,y = z hold.
The invariants shown can be written as conjunctions of octagonal invariants and can be
computed using the octagon abstract domain [21,22]. For example, x > y− 1 can be
written as −x + y≤ 2, and y = z is equivalent to a conjunction of two octagonal invari-
ants y− z ≤ 0 and −y + z≤ 0. The advantages of using the invariants in the predicate
abstraction and refinement loop are given below.

• Reduction in the length of infeasible trace fragments needing refinement: Let us
consider the use of invariants during the detection of infeasible traces. Consider
the program trace in Fig. 1(c). Without the use of invariants the trace is infeasible
due to statements at location 1, 2, 5, 10. The refinement procedure generates new
predicates by looking at all four statements. However, with the aid of invariants the
statement at location 10 is itself infeasible because the invariant x > z− 1 holds at
location 10 (see Fig. 1(d)). Thus, the refinement procedure only needs to look at a
fragment of the trace consisting of only the statement at program location 10.

• Reduction in the number of predicates needed for refinement: Without the use of
invariants, the refinement schemes of [15,17] track the value of at least one pred-
icate at each program location from 1 to 10. Using invariants the refinement pro-
cedure only looks at program location 10 (PC=10) and the invariants that hold at
that location. The condition x < z of the assume statement at location 10 of the
infeasible trace is introduced as a predicate and its value is tracked only at PC=10
in the refined abstract model shown in Fig. 1(e). The Boolean variable b represents
the predicate x < z in the abstract model. The constraint ¬b holds at PC=10 as the
invariant x > z− 1 holds at PC=10 in C program. With the aid of the constraint
(PC = 10)→¬b the abstract model of Fig. 1(e) has no path to the ERROR label.

Octagon abstract domain alone is precise enough to show that ERROR label is unreach-
able in Fig. 1(a). However, this is not always the case. If the condition at PC=10 in
Fig. 1(a) is 2x < z+ y (not in octagonal form), then the octagon abstract domain cannot
show that ERROR label is unreachable. Predicate abstraction and refinement loop can
still use the octagonal invariants and show the unreachability of ERROR label using the
abstract model shown in Fig. 1(e), with b representing the predicate 2x < z+ y.

One reason to combine invariants with predicate abstraction, especially in the context
of weakest pre-condition based refinement as in [6,17], is the problem of handling loops
efficiently. Often, these techniques model multiple loop unwindings through the use of
several related predicates that correspond to different loop unwindings. Instead, certain
classes of loop invariants can be computed efficiently [11], and their usage inside the
abstraction refinement loop can lead to quicker convergence in presence of loops.

Example: In the C code below we wish to verify the assert statement. The use
of the loop invariant x = y in the abstraction refinement loop can eliminate the need of
numerous predicates of the form x = 200,y = 200, . . . ,x = 0,y = 0 which arise when
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using the weakest pre-condition based refinement. The invariant x = y can be discovered
using the octagon abstract domain.

1. int x = 200, y = 200;
2. while (x !=0) { x = x - 1; y = y - 1; }
3. assert (y==0);

In the above example, interpolant based refinement [15] may or may not succeed
in finding x = y as a predicate, due to its dependence on a proof of unsatisfiability of
the infeasible trace. This problem is addressed in [18] where a specialized split prover
is used to restrict the language of interpolants to avoid divergence and provide a (rela-
tively) complete method for finding predicates. However, the impact of such restrictions
and the practical efficiency of a split solver on large examples are not addressed.

3 Transition Relation Strengthening

We operate on a control flow graph of the given program, after various pre-processing
steps performed by the F-SOFT tool [16]. Let b denote a basic block in the control flow
graph. It can contain multiple assignments or an assume statement describing which
branch of a condition is taken. Let Tb(V,V ′) denote the transition relation of basic block
b, where V,V ′ denote the state of program variables before and after executing b, re-
spectively. An invariant Ib at basic block b is a Boolean formula over V . Invariant Ib

evaluates to true whenever the program counter is at b in any execution of the pro-
gram. Suppose we have pre-computed a particular set of invariants at each basic block.
Let CIb(V ) denote the conjunction of various invariants that hold at basic block b. The
idea of transition relation strengthening is to use CIb(V )∧Tb(V,V ′) instead of Tb(V,V ′)
when analyzing b. We refer to CIb(V )∧Tb(V,V ′) as the strengthened transition rela-
tion of basic block b and denote it by STb(V,V ′). Invariants over V ′ are not needed
for strengthening the transition relation of b as they are implied by STb(V,V ′). The
strengthened transition relation STb(V,V ′) can be used inside the predicate abstraction
and refinement loop by using STb(V,V ′) in place of Tb(V,V ′). We describe this process
in more detail below.

Predicate Abstraction Computation: In predicate abstraction, the variables of the con-
crete program are replaced by Boolean variables that correspond to a predicate on
the variables in the concrete program. These predicates are functions that map a con-
crete state V ∈ S into a Boolean value, where S denotes the set of program states. Let
P = {π1, . . . ,πk} be the set of predicates over the program variables. When applying all
predicates to a specific concrete state, one obtains a vector of Boolean values, which
represents an abstract state W . We denote this function by α(V ). It maps each concrete
state into an abstract state and is called an abstraction function.

The predicate abstraction of a basic block b is carried out using existential abstrac-
tion, i.e., the abstract model can make a transition from an abstract state W to W ′ iff
there is a transition from V to V ′ after executing basic block b and V is abstracted to
W and V ′ is abstracted to W ′. We denote the abstract transition relation obtained by
predicate abstraction of basic block b with respect to predicates in P as T̂b(W,W ′).

T̂b := {(W,W ′) |∃V,V ′ ∈ S : (α(V ) = W ) ∧ Tb(V,V ′) ∧ (α(V ′) = W ′)} (1)
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Note that the above equation computes the abstraction of b with respect to predicates in
P in isolation. The term isolation means that no relationships are assumed between the
variables in V during abstraction. However, certain relationships may hold between the
variables in V when the program execution reaches b. In current predicate abstraction
tools, such relationships will be discovered on-demand through multiple refinement
iterations, in the form of new predicate relationships in the abstract model. Many of
these relationships can however be computed efficiently in the form of invariants. The
aim of strengthening is to provide such relationships in the concrete program itself,
rather than discovering them in form of predicate relationships in the abstract model.
Let ˆSTb(W,W ′) denote the abstract transition relation obtained by using the strength-
ened transition relation for basic block b, that is, replacing Tb(V,V ′) by STb(V,V ′) in
Equation 1. The following claim states that predicate abstraction using the strengthened
transition relation for b can be more precise than predicate abstraction of b in isolation.

Claim. ∀b : ˆSTb(W,W ′)⊆ T̂b(W,W ′)

The above claim follows from the definition of strengthened transition relation and
Equation 1. Consider a concrete program C. Using the strengthened transition relation
for each basic block in C during verification does not add any new behaviors to C or
remove any existing behaviors fromC. This is because strengthening provides invariants
which are implicit in C. Let Ĉ denote the predicate abstraction of C obtained by using

ˆSTb(W,W ′) for every basic block b in C. The following claim then states the soundness
of predicate abstraction obtained using the strengthened transition relation.

Claim. Abstraction soundness: Ĉ is a conservative over-approximation of C.

Simulation of Program Traces: If the property is violated in the abstract model, we
obtain an abstract counterexample from the model checker. In order to check if an ab-
stract counterexample corresponds to a concrete counterexample, a simulation step is
performed. By ensuring that the control flow in the concrete program is preserved in
the abstract model, an abstract counterexample can be mapped back to a sequence Tr
of basic blocks b1, . . . ,bk in the concrete program, where b1 is the entry block and bk

contains the ERROR label in the given program. Let Vi,Vi+1 denote the state of pro-
gram variables before and after executing the basic block bi, respectively. We say Tr
is feasible iff there is a real execution of the concrete program which follows the same
sequence of basic blocks as Tr. The simulation step checks the feasibility of Tr by
checking the satisfiability of the following equation:

Sim(Tr) := Tb1(V1,V2) ∧Tb2(V2,V3) ∧ . . . ∧ Tbk(Vk,Vk+1) (2)

Claim. The trace Tr is feasible iff Sim(Tr) is satisfiable.

Let STsim(Tr) denote the simulation equation when the strengthened transition relation
is used.

STsim(Tr) := STb1(V1,V2) ∧STb2(V2,V3) ∧ . . . ∧ STbk(Vk,Vk+1) (3)

The following claim states that using the strengthened transition relation for simulation
of abstract counterexamples is sound. That is, if Tr is a real counterexample (feasible),
then STsim(Tr) is satisfiable, and if Tr is infeasible, then STsim(Tr) is unsatisfiable.
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Claim. Simulation soundness: Tr is feasible iff STsim(Tr) is satisfiable.

Let Tr be an infeasible trace when no invariants are used, then Tr is also infeasible when
the strengthened transition relation is used (above claim). However, with strengthening
it is possible that a sub-sequence Tr′ of Tr is itself infeasible. In this case the refinement
can be done by looking at only Tr′ and the invariants that hold along Tr′. In Section 2
we presented an example where the length of infeasible trace is reduced from 10 to 1
by using the strengthened transition relation. This in turn allows refinement with fewer
predicates per program location.

4 Invariants for Transition Relation Strengthening

The octagon abstract domain [21,22] allows the representation and manipulation of oc-
tagonal invariants, which have the form ±x± y≤ c, where x,y are numerical variables
and c is a numerical constant. The octagon abstract domain allows the representation
of octagonal relationships between n program variables with O(n2) memory cost. In
order to compute octagonal relationships various abstract operators (transfer functions)
are needed. The octagon abstract domain provides all the required operators with worst
case O(n3) time cost. We selected octagonal invariants for transition relation strength-
ening because they can be computed efficiently and are expressive enough to capture
many commonly occurring variable relationships [24,3] and simple loop invariants, im-
portant for checking standard properties such as array bounds violation [21]. However,
strengthening can also be carried out using other more expressive classes of invariants.
Issues involved in the generation and usage of octagonal invariants are discussed below.

4.1 Octagon Packing for Invariant Generation

Computing octagonal relationships between n variables has O(n2) memory cost per
program location and O(n3) time cost per transfer function. This can become prohibitive
when n is large. In Astrée [11] the set of program variables is clustered into various sets
of related variables, known as octagon packs. The octagonal relationships are computed
separately for each octagon pack. The size of each octagon pack is kept small so that
the computation of octagonal relationships between the variables in an octagon pack is
fast. Octagon packing trades off accuracy of generated invariants for speed, and thus,
choosing a right packing strategy is important for the generated invariants to be useful.
We have experimented (Section 5.2) with the following octagon packing techniques.

• Basic block based packing: We implemented the octagon packing technique used
in Astrée as described in [22] (Chapter 8). An octagon pack is associated with each
basic block of the control flow graph. All the variables occurring in a basic block
(excluding non-linear terms) are made a part of the octagon pack associated with the
basic block. If the basic block is a part of a while, or if-then-else structure,
then the variables appearing in the condition of the while or if-then-else
structure are made a part of the octagon pack.

• Control flow based packing: We propose a new packing technique that associates an
octagon pack with each condition in the control flow graph. Let oct(c) denote the
octagon pack corresponding to a condition c at program location l. All numerical
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variables occurring in c are made a part of oct(c). Then a backward traversal of
the control flow graph is done starting from l. Whenever any variable in oct(c) is
updated through an assignment, the variables appearing in the assigned expression
are added to oct(c). Thus, the variables in oct(c) affect the value of condition c
either directly or indirectly. In the above packing techniques a user specified bound
can be used to control the size of an octagon pack.

4.2 Invariant Selection for Strengthening

In general the expectation is that adding invariants would provide a performance im-
provement for the abstraction computation due to additional pruning of the search
space. However, for the same pruning power, a smaller number of invariants is better
since that would burden the decision procedure less. On the other hand, the invariants
are redundant when we are checking the feasibility of an abstract counterexample. But
using invariants can still speed up the feasibility check by providing facts that will oth-
erwise need to be derived by the decision procedure. Using invariants also helps in ob-
taining smaller infeasible traces for refinement. Therefore, our heuristic is to use fewer
invariants so that we get benefit from additional/quicker pruning, without incurring too
much overhead due to additional constraints in the decision procedure calls.

For each octagon pack the relationships between the variables appearing in it are
tracked at every basic block. This can result in a large number of invariants at every ba-
sic block. We apply a heuristic to filter out invariants that are not deemed important for
checking the given property. Let I be an invariant that holds at the entry to a basic block
b. Let needed(b,E) denote the set of variables whose values need to be tracked at basic
block b for checking the reachability of a given error label E . We compute needed(b,E)
at each basic block b by performing a syntactic cone-of-influence computation starting
from E . We use the following heuristic for selecting the invariants:
InvSelect: Use I to strengthen the basic block b only if all variables appearing in I are
present in needed(b,E).

5 Experimental Results

We have implemented these techniques in NEC’s F-SOFT [16] verification tool. F-
SOFT allows checking the C code for user specified (assert statements) or standard
properties (array bound violations, NULL pointer dereferences, use of uninitialized
variables). Details about the software modeling in F-SOFT can be found in [16]. We
used a 2.8GHz dual-processor Linux machine with 4GB of memory for experiments.
Before the abstraction refinement loop starts, we pre-compute the octagonal relation-
ships using the octagon abstract domain library [2]. We use a SAT solver for computing
the predicate abstraction [20,8] and simulation of counterexamples. We report results on
TCAS and internal benchmarks. TCAS (Traffic Alert and Collision Avoidance System)
is an aircraft conflict detection and resolution system. We used an ANSI-C version of a
TCAS component available from Georgia Tech. Even though the preprocessed program
has only 224 reachable basic blocks, the number of predicates needed to verify the prop-
erties is non-trivial for both F-SOFT and BLAST [1]. We checked 10 different safety
properties of the TCAS system using predicate abstraction. None of these properties
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Table 1. Comparison between three implementations of predicate abstraction and refinement
loop. 1) Default: uses the localization of predicates [17]. 2) Strengthen: Uses the strengthened
transition relation in the same framework as [17]. 3) BLAST: Results of running BLAST with
Craig interpolation options. All times are reported in seconds. ”Abs”, ”MC”, ”SR” sub-columns
give the abstraction computation, model checking, simulation and refinement time, respectively.
”Preds” gives the total number and the maximum number of predicates tracked at any program
location. ”I” sub-column gives the number of abstraction refinement iterations.

Bench Default Strengthen BLAST
-mark Time Abs MC SR Preds Cex I Time Abs MC SR Preds Cex I Time Preds I
tcas1a 87 19 40 28 93/31 11 38 51 15 12 24 65/21 7.4 28 102 81/24 35
tcas1b 386 49 266 71 137/56 20 54 333 58 177 98 126/49 16 50 278 108/36 69
tcas2a 87 18 41 30 94/36 11.3 38 48 15 11 22 57/18 7.1 26 112 97/29 38
tcas2b 95 20 41 34 99/34 13.1 39 100 26 27 47 78/27 11.6 37 177 106/31 52
tcas3a 164 25 96 43 113/48 13.4 40 131 27 51 53 89/31 11.4 36 217 130/37 57
tcas3b 56 11 26 19 82/27 9.9 28 69 18 19 32 64/21 8.9 28 92 99/26 33
tcas4a 334 51 199 84 122/45 14.7 40 167 33 70 64 97/33 13 40 515 158/48 104
tcas4b 130 27 54 49 88/28 11.2 32 90 25 24 41 77/22 10.6 32 303 127/36 47
tcas5a 113 26 40 47 96/28 10.3 32 27 9 6 12 46/12 6.6 17 100 87/21 29
tcas5b 149 29 69 51 98/29 10.4 30 87 23 27 37 75/22 9.2 25 139 102/27 39

can be verified by using the octagonal invariants alone. We also analyzed 45 internal
industrial benchmarks SW-1, ..., SW-45 for standard property violations. Some
of these benchmarks have more than 1000 reachable basic blocks.

5.1 Use of Octagonal Invariants During Predicate Abstraction and Refinement

Table 1 presents a comparison between three different implementations of the pred-
icate abstraction and refinement loop. The ”Default” column uses the localization of
predicates as described in [17]. This means that instead of maintaining a global set
of predicates, localized predicates relevant to various basic blocks of the program are
discovered by weakest pre-condition propagation along infeasible program traces.

The ”Strengthen” column uses the same framework as the ”Default” technique. How-
ever, it uses the strengthened transition relation for each basic block in the abstrac-
tion refinement loop. The strengthening is carried out using the octagonal invariants,
which are pre-computed using the octagon abstract domain. We use control flow based
packing for invariant generation and InvSelect heuristic for invariant selection (Sec-
tion 4). Generation of octagonal invariants took five seconds for the TCAS benchmark.
The ”BLAST” column presents the results of running the BLAST [1] software model
checker with the Craig interpolation [15] options craig2 and predH7.

The ”Time” sub-column presents the total time taken by the abstraction and refine-
ment loop when checking a given property. For the ”Default” and ”Strengthen” tech-
niques the breakup of total time (”Time”) is presented in the ”Abs”, ”MC”, and ”SR”
sub-columns. The ”Abs” sub-column gives the total time spent in computing the pred-
icate abstraction, the ”MC” sub-column is the total time spent in model checking the
abstracted program, the ”SR” sub-column is the total time spent on the simulation of
abstract counterexamples and refinement. The ”Preds” sub-column provides two num-
bers separated by a slash: 1) Total number of predicates present in the last iteration of
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Table 2. Results on some industrial examples. Refer Table 1 for the meaning of various columns.

Benchmark Default Strengthen
Time Abs MC SR Preds I Time Abs MC SR Preds I

SW-1 29.1 8.3 2.3 18.5 53/17 14 9.3 2.9 0.5 5.9 16/4 6
SW-2 42.4 10.5 3.5 28.4 53/17 14 9.1 2.8 0.5 5.8 16/4 6
SW-3 1.9 0.8 0.3 0.8 16/14 5 3.0 0.8 0.3 1.9 16/14 5
SW-4 109.4 94 4.8 10.6 58/22 11 6.3 2.6 0.0 3.7 11/4 3

abstraction refinement loop. 2) Maximum number of predicates tracked at a given pro-
gram location. The ”Cex” sub-column provides the average length of infeasible traces
that were given to the refinement procedure for generating new predicates. The ”I” sub-
column gives the total number of abstraction refinement iterations.

Reduction in the Number of Predicates: Observe that the strengthened transition relation
(”Strengthen”) allows checking the given properties with fewer predicates (first number
in ”Preds” column) on 9 out of 10 properties. Since all the three implementations use
localization of predicates, the size of the abstract models produced can be exponential in
the maximum number of predicates tracked at any program location. This is the second
number in ”Preds” column and it is smallest for the ”Strengthen” column on 9 out of
10 properties as compared to both ”Default” and ”BLAST”. As a result, the total time
spent on model checking the abstractions (”MC”) is smaller by 55% on average when
using the strengthened transition relation as compared to the ”Default” technique.

Reduction in the Length of Infeasible Traces: The ”Cex” column shows the average
length of infeasible traces that were given to the refinement procedure. This number
is consistently smaller when using the strengthened transition relation as compared to
the ”Default” technique. When refining an infeasible trace consisting of basic blocks
b1, . . . ,bk, new predicates are discovered at each basic block bi by the refinement pro-
cedure [15,17]. Smaller infeasible traces were refined in the ”Strengthen” case leading
to fewer predicates as compared to the ”Default” case.

Impact on Running Time: The significant reduction in the model checking time, enables
”Strengthen” to outperform other techniques (”Default” and ”BLAST”) in terms of total
time (”Time”) on a majority of properties.

Results on SW-* Benchmarks: We checked these benchmarks for standard property
violations using ”Default” and ”Strengthen” techniques. Since the standard property
checks are added automatically through control flow graph modification, a comparison
with BLAST was not possible. The results on some SW-* benchmarks are summarized
in Table 2. The meaning of the various columns in Table 2 is the same as in Table 1. We
observed a reduction in the total number of abstraction refinement iterations, predicates
needed, overall runtime as compared to ”Default” on many SW-* benchmarks.

5.2 Generation of Invariants

We describe results for the two different octagon packing techniques discussed in Sec-
tion 4.1. For both basic block based packing and control flow based packing we limit the
size of each octagon pack to 10. That is no more variables are added to an octagon pack
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Table 3. Comparison between octagon packing techniques and their impact on invariant gen-
eration

Bench BB Prop Block Control flow
-mark Time PackStats Done NumInv Time PackStats Done NumInv
tcas 224 10 18s 72/10/4.9 0 11196/5121 5s 49/5/2.7 0 3992/3456
SW-5 1587 295 190s 252/8/4.1 76 83478/38654 87s 180/6/1.5 90 35042/23431
SW-6 1986 592 264s 256/10/4.4 111 72972/50973 132s 203/6/1.5 131 58801/48612
SW-7 2440 542 576s 472/9/4.2 82 167738/87738 270s 310/9/1.5 82 105184/66130
SW-8 1472 402 237s 226/10/4.2 64 115254/90541 59s 132/8/2 64 98514/83096

once its size exceeds 10. Table 3 presents the comparison between the basic block based
packing and control flow based packing and their impact on the invariant generation.
Only the results for some SW-* benchmarks are reported in this table.

The ”BB” column gives the total number of basic blocks in the benchmark, the
”Prop” column gives the total number of safety properties (reachability of labeled er-
ror statements, or automatically generated standard property monitors) in a benchmark.
The ”Block” column presents the results for the basic block based packing and the
”Control flow” column presents results for the control flow based packing. The sub-
column ”Time” gives the total time required to compute the invariants for the octagon
packs generated using a given packing technique. The ”PackStats” column presents
three numbers separated by a slash (/): total number of distinct octagon packs, maxi-
mum number of variables in an octagon pack, and average number of variables in an
octagon pack. The ”Done” column shows the number of safety properties (”Prop” col-
umn) that can be proved by using the octagon invariants only. The ”NumInv” column
presents two numbers separated by a slash (/): total number of invariants generated, and
the total number of non-redundant invariants as computed by the octagon library [2].

Discussion of Octagon Packing Results: The control flow based packing produces con-
sistently less number of octagon packs as compared to the basic block based packing.
This is expected as the number of octagon packs is proportional to the number of basic
blocks in basic block based packing, and proportional to the number of conditions in
the program in control flow based packing. The maximum and the average number of
variables tracked in an octagon pack is smaller in the control flow based packing tech-
nique. Thus, the time taken to compute invariants using the control flow based packing
is smaller (by 2.8× on average) as compared to the basic block based packing.

In order to compare the quality of invariants generated using the two packing tech-
niques we did two experiments: First, we looked at the number of safety properties
shown correct by the use of octagonal invariants themselves. This number is shown in
the ”Done” column. We observed that the number of safety properties proved correct by
basic block based packing was always a subset of or the same as those proved correct
using control flow based packing.

Second, we used the generated invariants inside the predicate abstraction and refine-
ment loop by transition relation strengthening. We found the addition of octagonal in-
variants generated (using either packing technique) to enable checking a given property
with fewer predicates, as compared to not using the invariants. However, the addition of
invariants generated using basic block based packing increased the predicate abstraction
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Table 4. Application of InvSelect heuristic for selecting the invariants used for strengthening

Bench Default InvSelect
-mark Tot Max Avg Tot Max Avg
tcas 3456 24 15.4 441 12 1.9
SW-5 23431 43 18 2825 14 2.2
SW-6 48612 34 20.7 3307 8 1.4
SW-7 66130 58 23.4 5068 14 1.8
SW-8 83096 73 56.5 14844 31 10.1

computation and simulation times significantly causing an overall increase in runtimes,
as compared to not using invariants. For the TCAS benchmark after invariant generation
and selection, an average of 8.6 invariants were added to each basic block when using
the basic block based packing, as compared to an average of 1.9 invariants when using
control flow based packing. As fewer invariants are added to each basic block with con-
trol flow based packing, the increase in abstraction computation and refinement times
is much less as compared to using the basic block based packing. Overall, the addition
of invariants generated using control flow based packing reduces the total runtime as
compared to not using the invariants as discussed in Table 1, 2.

Why control flow based packing is useful: In many tools the generation of new pred-
icates for abstraction refinement is done by computing the weakest pre-conditions of
the conditions present in the control flow graph. Suppose the weakest pre-condition of
a condition c for a certain number of steps results in predicates p1, . . . , pn. Let pvars
denote the set of variables appearing in the predicates p1, . . . , pn and condition c. Let
vars(c) denote the octagon pack corresponding to condition c in the control flow based
packing. If the size of vars(c) is not restricted, then it is the case that pvars⊆ vars(c).
Thus, the octagon packs computed using control flow based packing tend to cluster
those variables for which relationships will be discovered later (through refinement) as
new predicates and their weakest pre-conditions. Eagerly computing the relationships
for such clusters and using them in the predicate abstraction and refinement loop, thus,
attempts to get most benefit out of the efficiently computable invariants.

5.3 Invariant Selection for Strengthening

After invariant generation there can be many octagonal invariants that hold at each
program location. As argued in Section 4.2, using all invariants that hold at program
location l to strengthen the transition relation at l may not be beneficial. We apply a
heuristic to filter out invariants that are not deemed important for checking a given
property. The impact of the invariant selection heuristic InvSelect (Section 4.2) on the
number of invariants that get selected for strengthening is summarized in Table 4. The
”Default” column shows the statistics before InvSelect selection heuristic is applied.
The ”InvSelect” column gives the statistics after InvSelect selection heuristic is applied.
The sub-column ”Tot” gives the total number of invariants that get selected, the ”Max”
sub-column gives the maximum number of invariants selected at a basic block, and the
”Avg” sub-column gives the average number of invariants selected at a basic block.

The invariant selection heuristic InvSelect (Section 4.2) helps in reducing the number
of invariants that get selected at each basic block for transition relation strengthening.
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For the TCAS benchmark, application of the InvSelect heuristic reduces the average
number of invariants available for strengthening a given basic block from 15.4 to 1.9.

6 Conclusion

In this paper we presented how efficiently computable invariants can be used to im-
prove the counterexample-guided abstraction refinement flow such as used in software
verification tools using predicate abstraction. The invariants at program location l are
selectively added to the concrete transition relation at l to obtain a strengthened tran-
sition relation at l. Using a strengthened transition relation in the predicate abstraction
and refinement loop can lead to the creation of more precise abstract models leading to
fewer and shorter infeasible traces. This can allow checking a given property with fewer
predicates. More importantly, this technique can help in checking properties where us-
ing the standard predicate abstraction and refinement loop alone will take too long to
converge (for example, properties depending on loop invariants). In our experiments
we found a consistent reduction in the total number of predicates, maximum number of
predicates tracked at a given program location, and the overall verification time.

Acknowledgment. We thank Antoine Miné for answering questions about the octagon
abstract domain library, and Ranjit Jhala, Rupak Majumdar for their help with BLAST.
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Abstract. Predicate abstraction is a major abstraction technique for
the verification of software. Data is abstracted by means of Boolean
variables, which keep track of predicates over the data. In many cases, the
technique suffers from the fact that it requires at least one predicate for
each iteration of a loop construct in the program. We propose to extract
looping counterexamples from the abstract model, and to parameterize
the simulation instance in the number of loop iterations.

1 Introduction

Software Model Checking [1] promises an automatic way to discover flaws in large
computer programs. Despite of this promise, software model checking techniques
are applied rarely, as software verification tools lack scalability due to the state-
space explosion problem.

Abstraction techniques map the original, concrete set of states to a smaller set
of states in a way that preserves the property of interest. Predicate abstraction is
one of the most popular and widely applied methods for systematic state-space
reduction of programs [2]. This technique is promoted by the success of the Slam
project [3,4]. Slam is used to show lightweight properties of Windows device
drivers, and predicate abstraction enables Slam to scale to large instances.

In predicate abstraction, data is abstracted by keeping track of certain pred-
icates over the data. Each predicate is represented by a Boolean variable in the
abstract program, while the original data variables are eliminated. The resulting
Boolean program is an over-approximation of the original program. One starts
with a coarse abstraction, and if it is found that an error-trace reported by the
model checker is not realistic, the error trace is used to refine the abstract pro-
gram, and the process proceeds until no spurious error traces can be found [5].
The actual steps of the loop follow the abstract-verify-refine paradigm [6]. A
second well-known implementation of this method is the software model checker
Blast [7].

In many cases, the technique suffers from the fact that it requires at least one
predicate for each iteration of a loop construct in the program. This is due to the
fact that the simulation and refinement phases are ignorant of program loops.
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The existing simulation techniques exactly simulate as many loop iterations as
contained in the abstract trace. Most of the existing refinement techniques cor-
respond to performing one more unwinding of the loop.

The information about looping structures is actually contained within the
abstract model M̂ . However, the model checkers for M̂ never output error traces
with loops, as they aim at counterexamples that are as short as possible.

Contribution. We propose a novel predicate abstraction algorithm that makes
two contributions:

1. We extend the abstraction refinement framework with the concept of ab-
stract counterexamples that contain (possibly nested) loops. We add the ca-
pability to compute such counterexamples to Boppo [8], a symbolic model
checker for Boolean programs. The computation is done by means of a propo-
sitional SAT solver.

2. We describe a two-phase algorithm for simulating such a looping counterex-
ample on the concrete model. The first phase attempts to compute a number
n that corresponds to the number of loop iterations necessary to reach an
error state. It is built using closed form solutions of recurrences and over-
approximates the program. The second phase is a conventional simulation
with n unwindings of the loop, which rules out spurious counterexamples.
The predicates contained in the equation built for the first phase are used
to improve the refinement in case the trace is spurious.

We report experimental results, which demonstrate that that our algorithm
improves the performance significantly for benchmarks where a conventional
abstraction refinement implementation has to perform repeated refinement steps
to unroll the loop.

Related Work. The Newton tool is used by the Slam toolkit to decide the
feasibility of counterexamples and to generate new predicates in order to refine
the abstraction [9]. Newton is limited to finite counterexamples without loops.
Therefore, Slam suffers from the problem described above.

Path Slicing is an approach that shortens counterexamples by dropping state-
ments that have no impact on the reachability of the program location in ques-
tion [10]. The statements and branches that can be bypassed are eliminated by
backward slicing: For each program location, the set of relevant variables whose
valuations at that point determine whether or not the error location is reachable
is computed. The feasibility of a path slice implies the feasibility of the original
counterexample, but assumes termination of the omitted code sequences.

Path slicing eliminates loops during the symbolic simulation if and only if
they do not contribute to the reachability of the error location. Therefore, path
slicing is orthogonal to the approach that we present, since it prevents expensive
unrolling of loops that are not related to the error.

Linear programs have been proposed by Armando as an alternative, finer
grained formalism for abstractions of sequential programs [11]. Due to the higher
expressiveness of linear programs (in comparison to Boolean programs), this
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approach may yield a smaller number of spurious execution traces. However, the
abstraction algorithm is restricted to a pointer-less subset of the C programming
language that employs linear arithmetics and arrays [12].

Rybalchenko and Podelski present a complete method for detecting linear
ranking functions of unnested program loops [13]. The inferred ranking function
poses an upper bound for the iterations of the loop. This bound is not necessarily
tight. Combined with abstraction-refinement, this approach enables proofs of
program termination [14]. A proof of termination is insufficient to show the
feasibility of counterexamples with loops, since the violation of the property
usually depends on the number of iterations. Therefore, we utilize an incomplete
method that provides the exact number of loop iterations necessary to reach the
error state.

Linear algebra can be used for an inter-procedural program analysis that
computes all affine relations which are valid at a program point [15]. The anal-
ysis presented by Müller-Olm interprets all assignment statements with affine
expressions on the right hand side, while all other assignments are considered
to be non-deterministic. It infers all linear and polynomial relations (up to a
given degree). The approach is control-flow insensitive and cannot be used to
decide reachability. The relations over the induction variables of a loop could aid
the computation of the number of loop iterations that makes a counterexample
feasible.

Zhang provides a sufficient condition for infinite looping and uses constraint
solving techniques to detect infinite loops [16]. The method is sound, but not
complete, since it is based on deciding theorems that involve non-linear integer
arithmetic. The only goal of this approach is the detection of infinite loops.
Feasibility of terminating loops is not discussed. Furthermore, nested loops are
not considered.

Van Engelen presents an analysis method for dependence testing in the
presence of nonlinear and non-closed array index expressions and pointer
references [17]. His work is discussed in more detail in context with our loop
simulation algorithm in Section 4. Van Engelen’s approach targets compiler op-
timization, while our approach aims at feasibility checking and refinement.

Outline. The paper is organized as follows. Section 2 provides background on
predicate abstraction refinement for software programs. The contribution of this
paper is in Sections 3 to 4. Section 3 describes the syntax and semantics of loop-
ing abstract counterexamples. The simulation of such counterexamples on the
concrete program is illustrated in Section 4. Experimental results are provided
in Section 5.

2 Background

2.1 Predicate Abstraction and Refinement

Figure 1 shows an overview of counterexample-guided abstraction refinement.
We provide background on each of the four steps of the loop.
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Fig. 1. Counterexample-guided abstraction refinement with two-phase simulation

Abstraction. The concrete model M is mapped to an abstract model M̂ by
means of an abstraction function α. The abstraction function α maps concrete
states s ∈ S to abstract states ŝ ∈ Ŝ. We use γ to denote α−1, which maps
an abstract state back to a set of corresponding concrete states. Existential
abstraction [18] is a reachability preserving transformation that guarantees that
the abstract transition relation a→ is an over-approximation of c→, the transition
relation of the original program. For reasons of efficiency, most implementations
also over-approximate a→.

Given a set of predicates P , a predicate abstraction αP (ϕ) is the strongest
Boolean combination ϕ̂ of these predicates such that ϕ implies ϕ̂. The variables
of the abstract state ŝ ∈ Ŝ correspond to the predicates in P , and their valuation
is determined by ϕ̂.

Verifying M̂ . The model checker for M̂ searches the state space of M̂ for
states that violate a given specification. If no such state exists, the property
holds on M , and the algorithm terminates. If an error state ŝn exists, the model
checker reports a counterexample that is a sequence of states ŝ1, . . . , ŝn s.t. ŝ1
is an initial state, ŝi

a→ ŝi+1 for each i, 1 ≤ i < n, and ŝn is an error state.
Bebop is a symbolic model checker for Boolean programs that is used in

Slam to check the abstract model [19]. Boolean programs provide the same
control flow constructs (including function calls) as C programs. Bebop uses
BDDs as internal representation for states and features function summarization.

Moped is a BDD-based model checker for pushdown systems [20], which are
as expressive as Boolean programs. Zing [21], an explicit-state model checker for
concurrent programs, is used in an experimental version of Slam that provides
support for the verification of concurrent programs [8].

Bebop, Moped, and Zing produce counterexamples ŝ1, . . . , ŝn with the prop-
erty ŝi �= ŝj for all i �= j, since they aim at providing the shortest counterexample
possible.

Simulation. An abstract counterexample ŝ1, ŝ2, . . . , ŝn is feasible in M iff there
exists a corresponding sequence of concrete states s1, s2, . . . , sn such that si ∈
γ(ŝi) for 1 ≤ i ≤ n and there is a concrete transition si

c→ si+1 for 1 ≤ i < n.
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Since any feasible concrete path serves our purpose, it is sufficient to demand
that only the locations of corresponding states match. We give a formal definition
of feasibility of counterexamples in terms of their strongest postcondition [22].

Definition 1 (Strongest Postcondition). The strongest postcondition SP of
a statement is defined as

SP (x := e) = λf.∃x′.f [x′/x] ∧ (x = e[x′/x])
SP (e) = λf.f ∧ e

where e[x′/x] denotes the substitution of all free occurences of x in e by x′.

Let �(ŝi) denote the program location that is part of the abstract state ŝi, and let
σi denote the concrete statement corresponding to �(ŝi). The strongest postcon-
dition for the sequence of statements σ1, . . . , σn is SP (σ1, . . . , σn) := SP (σn) ◦
SP (σn−1)◦ . . .◦SP (σ1). The resulting quantifiers can be eliminated by means of
skolemization. Intuitively, this corresponds to a transformation of the path into
single static assignment form (SSA) [23]. The formula SP (σ1, . . . , σn)(true)
represents all states that are reachable by executing the statements on the path
s1, . . . , sn.

Definition 2 (Feasibility of Counterexamples). A counterexample is fea-
sible iff SP (σ̄)(true) is satisfiable for the corresponding sequence σ̄ of concrete
statements. A counterexample is spurious if it has an infeasible prefix.

Newton uses a general purpose Nelson-Oppen style theorem prover to deter-
mine the feasiblity of counterexamples. Our model checker SatAbs [24] trans-
lates the strongest postconditions into Boolean formulas and uses an incremental
SAT solver to decide the SAT instances that result from unwinding the path.

Refinement. If the simulation yields a spurious counterexample p, M̂ is refined
such that p is removed from M̂ . This is done by adding an appropriate set
of predicates. Newton uses heuristics to extract such predicates from SP (p).
McMillan observed that for each cut point of the path there exists a formula
ψ (called the Craig interpolant) that represents precisely the facts that need
to be known between σi to σi+1 to prove infeasibility [25]. This approach is
implemented in Blast. A preliminary analysis identifies a number of promising
cut points. The resulting interpolants are then used as new predicates. Both
Newton and Blast are unaware of loops and handle unrolled loops the same
way as counterexamples that do not contain iterations.

2.2 Abstracting Programs with Loops

The traditional abstraction-refinement scheme with predicate abstraction per-
forms poorly on programs that contain loops as shown in Figure 2. Slam, Blast,
and previous versions of SatAbs need at least 1000 refinement steps that succes-
sively add predicates over the loop counter (as indicated in Figure 3) to produce
a feasible counterexample. We present a detection algorithm for loops contained
in the abstract model in Section 3 and a novel two-phased simulation approach
in Section 4.
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int i, s = 0;
int a[1000];
for (i = 0; i ≤ 1000; i = i + 1) {

assert(i < 1000);
s = s + a[i]; }

Fig. 2. A simple program with a buffer overflow
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Fig. 3. Iterative abstraction refinement for the program in Figure 2

3 Abstract Counterexamples with Loops

Counterexamples with Loops. Consider the Boolean Program in Figure 4(a):
It is the abstraction of the program in Figure 2 with respect to the assertion
predicate (i < 1000) and the loop condition (i ≤ 1000). For this program, all
model checkers listed in Section 2 report the spurious counterexample 4(b). An
inspection of the abstract model reveals that M̂ contains a path with a potential
iteration that traverses the same program locations as the spurious counterex-
ample. Figure 4(c) shows a variant of the counterexample. The repetition signs
||: and :|| indicate that the sequence of enclosed states can be iterated arbitrarily
often. The sequence of states to the right of the loop denotes the path that can
be taken to reach the error state.

Figure 5 shows the structure of the counterexample 4(c). Each iteration of the
loop visits the same program locations. Due to the non-deterministic assignment
at location L5, the final iteration traverses a different sequence of states than
the previous iterations. The counterexample in Figure 5 represents an infinite
set of conventional counterexamples, one of which corresponds to the feasible
path that violates the assertion in Figure 2 after 1000 iterations.

We define the semantics of a counterexample with loops in terms of the in-
finite set of conventional counterexamples it represents (Figure 6). We use the
following notation: The double square brackets �path� denote the expansion of
a path. The state indicated by path[i] is the ith element of path. The function
length(path) returns the number of states in a path without loops. The expression
(pathr)∗path denotes all paths that contain an arbitrary number of repetitions
of pathr followed by the postfix path. The concatenation operation A�B denotes
all concatenations of each path pa in set A with each path pb in set B for which
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(a) Boolean program (b) Counterexample (c) Counterexample with loop

bool b1; /* i < 1000 */
bool b2; /* i ≤ 1000 */

L1: b1, b2:=1,1;
L2: if (!b2) goto L7;
L3: assert (b1);
L4: skip;
L5: b1, b2:=*,*;
L6: goto L2;
L7: skip;

L1: b1 b2

L2: b1 b2

L3: b1 b2

L4: b1 b2

L5: b1 b2

L6: b1 b2

L2: b1 b2

L3: b1 b2

L1: b1 b2� 

||: L2: b1 b2 L2: b1 b2
L3: b1 b2 L3: b1 b2
L4: b1 b2 L4: b1 b2
L5: b1 b2 L5: b1 b2
L6: b1 b2 :|| L6: b1 b2

L2: b1 b2
L3: b1 b2

� 


� �

Fig. 4. Enriching counterexamples with information about loops
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Fig. 5. Counterexample with loop for Figure 4(a)

there is an abstract transition from the last state of pa to the first state of pb.
Note that the recursive syntax definition enables nested loops.

Definition 3 (Feasibility of counterexamples with loops). An abstract
counterexample p with loops is feasible iff �p� contains a path that is feasible
according to Definition 2.

Detection of Loops. A counterexample with loops can be constructed from a
conventional counterexample p = ŝ1, . . . , ŝn by performing a symbolic simulation
of the abstract model along the locations �(ŝ1), . . . , �(ŝn). At each location �(ŝi)
in p we search for a state ŝj , j < i that allows us to fork a path that traverses the
locations �(ŝj), . . . , �(ŝi) and then returns to ŝj . Figure 7 shows the pseudo code
for this algorithm. The number of decision problems generated by this algorithm
is quadratic in the length of the original path.

This loop detection algorithm obviously fails to compute all loops along p that
are contained in M̂ . It misses loops that do not repeatedly visit the same state at
the head of the loop. Furthermore, it (intentionally) does not detect loops that
traverse different locations (e.g., branches of a conditional statement) in each
iteration. Note that the latter kind of loop does not conform to the semantics
given in Figure 6.

In both cases, the abstraction-refinement scheme is still sound. Any feasible
counterexample that our loop detection misses is eventually found in a later
iteration. Refinement boils down to successive unrolling of loops that are not
detected. Thus, we either obtain a conventional counterexample, or the repetitive
concatenation of the loop body results in an abstract loop that matches the
criteria of the loop detection algorithm.
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Syntax Semantics

path → state
| ’||:’ path ’:||’
| path path

�||:path:||� = �(pathr)
∗pathp�,

foreach pathp ∈ �path�
with pathr such that

length(pathr)=length(pathp)∧
∀i ∈ {1, . . . , length(pathr)}.

�(pathr[i]) = �(pathp[i])

�path1path2� = �path1�
��path2�,

where �A���B� denotes
{papb| pa ∈ �A� ∧pb ∈ �B� ∧

pa[length(pa)]
a→ pb[1]}

Fig. 6. Syntax and semantics of abstract counterexamples with loops

FindLoops(ŝ1, . . . , ŝn)

1 foreach i ∈ {1, . . . , n}, j < i:
2 if ∃ŝ′

j , . . . , ŝ
′
i. ∀k ∈ {j, . . . , i}.�(ŝ′

k) = �(ŝk)∧
3 ∀k ∈ {j, . . . , i− 1}.ŝ′

k
a→ ŝ′

k+1∧ ŝ′
j = ŝj ∧ ŝ′

i
a→ ŝ′

j

4 then insert ||: ŝ′
j , . . . , ŝ

′
i :||

5 return counterexample ŝ1, . . . , ŝn with loops

Fig. 7. Pseudo code for loop detection

Our approach does not necessarily benefit from a more agressive loop detection
algorithm. Our experiments indicate that it is advantageous to keep the number
of loops in a counterexample small, since the simulation of concrete loops is
expensive.

We have implemented the algorithm of Figure 7 in Boppo. Boppo is a sym-
bolic model checker for asynchronous Boolean programs. The Boolean program
is translated to a propositional formula (function calls are inlined) and a SAT
solver is used to perform reachability checking. Each decision problem of the
loop detection algorithm corresponds to a SAT instance. The average overhead
of the loop detection compared to the model checking run itself is below one
percent1.

4 Simulation and Refinement with Loops

The strongest postcondition presented in Definition 2 gives us only a semi-
decision procedure for the feasibility of counterexamples with loops (namely,
successive enumeration of all corresponding conventional counterexamples). We
propose a new two-phase simulation semi-decision procedure for feasibility (see
1 This number is based on benchmarking 489 typical Boolean programs between 26

and 656 lines of code that were generated by Slam.
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i← 0; s ← 0;

�
assume(i ≤ 1000);
assert(i < 1000);
s ← s + a[i];
i ← i + 1;

�

�

→ −→

i0 ← 0; s0 ← 0;

�
i1 ← φ(i0, i2); s1 ← . . . ;
assume(i1 ≤ 1000);
assert(i1 < 1000);
s2 ← s1+access(a0, i1);
i2 ← i1 + 1;

�

�

i〈0〉 = 0

i〈n〉 = i〈n−1〉 + 1

Fig. 8. Transforming a simple loop into a recurrent equation via SSA

Figure 1) of a counterexample p with loops. In the first phase, a heuristic is
applied to pick a promising conventional counterexample pc out of �p�. In the
second phase we check the feasibility of pc using the traditional approach.

Simulation. The symbolic loop analysis phase provides a candidate n for the
number of feasible iterations for each loop in the counterexample. The path is
infeasible if no such n exists. The converse does not hold. Starting with the
innermost loop, we parameterize each loop body with a fresh variable n using
following algorithm:

1. Transform the loop into SSA form.
2. Generate a recurrence equation for each variable that is updated by a φ

function.
3. Calculate the closed form of the recurrence equation (if possible). Substitute

its right-hand-side for the corresponding occurrences of the variable (this
step is known as induction variable substitution [17]). If unable to compute
the closed form, assign the variable non-deterministically.

4. Generate the strongest postcondition of the loop body and existentially
quantify n in the resulting formula.

Example 1. Consider once more the program in Figure 2. The loop in Figure 8
represents the set of concrete paths that corresponds to the looping counterex-
ample in Figure 4. We transform the loop into SSA and obtain the recurrent
equation in Figure 8. The closed form2 of this recurrence is i〈n〉 = i〈0〉 + 1 · n.

Therefore, SatAbs replaces every occurrence of i1 with i0 +1 ·n. By applying
SP and quantifying n we obtain

SP (loop) = λf.∃n.∃s′0 i′2.f [s′0/s0][i′2/i2]
∧ ((i0 + 1 · n) ≤ 1000)∧ ¬((i0 + 1 · n) < 1000)
∧ (s0 = a0[(i0 + 1 · n)]) ∧ (i2 = (i0 + 1 · n) + 1)

2 The closed form for a recurrent equation i〈0〉 = α, i〈n〉 = i〈n−1〉 + β + γn, n > 0
(where α, β, γ are numeric constants or loop invariant symbolic expressions) is i〈n〉 =

α + βn + γ n·(n+1)
2 .
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Solving the SAT instance that corresponds to (SP (loop) ◦ SP (i0 = 0))(true)
yields n = 1000. Note that there is only one valid solution for n, since (i ≤ 1000)
is a sufficiently strong loop invariant. The weakest loop condition that does
not change the program semantics is (i �= 1001) and gives us the choice n ∈
{1000, 1002, 1003, . . .}. In our current implementation we have no influence on
the n that the SAT solver reports in such a case. We consider to use an optimizing
solver like PBS [26] in future versions of our tool to obtain the minimal values
of n.

Our approach is not restricted to simple loop counters. Van Engelen provides
a framework for handling affine, polynomial, and geometric index expressions
composed over linear and non-linear induction variables [17]. These analysis
methods and our simulation algorithm also cope with pointer arithmetic and
arrays. However, our current implementation supports only a fixed simple recur-
rence scheme (namely the one presented in Example 1). We treat recurrences
that have no closed form equivalent (e.g., k〈n〉 = i · k〈n−1〉 + 1, where i is a
linear induction variable) conservatively by introducing non-determinism (as ex-
plained in step 3 of our algorithm). The subsequent traditional simulation of the
potentially spurious counterexample (see below) preserves soundness.

Example 2. Consider a function (e.g., as part of a library of combinatorial func-
tions) that calculates the factorial m of a variable k by iterating over i =
{0, . . . , k}, m = m · (i + 1). Assume that the program contains a user-supplied
assertion that the computation does not overflow. By substituting the right hand
side of the closed form i〈n〉 = i〈0〉+n for i one obtains m〈n〉 = m〈n−1〉·(i〈0〉+n+1).
The resulting recurrence is m〈n〉 = m〈0〉 · i〈0〉+n!

i〈0〉! .
On a 32 bit architecture, the overflow occurs at k = 13. This number is suf-

ficiently small to use a bounded model checker (like CBMC [27]) to simulate
the counterexample. For this reason, our current implementation ignores recur-
rence equations with a closed form that is a fast-growing monotonic function of
n (e.g., n! as in our example, or exponentiation with positive integer exponent
or base). In this case, SatAbs uses the standard abstraction-refinement algo-
rithm instead of computing a solution for n. The bit-level accurate simulation
algorithm of SatAbs guarantees that an eventual overflow will be detected.

Generating Concrete Counterexamples. The symbolic loop analysis is fol-
lowed by a traditional feasibility analysis (see Figure 1). Each loop of the coun-
terexample is unrolled according to the results of the previous step. As usual,
feasible counterexamples are reported to the user. The fact that they are anno-
tated with information about loops makes them more readable. Spurious coun-
terexamples are subject to refinement.

Refinement. We distinguish two causes of infeasibility of the spurious coun-
terexample p:

– There is no such n that satisfies the recurrence, i.e., phase I reports the
corresponding SAT instance to be unsatisfiable. Then we can refine M̂ using
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a set of predicates that remove all paths �p� from M̂ . The unsatisfiability
of formula ϕ1 ∧ ϕ

〈n〉
2 ∧ ϕ3 (where ϕ1 corresponds to the prefix, ϕ〈n〉

2 to the
parameterized loop body, and ϕ3 to the tail of p) is an explanation for the
infeasibility of p. Since no n satisfies the formula, setting n to 0 yields an
infeasible counterexample from which we can extract a set of refinement
predicates using the traditional methods presented in Section 2.

– The traditional feasibility analysis (phase II) refutes ϕ1 ∧ ϕ
〈c〉
2 ∧ ϕ3 for the

particular constant n = c obtained from phase I. That means that the recur-
rences ϕ

〈n〉
2 are not sufficiently strong to show the infeasibility of all paths

�p�. Therefore, we compute a set of refinement predicates from the unrolled
path that corresponds to ϕ1 ∧ϕ

〈c〉
2 ∧ ϕ3. This guarantees that the execution

of c iterations of the loop is infeasible in M̂ and that the same loop is not
detected again. We expect that the recurrences are loop invariants that make
spurious counterexamples other than p abstractly infeasible, too. Therefore,
we consider adding the corresponding predicates even if they have no effect
on the feasibility of p.

5 Experimental Results

As expected, our implementation detects the buffer overflow in Figure 2 after
only one iteration. The attempt to run Blast and SatAbs without loop de-
tection on the same problem did not yield any results in reasonable time, but
exposed an exponential increase of the runtime in every refinement step.

Figure 9 shows a buffer overflow in the Linux mail transfer agent Aeon 0.02a.
This bug allows local users to gain administrator privileges by executing mali-
cious byte code with help of an overly long HOME environment variable (US-CERT
CVE-2005-1019). The function getConfig is called immediately after the pro-
gram is started and copies the string returned by getenv to a buffer of (fixed)

/* reading rc file, handling missing options */

1 int getConfig(char settings[MAX SETTINGS][MAX LEN]) {
2 char home[MAX LEN];

3 FILE *fp; /* .rc file handler */

4 int numSet = 0; /* number of settings */

5 strcpy(home, getenv("HOME")); /* get home path */

6 strcat(home, "/.aeonrc"); /* full path to rc file */

1 char* strcpy (char *t, const char* s) {
2 for (i = 0 ;; i++) { assert (!(t == &home)||!(i>=MAX LEN));

3 t[i] = s[i]; if (s[i] == ’\0’) break; }}

Fig. 9. Buffer overflow in Aeon 0.2a
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100
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�
SatAbs

Blast

Slam

MAX LEN Blast Slam SatAbs +loops

25 161.1 44.0 57.7 25.0
50 1477.4 294.9 182.9 28.0
75 - 993.6 402.9 32.8
100 - 2446.0 765.0 34.1
150 - 9130.2 2241.9 50.3
200 - 23803.5 5402.9 55.8
300 - - 18702.4 97.6
512 - - - 254.5

Total runtime (in sec)
Runtime per iteration (Aeon) for given MAX LEN

Fig. 10. Runtime of Blast, Slam, SatAbs and SatAbs with loop detection (Aeon)

size MAX LEN without checking its bound (see line 5). This error is representative
for many buffer overflows and is detected by SatAbs with loop detection in one
iteration.

The automatic verification condition generator of SatAbs adds the assertion
!(t == &home)||!(i>=MAX LEN) to the loop body of strcpy (see line 2 in Fig-
ure 9). Note that SatAbs does not specifically target buffer overflows, but aims
at verifying arbitrary assertions in C programs. We manually added a corre-
sponding assertion to the Aeon sources to make a comparison with Blast and
Slam possible. Our attempts to detect the bug with Blast, Slam and SatAbs
without loop detection failed despite a generous timeout of 25000 seconds. There-
fore, we reduced the value of MAX LEN (which is 512 in the original program) and
compared the performance of Blast, Slam, SatAbs without loop detection,
and SatAbs with loop detection. The results of this benchmark3 are given in
Figure 10. The table gives the runtime of all four tools for various values of
MAX LEN. As expected, the runtime of Slam grows exponentially with the size
of the buffer. Blast crashes for MAX LEN= 75. We did not further investigate
this problem. SatAbs performs slightly better than Slam4, but the runtime still
increases exponentially with the number of iterations. The diagram in Figure 10
illustrates the exponential increase of the runtime in each abstraction-refinement
iteration. We compared the runtime of all iterations that took less than 100
seconds.

SatAbs with loop detection spends most of the time in the simulation of the
unrolled counterexample. This is because SatAbs performs SAT-based bit-level
accurate simulation (unlike Slam and Blast, which model integer variables
as unbounded integers). We listed the results for all four tools in the table in
Figure 10.

3 All our experiments were done on an Intel Pentium 4 with 3 GHz and 2 GB RAM.
4 We adapted the refinement strategy of SatAbs (with respect to spurious paths and

spurious transitions [28]) to match the behaviour of Slam and Blast.
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We refrain from presenting other benchmarks in favor of the in depth descrip-
tion of the Aeon example. The SatAbs executable and more examples can be
downloaded from http://www.inf.ethz.ch/personal/daniekro/satabs/.

6 Conclusion

This paper presents a novel approach that enables predicate abstraction to find
bugs that emerge as a result of a high number of iterations of loops. We propose
an algorithm to detect loops in abstract models and explain how the traditional
simulation and refinement algorithms can be extended to cope with loops. Our
implementation outperforms the abstraction-refinement based verification tools
Blast and Slam on typical buffer overflow examples.

Currently, our implementation recognizes only basic recurrences that are suf-
ficient to find the most common bugs. An integration of the recurrence solving
algorithms of van Engelen [17] can lift this limitation.
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Abstract. We present a tool, called Cascade, to check assertions in C
programs as part of a multi-stage verification strategy. Cascade takes
as input a C program and a control file (the output of an earlier stage)
that specifies one or more assertions to be checked together with (option-
ally) some restrictions on program behaviors. For each assertion, Cascade
produces either a concrete trace violating the assertion or a deduction
(proof) that the assertion cannot be violated.

1 Introduction

Software verification is an active area of research [2,3,5,6,9,10]. Tools have been
developed which can find bugs in real applications with large code bases. How-
ever, in order to analyze large programs, these tools often make approximations.
As a result, some of the errors reported by such tools can be false.

A promising alternative approach is the idea of two-stage verification [2,7,8]. In
two-stage verification, a light-weight analysis capable of scaling to large programs
is run first to identify potential bugs. This is followed by a more detailed analysis
of the potential errors identified in the first stage. Cascade provides a generic
back-end for two-stage verification of C programs which can be easily integrated
with any initial stage. Cascade can handle most C constructs including loops,
functions (including recursive functions), structs, pointers, and dynamic memory
allocation.

2 System Description

Cascade consists of about 6000 lines of C++ code. Its overall design is shown
in Fig. 1. The core module takes as input an abstract syntax tree representing
a C program and a control file that specifies one or more potential errors to be
checked. The core module uses symbolic simulation over the abstract syntax tree
to build verification conditions corresponding to the assertions specified in the
control file. The semantics of C statements are hard-coded into the translation
rules that the core module uses to convert C statements into logic formulas.
Cascade uses a bounded model-checking approach to handle loops (and recursive
functions). Loops are unrolled a fixed number of times (this number can be
specified by the user). Cascade models all pointers and addresses in the heap
precisely. The data stored in memory is represented abstractly as integers.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 166–169, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Cascade: System design

2.1 Abstract Interfaces

Cascade is designed to be easily customizable. Major components are hidden
behind abstract interfaces. This makes it easy to provide and experiment with a
variety of configurations based on the same basic architecture. The core module
depends on implementations of three generic abstract interfaces: an abstract
syntax tree, a memory module, and a theorem prover.

Abstract Syntax Tree. Cascade has a simple internal representation of pro-
grams as an abstract syntax tree. All operations are done on this internal rep-
resentation, completely separating it from the front end which is responsible
for building the abstract syntax tree. Cascade currently has an implementation
using EDG [4], an industrial-strength parser for C programs, as a front end to
create the abstract syntax tree.

Abstract Theorem Prover. Cascade uses an abstract theorem proving inter-
face. The interface provides an abstract ExprNode object which corresponds to
logical expressions in the underlying theorem prover. It also specifies some stan-
dard operations on ExprNodes like arithmetic operations, Boolean operations
and array operations. Any theorem prover which can support these operations
can easily be used with Cascade. An unsupported operation can be set to return
unknown. Cascade currently uses CVC Lite[1] as its theorem prover. CVC Lite
can produce proofs and concrete counter-examples. An additional advantage of
using CVC Lite is our in-house expertise on using and modifying the theorem
prover.

Abstract Memory Module. All memory operations during simulation are
handled by an abstract interface modeling heap memory. Memory is a mapping
from addresses to values where both of them are ExprNode objects. Functions
like allocate, deallocate, read and write are supported. The memory module also
provides a check valid address function which checks if a given address is valid
or not. This function can be used in assertions. The current implementation of
the abstract memory module uses an array of integers to model memory. We
expect to provide a more precise model of the data in memory using bit-vectors
(which are supported in the latest version of CVC Lite) in the near future.
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2.2 Core Module

Simulator. The simulator integrates the various modules. It symbolically sim-
ulates the program, building expressions using the abstract interface to the the-
orem prover, and then checking the expressions corresponding to the assertions
specified in the control file. An interface to the simulator is also exported, en-
abling Cascade to be used as a library that can be integrated with other tools.

AST Manipulator. The AST manipulator module has various functions which
can modify the AST. For example, unrolling of the loops is handled by this
module. This module also interfaces with the control file and integrates the
restrictions on execution paths and variables with the AST.

2.3 The Control File

Execution of the tool is guided by a Control File. A control file specifies the
assertion(s) to be checked. In addition, a control file can be used to constrain
the search for a violating trace by restricting the program paths to be explored
or giving constraints on program variables. The control file allows important
information about feasible violations (perhaps gathered by an earlier stage) to
be communicated to Cascade.

The control file has a simple XML format. It begins with SourceFile sec-
tions which give the paths to C source files. It then has one or more Run sec-
tions, each defining a constrained run of the program. Each run starts with a
single StartPosition and ends with a single EndPosition section. These give
respectively the start point and end point of the simulation to be run. A Run
may optionally specify one or more WayPoint sections. A WayPoint indicates
that Cascade should consider only those program paths which pass through the
WayPoint. Each position (start, end, or waypoint) can also include a command.
Commands include: cascade assume, which takes a Boolean C expression and
adds it as an assumption to the theorem prover; cascade check, which takes a
Boolean C expression and checks whether it is valid at the given position; and
cascade check valid address, which takes a C expression as its argument and
checks if the address represented by the expression is a valid address in memory.

3 An Example

Table 1 gives a small C function which has a NULL pointer access if its argument
is negative. Suppose that a suitable first-stage tool [6,7,10] has flagged Line 9 as
a potential error. With no further information, Cascade finds a violating trace in
which the argument is negative. However, suppose the first-stage tool knows from
its analysis that the function f is only called with a positive argument. Using
the control file, the first-stage can constrain the search to only those cases when
a > 0. In this case, Cascade can verify that the assertion cannot be violated.
The code and control file for this example are shown below.
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Table 1. Control file example

1 int* f(int a) {
2 int *p, *x, *y;
3 x = (int*) malloc(sizeof(int));
4 y = NULL;
5 if(a>=0)
6 p = x;
7 else
8 p = y;
9 *p = 5;
10 return p;
11 }

<ControlFile>
<SourceFile>

<Name>~/ex/f.c</Name><FileId>1</FileId>
</SourceFile>
<Run><StartPosition><Position>

<FileId>1</FileId><LineNum>1</LineNum>
</Position><Command>
<CascadeFunction>cascade_assume
</CascadeFunction>
<Argument>a>0</Argument>

</Command></StartPosition>
<EndPosition><Position>
<FileId>1</FileId><LineNum>9</LineNum>

</Position><Command>
<CascadeFunction>

cascade_check_valid_address
</CascadeFunction>
<Argument>p</Argument>

</Command></EndPosition></Run>
</ControlFile>

4 Conclusion

Cascade has been successfully run on programs of up to a few hundred lines of
code. For a 400 line example, without any constraints in the control file, the
run-time on a P4 2GHz is less than 1 minute. We expect that with suitably
constrained control files, Cascade will scale to much larger code bases. Although
it is still under development, we hope it will be of use and interest to a broader
community. In addition, we hope to receive feedback and suggestions for fur-
ther improvement. For further information on Cascade, including downloads,
examples and documentation, see http://www.cs.nyu.edu/acsys/cascade/.
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1 Motivation

This paper presents YASM: a (yet another) software model-checker based on the
Counter-Example Guided Abstraction Refinement (CEGAR) [6] framework. A num-
ber of well-engineered software model-checkers are available, e.g., SLAM [1] and
BLAST [12]. Why build another one?

Traditional software model-checkers build over-approximating abstractions of the
programs they analyze and typically bias their analysis towards proving that a (safety)
property of interest holds (verification). On the other hand, since model-checkers are
widely known for their bug-finding abilities, they are often used for refutation. In this
case, the above approach seems unreasonable: why introduce spurious behaviour and
make it more difficult to find a real bug? For such circumstances, one would just want
to prove that the property is false (refutation). No witness for that is required.

A number of techniques for creating and combining over- and under-approximating
abstractions have been proposed, e.g., [7,9,3,15,16]. In these approaches, model-
checking yields either true or false, which are deemed to be conclusive, or maybe, in
which case the abstraction needs to be refined. While all aspects of the CEGAR frame-
work for such abstractions have been described theoretically [9,3,10,15,16], these ideas
have not yet been implemented.

In this paper, we present YASM, which we believe to be the first symbolic software
model-checker based on combining over- and under-approximating abstractions, which
we refer to as exact [11]. It can prove and disprove properties with equal effectiveness.
Our experiments [11] show that performance of the tool is comparable with standard
over-approximating model-checkers. Moreover, we found that exact abstractions can
become part of the standard CEGAR framework virtually without modifications and,
more importantly, minor modifications of the framework enable an array of useful anal-
yses, e.g., reasoning about the entire CTL, reusing previously computed abstractions,
and many others.

The rest of the paper is organized as follows: Sec. 2 describes the design and the
current state of the tool. Sec. 3 discusses the above observations. We conclude in Sec. 4.

2 Design and Implementation

YASM is based on the standard CEGAR loop.
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Abstractions. Following SLAM, abstractions are represented by Boolean Programs.
Unlike SLAM, the semantics of these programs is given via a variant of Mixed Transi-
tion Systems (MixTS) [7,11]. Compared to Modal and 3-valued TSs, MixTSs allow for
a monotonic refinement of abstractions, yet are simpler to encode symbolically than dis-
junctive (or hyper-) TSs [16,8]. We employ the standard technique for extracting an ab-
straction of a program by approximating weakest precondition of program statements.
However, to allow for analysis of concurrent systems, we differentiate between pro-
gram non-determinism and abstraction-induced non-determinism, both syntactically, in
the Boolean Programs, and semantically, in MixTSs [11].

Model-Checking. YASM uses a specialized BDD-based symbolic model-checker, de-
scribed in [4,3]. The May and Must transition relations of a MixTS are encoded in a
single BDD, and each 3-valued predicate is represented by two BDD variables.

Counter-examples. When a property is inconclusive, the model-checker generates a
proof of this fact that is mined for new predicates. For safety properties, this proof, de-
scribed in [10,5], can be expanded into a standard counter-example – making all stan-
dard predicate discovery techniques applicable. However, unlike standard approaches,
it does not need to be simulated in order to determine its feasibility.

Architecture and Implementation. The tool is written in Java (around 30K lines of
code not including third-party components). It makes use of several tools including:
CIL [13] for parsing and simplifying C code, CUDD BDD library [17] for decision
diagrams, and CVCLite [2] for theorem proving, and we are currently working on the
integration with Eclipse IDE.

YASM has been in operation for about a year and a half, and since that time has been
used to check C programs up to 35K lines of code: network protocols, programs from
the OpenSSH package, parts of Linux file system, etc. The tool is publicly available
from http://www.cs.toronto.edu/∼arie/yasm.

3 YASM with CEGAR Framework

The main advantage of exact (or even under-approximating) abstraction is its ability
to refute properties. Consider abstracting a program shown in Fig. 1(a). Its abstraction
using predicates b1, b2, b3 (See Fig. 1(b)) is sufficient for YASM to conclude that
ERROR is reachable. However, this abstraction is insufficient for an over-approximating
model-checker: the shortest path to ERROR (line 9), the one typically found by a model-
checker, is spurious.

YASM succeeds because it partitions the abstract states into: (a) states from which
ERROR is unavoidable (A), (b) states from which ERROR is unreachable (B), and (c)
states that have a (potentially spurious) path to ERROR (C). If the initial state belongs to
either A or B, the result is conclusive; otherwise, a path to ERROR is available to guide
the refinement process. Note that an over-approximating analysis combines A and C,
and under-approximating combines B and C.

In the remainder of this section, we show how knowing the set A changes the dy-
namics of the CEGAR framework.

Aggressive Abstraction. Compared to an over-approximating model-checker, YASM’s
bug-detecting ability is preserved even in the face of a very aggressive abstraction.
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(a)

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

int p1,p2,p3,x,y;
p1=p2=p3=x=y=5;
if(p3<=0) return;
if(y<0)

{if(x>2){
if(y>10)

{if(p2>0)
ERROR;}}

if(p1>0) ERROR;
} else {
if(p2>0)

{if(p1>0) x = x+1;
if(p2>0) x = x+2;
if(p3<=0) x = x+3;
if(x>40)

if(p1>0) ERROR;
if(p1>0) ERROR;}}

(b)

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

bool b1,b2,b3;
b1=b2=b3=1;
if (b3) return;
if(*)

{if(*){
if(*)

{if(b2)
ERROR;}}

if(b1) ERROR;
} else {
if(b2)

{if(b1) ;
if(b2) ;
if(b3) ;
if(*)

if(b1) ERROR;
if(b1) ERROR;}}

Fig. 1. (a) A C program. (b) An abstraction of (a) using predicates b1:{p1>0}, b2:{p2>0},
b3:{p3<=0}.

For example, when conditions of the if-statements at lines 12–14 are abstracted away,
i.e., replaced by *, the resulting abstraction has more spurious paths, and yet YASM is
still able to conclude that ERROR is reachable. This allows us to augment the CEGAR
framework to prefer a more aggressive (and computationally cheaper) abstraction and
employ heuristics during the refinement stage to decide between increasing precision
of the abstraction and adding new predicates.

Shallow Counterexamples. If we restrict our abstraction to predicates b1 and b2,
YASM can show that ERROR is unavoidable from line 4. Yet the overall analysis is in-
conclusive due to a spurious counterexample: a path to ERROR on line 9. This path can
be eliminated using new predicates y<0 and x>2. Using the fact that error is unavoid-
able from line 4, we can instead: (a) only generate the counterexample up to that line,
and (b) discover that we need the predicate b3:{p3<=0} to finish the analysis.

Reusing Previous Results. The set A can also be reused between successive iterations
of the CEGAR loop. Once an abstraction is refined, we can check for reachability of A,
instead of ERROR. For example, after analyzing an abstraction restricted to the predicate
b1, we know that ERROR is unavoidable from A = (pc ∈ ERROR) ∨ (pc = 12 ∧
p1>0), and can use the property EF A instead of EF (pc ∈ ERROR) in all successive
iterations.

Note that a combination of an aggressive abstraction and reuse of previous results
achieves a similar effect to Lazy Abstraction employed by BLAST– only the parts of
the program relevant to the analysis are actively refined. Furthermore, by changing the
property at each refinement step, we can guide the refinement process to the least spu-
rious execution, instead of the shortest one.

4 Conclusion

At each step of the abstraction/refinement loop, all abstractions get refined: either by
removing possible behaviours for over-approximation, or by adding them to under-
approximation. Clearly, combining both approaches allows substantial reuse of the anal-
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ysis infrastructure and may lead to faster convergence of the analysis, since each step
improves abstraction either towards truth, or towards falsity. This interplay also leads
to many interesting analyses, some of which we’ve described in this paper.

The use of the exact abstraction further allows us to check arbitrary CTL prop-
erties. For example, we have successfully used YASM to prove non-termination (i.e.,
EG true), and response (i.e., AG(p⇒ AFq)) properties of C programs.

Finally, exact abstractions can precisely capture non-determinism present in concur-
rent programs. We have used YASM to check properties of the Bakery mutual exclusion
protocol and error detection in RAX [14]. Our experiments look promising, yet more
work is required to make YASM applicable to real-life concurrent programs written in
fully-fledged programming languages such as C or Java.
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Abstract. We present a SAT-based algorithm for assisting users of Symbolic
Trajectory Evaluation (STE) in manual abstraction refinement. As a case study,
we demonstrate the usefulness of the algorithm by showing how to refine and
verify an STE specification of a CAM.

1 Introduction

Symbolic Trajectory Evaluation (STE) [12] is a well-known simulation-based model
checking technique. It combines three-valued simulation (using the standard values 0
and 1 together with the extra value X, “unknown”) with symbolic simulation (using
symbolic expressions to drive inputs). STE has been extremely successful in
verifying properties of circuits containing large data paths (such as memories, fifos,
floating point units) that are beyond the reach of traditional symbolic model checking
[1,11,7].

In STE, specifications are assertions of the form A =⇒ C, where A is called the
antecedent and C the consequent. Both A and C are formulas in a restrictive tempo-
ral logic, in which only statements about a finite number of time points can be made.
The only variables in the logic are time-independent Boolean variables, called symbolic
variables.

The power of STE comes from the use of abstraction. The abstraction is induced
by the antecedent of the assertion; when the antecedent does not specify a value for a
certain node, the value of the node is abstracted away by using the unknown value X.
Thus, the antecedent plays two different roles in STE; it is the logical antecedent as well
as a specification of what abstraction should be used in the verification. Because of the
abstraction, the values of circuit nodes during simulation can be represented by BDDs in
terms of the symbolic variables occurring in the assertion, providing an efficient means
of checking an STE assertion.

A drawback of STE is that the user needs to spend time on finding the right abstrac-
tion. Often, just the right mix between symbolic variables and X’s has to be used to
make sure that the property holds in the abstraction induced, and the BDDs used in the
verification do not blow up.

Abstraction Refinement. A common initial result in an STE verification attempt is
that the model-checker cannot prove the assertion because the simulation using the
antecedent yields X’s at nodes that are required to have a particular Boolean value by
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the consequent. This indicates that the used abstraction was too coarse, leading to a
so-called spurious counter-model. In contrast, a real counter-model is a simulation run
that satisfies the antecedent but yields a 0 for a node for which the consequent requires
a 1, or vice-versa. A model of an assertion is a simulation run that satisfies both the
antecedent and the consequent.

When an STE model-checking run produces spurious counter-models but no real
counter-models, we say that the result of the verification is unknown. In this case, the
assertion must be refined (usually by introducing more symbolic variables in the an-
tecedent) until the property is proved, or until a real counter-model is found. Often, a
great deal of time is spent on such manual abstraction refinement [14,2].

Contribution. We have invented the concept of a strengthening, which is a particular
piece of useful information that can help STE-users with manual abstraction refine-
ment; given an STE assertion and a circuit, a strengthening indicates which extra inputs
of the circuit need to be given a Boolean (non-X) value in order for relevant outputs
to also get a Boolean value. We have also designed a SAT-based algorithm that cal-
culates strengthenings, which we have implemented in a tool called STAR (SAT-based
Tool for Abstraction Refinement in STE). STAR has two modes; the first mode calcu-
lates strengthenings that satisfy the assertion (corresponding to models), and the sec-
ond mode calculates strengthenings that contradict the assertion (corresponding to real
counter-models).

By inspecting a weakest satisfying strengthening, the user can gain intuition about
how to refine the assertion by introducing a minimal number of extra symbolic variables.
On the other hand, a weakest contradicting strengthening gives a minimal set of reasons
for the failure of the assertion, which can be used to gain intuition about why the circuit
does not satisfy the assertion. In the next section, we look at examples of satisfying and
contradicting strengthenings in more detail.

Related Work. There exists a large body of work in the field of automatic abstraction
refinement for model-checking techniques for hardware other than STE, for an overview
see for example [5]. Most of these abstractions are state-based, focusing on how to
represent the state space of a circuit, which is not applicable to STE. In [6] an algorithm
providing an easy interface to abstraction in STE is described. The algorithm does,
however, not help in finding a right abstraction.

In another paper [13] presented at this conference, the tool AutoSTE is described.
This tool can automatically refine STE assertions that result in a spurious counter-
model, until either the assertion is proved, a real counter-model is found (or resources
are exhausted). We believe that STAR and AutoSTE are complementary, in the fol-
lowing sense. AutoSTE can automatically find certain refinements of a specific kind
(namely where some nodes become driven by fresh symbolic variables under certain
conditions). STAR assists the user in manually finding refinements of a much more
general kind, for example when sophisticated symbolic indexing schemes [6,7] are
needed. We show, for instance, in the next section, how the method can be used
to derive a symbolic indexing scheme for the verification of Content-Addressable
Memories.
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2 A Case Study

Content-Addressable Memories (CAMs) are hardware implementations of lookup ta-
bles. A CAM stores a number of tags, each of which is linked to a specific data-entry.
The basis of a CAM circuit consists usually of two memory blocks, one containing tag
entries, and the other the same number of corresponding data entries, see Fig. 1. Given
an input tag, the associative-read operation consists of searching all tags in the CAM to
determine if there is a match to the input tag, and if so sending the associated data-entry
to the output. Verifying this operation is non-trivial [7].

Fig. 1. A Content-Addressable Memory Circuit

What follows is a constructed, but realistic, account of how a verification engineer
might use our method to derive an STE assertion for verifying the associative-read
operation of a CAM. How to verify CAMs using STE is now well-known [7]. The STE
assertion needed for the verification is however quite complex. We show how a user who
is ignorant of the above mentioned work on CAM verification can derive the required
assertion with help of the STAR-tool. We believe that this convincingly illustrates the
usefulness of our method.

In the case-study, we assume that the verification engineer uses the BDD-based STE
model-checker in Intel’s verification toolkit Forte[4]. The CAM under verification is
taken from Intel’s GSTE tutorial.

An obvious way of verifying the associative-read operation using STE is to introduce
symbolic variables for each tag- and data-entry. When doing so, the antecedent of the
assertion specifies that each tag-entry tagmem[i] has symbolic value tagmemi, and
each data-entry datmem[i] has symbolic value datmem i. The consequent checks that,
for each i, when the input-tag is equal to tagmemi the output is equal to datmem i.

(aread is 1) and (tagin is tagin)
and (tagmem[0] is tagmem0) and . . . and (tagmem[15] is tagmem15)
and (datmem[0] is datmem0) and . . . and (datmem[15] is datmem15)

=⇒
((tagin = tagmem0) → (out is tagmem0))

...
and ((tagin = tagmem15) → (out is tagmem15))

(1)
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Warning: Consequent failure at time 0 on node out[63]
Current value:data[63] + X(!data[63])
Expected value:data[63]
Weak disagreement when:!data[63]
----WARNING: Some consequent errors not reported

data[16]&data[21]&data[61]&data[34]&data[2]&data[7]&data[47]&data[52]&data[20]&
data[60]&data[33]&data[38]&data[6]&data[46]&data[51]&data[19]&data[59]&data[56]&
data[24]&data[32]&data[29]&data[37]&data[5]&data[45]&data[13]&data[42]&data[53]&
data[10]&data[50]&data[18]&data[58]&data[15]&data[26]&data[55]&data[23]&data[63]&
data[31]&data[28]&data[39]&data[36]&data[43]&data[44]&data[40]&data[12]&data[41]&
data[27]&data[49]&data[17]&data[57]&data[14]&data[25]&data[54]&data[22]&data[62]&
data[30]&data[9]&data[35]&data[3]&data[4]&data[0]&data[11]&data[1]&data[8]&data[48]

Fig. 2. Forte Output for Assertion 2

This assertion, however, cannot be handled by a BDD-based STE-model checker. The
large number of symbolic variables leads to an immediate BDD-blow up.

Suppose that, instead, the user tries to verify the operation by using symbolic index-
ing [6]. When doing so, a vector of symbolic variables, index , is created to index over
the potentially matching tag-entries. The antecedent states that the indexed tag-entry
has symbolic value tagin and the indexed data-entry has value data . So, only variables
for the content of the indexed data-entry and tag-entry are created, instead of variables
for all tag- and data-entries. This greatly reduces the number of required symbolic vari-
ables. Using symbolic indexing, the user could arrive at the following assertion.

(aread is 1) and (tagin is tagin)
and ((index = 0000) → ((tagmem[0] is tagin) and (datmem[0] is data)))
and ((index = 0001) → ((tagmem[1] is tagin) and (datmem[1] is data)))

...
...

...
and ((index = 1111) → ((tagmem[15] is tagin) and (datmem[15] is data)))

=⇒
out is data

(2)

When the user tries to verify this assertion with the model-checker, the result is “un-
known”. The output of the model-checker is given in Fig. 2: the simulated value for
node out[63] is (data [63] + (X & ¬data [63])), while the required value is data[63].
When the symbolic variable data [63] has value 0, the simulated value of out[63] evalu-
ates to X, indicating a spurious counter-model. The expression data[16]&....&data[48]
indicates that only when the data-entry consists of only high bits no spurious counter-
model exists. So, the STE model-checker does not give much help with refining the
assertion. This is where our tool STAR comes in.

STAR can be used to calculate a weakest contradicting strengthening of Assertion 2,
see Fig. 3. The table presents an assignment of the symbolic variables, and a weakest
strengthening of the antecedent that together contradict the consequent. Here, only bold-
faced values (0 or 1) in the table represent strengthened nodes. A normal-faced 0 or
1 represents a node that has received the value 0 or 1 because it was required by the
(original) antecedent. For instance, tagmem[12] is required to have value 00000000 by
the antecedent, but tagmem[1] is required to have the same value by the strengthening.
To increase readability, X’s are represented by a dash -; entries for which all values are
X have been left out of the table completely. The table states that
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Symbolic Variables
index = 1100
tagin = 00000000
data = 1111111111111111111111111111111111111111111111111111111111111100
Inputs at time 0
aread = 1
tagin = 00000000
Initial Values
tagmem[1] = 00000000
tagmem[12] = 00000000
datmem[1] = --------------------------------------------------------------1-
datmem[12] = 1111111111111111111111111111111111111111111111111111111111111100
Outputs
out = 111111111111111111111111111111111111111111111111111111111111111-

Fig. 3. A Weakest Contradicting Strengthening of Assertion (2)

– the value of index vector is 1100, so, tag- and data-entry 12 are indexed,
– not only the indexed tag 12 is equal to the input tag tagin but also tag 1,
– data-entry 1 differs from the indexed data-entry 12, at the second-last position;

data-entry 1 has value 1 at this position, while the indexed data-entry has value 0,
– the value of the output of the CAM at the second-last position is 1 instead of 0 as

required by the consequent.
From this, the user can deduce that the assertion in fact does not hold for the circuit
because the assertion does not consider the case in which two tag-entries are equal to
the input tag. Also, the user can conclude that, apparently, the CAM contains a bus that,
when given both a 0 and 1 value, chooses the 1 value over the 0 value.

An obvious way of circumventing this problem is to introduce symbolic variables
for all tag-entries, and to add the constraint that there is at most one tag-entry equal to
the input tag. To do so, many extra symbolic variables are needed; one for each bit of
each tag-entry. Therefore, it is not surprising that the resulting assertion yields, again, a
BDD blow-up.

To obtain an intuition on how to, instead, refine the assertion by introducing a very
small number of extra symbolic variables, the user can calculate a weakest satisfying
strengthening of the assertion. The user knows from the output of the model-checker
that when all of the data-entries have value 1 no spurious counter-model exists. There-
fore, the constraint that at least one of the data-entries has value 0 is given to STAR as
well.

In Fig. 4, a weakest satisfying strengthening calculated by STAR is given. In this
strengthening, for each non-indexed tag-entry either (1) the tag-entry differs at one
position from the input tag, or (2) the tag-entry consist only of X′s (tag-entries 5 and
11), and the corresponding data-entry contains a zero at the position where the indexed
data-entry has a zero, and X’s at each of the positions where the indexed data-entry
contains a 1.

This can be explained as follows. There are two ways of making sure that a non-
indexed data-entry does not corrupt the output: (1) making the tag-entry differ at at-least
one position from the input tag, or (2) as the bus in the CAM favors a 1 over a 0, for
each tag that potentially matches, having a 0 in the data-entry at each position where
the indexed data-entry contains a 0.
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Symbolic Variables
index = 0000
tagin = 00000010
data = 0100000000000000000000000000000000000000000000000000000000000000
Inputs at time 0
aread = 1
tagin = 00000010
Initial Values
tagmem[0] = 00000010
tagmem[1] = 1-------
tagmem[2] = 1-------
tagmem[3] = --1-----
tagmem[4] = ------0-
tagmem[5] = --------
tagmem[6] = -1------
tagmem[7] = --1-----
tagmem[8] = -1------
tagmem[9] = 1-------
tagmem[10] = 1-------
tagmem[11] = --------
tagmem[12] = ---1----
tagmem[13] = ----1---
tagmem[14] = ------0-
tagmem[15] = -1------
datmem[0] = 0100000000000000000000000000000000000000000000000000000000000000
datmem[5] = 0-00000000000000000000000000000000000000000000000000000000000000
datmem[11] = 0-00000000000000000000000000000000000000000000000000000000000000

Fig. 4. A Weakest Satisfying Strengthening of Assertion (2)

As for the verification of the associative read property, no assumptions on the content
of the data-entries in the CAM are wanted, the user can ask STAR to generate a weakest
satisfying strengthening of Assertion (2) that does not strengthen the requirements on
the values of data-entries. This strengthening, given in Fig. 5, makes each non-indexed
tag-entry differ at one position from the input tag.

Inspired by this strengthening, the user can modify the assertion by introducing, for
each tag-entry i, a vector of symbolic variables pi that specifies at which position the
tag-entry differs from the input tag when the tag-entry is not indexed. The formula
expressing that tag i differs from the input tag tagin at the position encoded by pi is:

mismatch(i) = ((pi = 000) → (tagmem[i][0] is ¬tagin[0]))
and ((pi = 001) → (tagmem[i][1] is ¬tagin[1]))

...
...

...
and ((pi = 111) → (tagmem[i][7] is ¬tagin[7]))

The formula expressing that each of the non-indexed tag-entries differs at at-least one
place from tagin is:

A′ = ((index �= 0000) → mismatch(0))
and ((index �= 0001) → mismatch(1))

...
...

...
and ((index �= 1111) → mismatch(15)))
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Symbolic Variables
index = 1111
tagin = 11111110
data = 0100000000000000000000000000000000000000000000000000000000000000
Inputs at time 0
aread = 1
tagin = 11111110
Initial Values
tagmem[0] = -------1
tagmem[1] = ------0-
tagmem[2] = ---0----
tagmem[3] = ---0----
tagmem[4] = ------0-
tagmem[5] = -------1
tagmem[6] = -------1
tagmem[7] = 0-------
tagmem[8] = ------0-
tagmem[9] = --0-----
tagmem[10] = ------0-
tagmem[11] = --0-----
tagmem[12] = -----0--
tagmem[13] = ---0----
tagmem[14] = 0-------
tagmem[15] = 11111110
datmem[15] = 0100000000000000000000000000000000000000000000000000000000000000

Fig. 5. A Weakest Satisfying Strengthening of Ass. (2) without extra assumptions on data-entries.

The assertion obtained by adding A′ to the antecedent of assertion (2) is exactly the
assertion described in [7] and is easily proved by an STE model-checker.

3 STE-Theory Revisited

Here, we briefly revisit the STE-theory needed to describe the algorithm in STAR.

Circuits and Values. A circuit is modeled by a set of node names N connected by
logical gates and delay elements. S ⊆ N is the set of output nodes of delay elements.
In STE, we abstract away from specific Boolean values of a node taken from the set
B = {0, 1}, by using the value X, which stands for unknown. Furthermore, the over-
constrained value T is introduced; a node assumes value T when it is both required
to take on value 0 and value 1, leading to the set of quaternary signal values, denoted
V = {0, 1,X,T}. On this set an information-ordering ≤ is introduced. The unknown
value X contains the least information, so X ≤ 0 and X ≤ 1, while 0 and 1 are incompa-
rable. The overconstrained value T contains the most information, so 0 ≤ T and 1 ≤ T.
If v ≤ w it is said that v is weaker than w.

A circuit state, written s : State, is a function fromN to V, assigning a value from
V to each node in the circuit. A sequence σ : N → State is a function from points
in time to circuit states, describing the behaviour of a circuit over time. The set of all
sequences σ is written Seq. The set of sequences that do not assign the overconstrained
value T to any node at any time-point is written Seq3.

Trajectory Evaluation Logic. STE assertions have the form A =⇒ C. Here A and C
are formulas in Trajectory Evaluation Logic (TEL). The only variables in the logic are
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time-independent Boolean variables taken from the set V of symbolic variables. The
language is given by the following grammar:

f ::= n is 0 | n is 1 | f1 and f2 | P → f | Nf

where n ∈ N and P is a Boolean propositional formula over the set of symbolic vari-
ables V . The notation n is P , where P is a Boolean formula over the set of symbolic
variables V , is used to abbreviate the formula: (¬P → n is 0) and (P → n is 1).
The depth of a TEL-formula f is the maximal degree of nestings of N in f . The depth
of an STE-assertion A =⇒ C is the maximum of the depth of A and the depth of C.

The meaning of a TEL formula is defined by a satisfaction relation that relates val-
uations of the symbolic variables and sequences to TEL formulas. Here, the following
notation is used: The time shifting operator σ1 is defined by σ1(t)(n) = σ(t + 1)(n).
Standard propositional satisfiability is denoted by |=Prop. Satisfaction of a TEL-formula
f , by a sequence σ ∈ Seq, and a valuation φ : V → B (written φ, σ |= f ) is defined by

φ, σ |= n is b ≡ b ≤ σ(0)(n) , b ∈ {0, 1}
φ, σ |= f1 and f2 ≡ φ, σ |= f1 and φ, σ |= f2
φ, σ |= P → f ≡ φ |=Prop P implies φ, σ |= f
φ, σ |= Nf ≡ φ, σ1 |= f

Trajectories. In STE, three abstractions are used: (1) the value X can be used to ab-
stract from a specific Boolean value of a circuit node, (2) information is only propagated
forwards through the circuit (i.e. from inputs to outputs of gates) and through time (i.e.
from time t to time t+ 1), (3) the initial value of all delay elements is assumed to be X.
Given a circuit c, a trajectory is a sequence that meets the constraints of the circuit c,
taking these abstractions into account. How to obtain the set of trajectories of a circuit
c is described, for instance, in [10,8,9,6,1,12].

A circuit c satisfies a trajectory assertion A =⇒ C, written c |= A =⇒ C iff for
every valuation φ ∈ V → B of the symbolic variables, and for every trajectory τ of c
such that τ ∈ Seq3, it holds that: φ, τ |= A ⇒ φ, τ |= C.

STE-Model Checking. The theory of STE guarantees that for every TEL-formula A,
circuit c and valuation φ, there exists an unique weakest trajectory that satisfies A. This
trajectory is called the defining trajectory of A w.r.t. φ, written φ

c [[ A ]]. Furthermore,
for every TEL-formulaC, and valuation φ there exists an unique weakest sequence that
satisfies C. This sequence is called the defining sequence of C w.r.t. φ, written φ[ C ].

The Fundamental Theorem of STE states that in order to check that an assertion is
true, only the defining trajectories of the antecedent need to be considered (instead of all
trajectories). That is, to check that c |= A =⇒ C, we only need to check that for every
valuation of the symbolic variables φ, such that φ

c [[ A ]] ∈ Seq3, holds φ[C ] ≤ φ
c [[ A ]].

Given a circuit description and an STE-assertion, an STE-simulator calculates a sym-
bolic representation of the set of defining trajectories of the antecedent of the assertion.
In BDD-based STE, BDDs are used to represent the defining trajectories. In SAT-based
STE, non-canonical Boolean expressions are used. In both cases a dual-rail encoding is
used to encode a quaternary value by two Boolean values [12].

After simulation, it is checked whether the symbolic representation of the defining
trajectories of the antecedent satisfies the requirements of the consequent. In BDD-
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based STE this check is trivial because of the canonicity of BDDs. In SAT-based STE,
a SAT-solver is called to perform this check.

4 Finding Satisfying and Contradicting Strengthenings

The job of the main algorithm in STAR is to, given a circuit and an STE-assertion, find
a weakest satisfying strengthening (respectively weakest contradicting strengthening)
of the assertion. In order to do so, the algorithm employs an STE-simulator on Boolean
expressions. After simulation, a SAT-problem is generated whose solutions represent
all satisfying (respectively contradicting) strengthenings of the assertion. Finally, an
incremental SAT-solver [3] is iteratively called to find a weakest such strengthening.
Before describing the algorithm in more detail, we make the concept of strengthenings
more precise.

4.1 Satisfying Strengthenings

A strengthening of an STE-assertion gives extra Boolean requirements on nodes of the
circuit over time. The set of the nodes and corresponding time-points that potentially
can be strengthened is called the set of strengthening candidates, written SC ⊆ N×N .
Given an assertion of depth d, the set of strengthening candidates commonly consists
of the input nodes I of the circuit over time-points {0, . . . , d} and the initial values of
delay elements. That is, in that case: SC = ({0, . . . , d} × I) ∪ ({0} × S). However,
sometimes, we might want to restrict the set of strengthening candidates as we did in
the case-study.

Given a set of strengthening candidates, a strengthening is a function
γ : SC → {0, 1,X} from nodes and time points to the values 0, 1, and X, giving
extra requirements on the nodes of a circuit. For example, if γ(0, p) = 1, γ(2, q) = 0,
and γ(t, n) = X for all other t and n, then node p is strengthened to have value 1 at
time-point 0, and node q is strengthened to value 0 at time-point 2.

A strengthening can easily be transformed into a TEL-formula with the same mean-
ing, denoted by TEL(γ), which is defined to be the conjunction of all Nt(n is γ(t, n))
with (t, n) ∈ SC and for which γ(t, n) �= X. For example, if γ is defined as in
the above example, then TEL(γ) = ((p is 1) and N2(q is 0)). The TEL-formula
(A and TEL(γ)) is called the strengthening of A w.r.t. γ, and is written Str(A, γ).

Given a circuit c and an assignment of symbolic variables φ : V → {0, 1}, a satis-
fying strengthening of an assertion A =⇒ C is a strengthening γ such that simulating
using γ and A does not yield overconstrained nodes and makes the consequent true, i.e.
φ
c [[ Str(A, γ) ]] ∈ Seq3 and φ, φ

c [[ Str(A, γ) ]] |= C.
Strengthenings can be compared by extending the information order ≤ point-wise

to functions, arriving at the concept of a weakest satisfying strengthening, which is a
satisfying strengthening weaker than all other satisfying strengthenings of an assertion.
Note that weakest strengthenings are not unique; there can for example be several, but
incomparable, weakest satisfying strengthenings.
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4.2 Generation of the SAT-Problem

A SAT-problem consists of a set of variables W and a Boolean formula P . An assign-
ment is a mapping a : W → {0, 1}. A SAT-problem S is satisfied by an assignment a,
written a |= S, if a makes P evaluate to 1.

For calculating a strengthening of an STE-assertion of depth d, only the first d time-
points of the simulation matter. Therefore, the concept of a truncated sequence is intro-
duced, which is a function from the time-points {0, .., d} to circuit states.

We will define a SAT-problem for all satisfying strengthenings, written SS(A =⇒
C, c,SC), whose solutions represent precisely those truncated sequences σ, valuations
φ, and strengthenings γ such that γ is a satisfying strengthening of A =⇒ C w.r.t. φ.

For an STE-assertion of depth d, the SAT-problem contains a SAT-variable v for
each variable v in the set of symbolic variables V . Furthermore, for each node n in the
set of nodes N of the circuit c, and for each time point 0 ≤ t ≤ d two SAT-variables
are introduced, written n0

t and n1
t . The two variables n0

t and n1
t encode the value of

node n at time t using a standard dual-rail encoding; the function mapping a dual-rail
encoded quaternary value to the quaternary value itself, written quat, is defined by:
quat(0, 0) = X, quat(1, 0) = 0, quat(0, 1) = 1, and quat(1, 1) = T.

Finally, for each time-point/node pair (t, n) in the set of strengthening candidatesSC,
the SAT-problem contains a pair of SAT-variables n̂0

t and n̂1
t representing a possible

requirement of a strengthening on node n at time t. Again, the dual-rail encoding is
used; if n̂0

t and n̂1
t are both 0, there is no requirement on node n at time t, if n̂0

t = 1 and
n̂1

t = 0 the node is required to have value 0, if n̂0
t = 0 and n̂1

t = 1 the node is required
to have value 1. The SAT-problem is constructed such that n̂0

t and n̂1
t are not allowed to

both have value 1.
A satisfying assignment a of the SAT-problem can thus be mapped to a assignment

of symbolic variables φa defined by φa(v) = a(v), to a truncated sequence σa defined
by σa(t)(n) = quat(a(n0

t ), a(n
1
t )), and to a strengthening γa defined by γa(t, n) =

quat(a(n̂0
t ), a(n̂

1
t )).

Constructing the SAT-Problem. The SAT-problem for all satisfying strengthenings
SS(A =⇒ C, c,SC) is defined as the conjunction of two SAT-problems: (1) A SAT-
problem that restricts the sequences σ, assignments φ and strengthenings γ such that
σ is the defining trajectory of Str(A, γ) w.r.t. φ, and (2) A SAT-problem that restricts
the sequences σ and assignments φ such that they together satisfy the consequent C.
Below, we define both SAT-problems.

However, first we need to define the SAT-problem for the defining trajectory of a
TEL-formula. It is well-known how to use an STE-simulator on Boolean expressions to
generate a SAT-problem whose satisfying assignments correspond to the set of defining
trajectories of the antecedent of the assertion [8,9,2,14]. We denote this SAT-problem
by DTA(A, c, d), and we assume that its solutions represent exactly those valuations φ
and truncated sequences σ such that σ = φ

c [[ A ]] � {0, .., d} and σ ∈ Seq3.

SAT-Problem for the Antecedent. We now define the SAT-problem for the defining
trajectory of a symbolically strengthened antecedent, written DTSA(A, c, d,SC) whose
solutions represent precisely those truncated sequences σ, valuations φ, and strength-
enings γ such that σ is the (truncated) defining trajectory of Str(A, γ) w.r.t. φ.
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In order to do so, we first introduce the concept a symbolically strengthened an-
tecedent, written SymStr(A,SC). The symbolically strengthened antecedent contains
for each time-point/node pair in the set of strengthening candidates SC a pair of sym-
bolic variables n̂0

t and n̂1
t , representing a possible requirement of strengthening γ on

node n at time t, and is defined by:

SymStr(A,SC) = A and (and(t,n)∈SC Nt(n̂0
t → n is 0 and n̂1

t → n is 1))

The SAT-problem for the defining trajectory of the symbolically strengthened
antecedent is defined by: DTSA(A, c, d,SC) = DTA(SymStr(A,SC), c, d).
SAT-Problem for the Consequent. The SAT-problem for satisfaction of a consequent
C, written SAT(C), is constructed such that its set of solutions contains precisely those
sequences σ and assignments of the symbolic variables φ that together satisfy conse-
quent C. (i.e. φ, σ |= C).

In order to build this SAT-problem, we need to define the concept of defining formula.
Given a consequent C, a node name n, a Boolean value b ∈ B, and a time point t, we
can construct a propositional formula that is true exactly when C requires the node n to
have value b at time point t. This formula is called the defining formula of n = b at t,
and is denoted by 〈C〉(t)(n = b).

For example, if the consequent C is defined as (a∧ b) → p is 0, then 〈C〉(0)(p = 0)
is the formula a∧b, since only when a∧b holds, doesC require node p to be 0. However,
〈C〉(0)(p = 1) is the false formula 0, since C never requires the node p to be 1.

The defining formula is defined recursively as follows:

〈m is b′〉(t)(n = b) =
{

1, if m = n, b′ = b and t = 0
0, otherwise

〈f1 and f2〉(t)(n = b) = 〈f1〉(t)(n = b) ∨ 〈f2〉(t)(n = b)

〈P → f〉(t)(n = b) = P ∧ 〈f〉(t)(n = b)

〈Nf〉(t)(n = b) =
{
〈f〉(t− 1)(n = b), if t > 0
0, otherwise

Note that for an antecedent of the form f1 and f2 to require that a node n has a value b,
it is enough that only one of the formulas f1 or f2 requires that n is b. The SAT-problem
for the satisfaction of the consequent is now defined by:

SAT(C) =
∧

(n,t)∈C

(〈C〉(t)(n = 0)→ n0
t ) ∧ (〈C〉(t)(n = 1)→ n1

t )

Here, (n, t) ∈ C means that C refers to node n at time-point t.

SAT-Problem for All Satisfying Strengthenings. Given an assertion A =⇒ C of
depth d for a circuit c and a set of strengthening candidates SC, the SAT-problem for all
satisfying strengthenings, written SS(A =⇒ C, c,SC), is defined by:

SS(A =⇒ C, c,SC) = DTSA(A,SC, c, d) ∧ SAT(C)

The solutions to the above SAT-problem represent exactly those valuations φ and
strengthenings γ such that γ is a satisfying strengthening of A =⇒ C w.r.t. φ.
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4.3 Finding a Weakest Assignment

Calling a SAT-solver on the SAT-problem for all satisfying strengthenings,
SS(A =⇒ C, c,SC), yields a satisfying strengthening (if one exists). This satisfying
strengthening, however, is not necessarily a weakest satisfying strengthening. To find
a weakest satisfying strengthening, iteratively “blocking constraints” are added to the
SAT-problem that block the last found strengthening and allow only strictly weaker
strengthenings. This process is repeated until the SAT-problem becomes unsatisfiable;
the last found satisfying strengthening is then guaranteed to be a weakest satisfying
strengthening. As said earlier, weakest strengthenings are not neccessarily unique; the
result of this process is an arbitrary weakest satisfying strengthening.

Given a strengthening γ : SC → {0, 1}, the blocking constraint consists of four
parts: (1) for every node n that is assigned value X at time t by γ, we require that it is
assigned value X in any weaker strengthening, (2) any node that is assigned value 0 at
time t is allowed to assume values 0 and X in a weaker strengthening, but not value 1,
(3) any node that is assigned value 1 at time t is allowed to assume values 1 and X in a
weaker strengthening, but not value 0, and (4) at least one of the nodes should change
value. This yields the following blocking constraint B(γ):

B(γ) = (
∧

(t,n)∈SC,γ(t,n)=X (¬n̂0
t & ¬n̂1

t ) )
∧ (

∧
(t,n)∈SC,γ(t,n)=0 ¬n̂1

t )
∧ (

∧
(t,n)∈SC,γ(t,n)=1 ¬n̂0

t )
∧ ((

∨
γ(t,n)=0 ¬n̂0

t ) ∨ (
∨

γ(t,n)=1 ¬n̂1
t ))

The solutions to the SAT-problem B(γ) represent exactly those strengthenings γ′ such
that γ′ < γ. This finishes the description of the algorithm for finding a weakest satisfy-
ing strengthening.

4.4 Contradicting Strengthenings

Given a circuit c and an assignment of symbolic variables φ : V → {0, 1}, a contradict-
ing strengthening of an assertion A =⇒ C is a strengthening γ such that such that there
exists a node n, time-point t, and Boolean value b, such that simulating using γ and A
yields b for n at time t (i.e. φ

c [[ Str(A, γ) ]](t)(n) = b), but the consequent requires n to
be ¬b (i.e. φ[C ](t)(n) = ¬b). Again, we require that the strengthened antecedent does
not yield overconstrained nodes, i.e. φ

c [[ Str(A, γ) ]] ∈ Seq3.
The SAT-problem for finding a weakest contradicting strengthening has the same

structure as the SAT-problem for the weakest satisfying strengthening; one part for the
antecedent, and one part for the consequent. The SAT-problem for the contradiction of
a consequent C, written CON(C), is constructed such that at least one node differs in
its Boolean value from what is required by C:

CON(C) =
∨

(n,t)∈C

(〈C〉(t)(n = 0) ∧ n1
t ) ∨ (〈C〉(t)(n = 1) ∧ n0

t )

The SAT-problem for all contradicting strengthenings, written CS(A =⇒ C, c,SC)
is defined by: CS(A =⇒ C, c,SC) = DTSA(A,SC, c, d) ∧ CON(C). We find an
actual weakest contradicting strengthening in exactly the same way as described in the
previous subsection.
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5 Discussion

We have introduced the novel concept of strengthenings, that can greatly assist in per-
forming manual abstraction refinement for STE. Furthermore, we have developed a
SAT-based algorithm for finding weakest strengthenings using an incremental SAT-
solver to minimise the strengthening. We have implemented the algorithm in a tool
called STAR, and have shown how it can be used to assist in abstraction refinement in a
non-trivial case-study.
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Fig. 6. Experimental results for CAMs with a tag-width of 16 bits, a data-width of 64 bits, and a
varying number of entries, using a PC with a Pentium IV processor at 3GHz and 2GB of memory

As far as we believe, the information provided by our method cannot be calculated
by BDD-based techniques, because too many BDD-variables would be needed.

Scalability. We believe that our method scales well. To illustrate this, we compare
the running times1 of three different experiments for CAMs with a varying number of
entries2 in Fig. 6: (a) finding a weakest satisfying strengthening of CAM assertion 2
using STAR, (b) proving the corrected assertion using a SAT-based STE model-checker
(as described in [9]), and (c) proving the corrected assertion with BDDs using Forte.

As the figure shows, when the right abstraction has been found, BDD-based STE
is superior over SAT-based STE for proving properties. As discussed before, finding

1 For the SAT-based methods we only show the time spent by SAT-solving. Overhead in sim-
ulating the circuit is not counted since this was implemented inefficiently. Efficient symbolic
simulators (like the one in Forte) can perform symbolic simulation with Boolean expressions
in negligible time.

2 We provide the netlists of the CAMs used at http://www.cs.chalmers.se/˜jwr/CAV2006.
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the right abstraction is, however, highly non-trivial. Here, STAR can help by finding
weakest strengthenings. The graph shows that this can be done in reasonable time.

Another Application. In practical uses of STE, often the first step in a verification
attempt is the wiggling phase [1]. The goal of this phase is to find out what minimal set
of inputs and initial values of registers should be driven to make non-X values appear at
designated circuit outputs. Commonly, wiggling is performed by using the STE-model
checker as a scalar (that is, non-symbolic) simulator; the simulator is iteratively fed with
vectors of Boolean values and X’s, in the hope that, by trial-and-error, a minimal set of
nodes to be driven can be found. Our method provides a more systematic approach to
wiggling; the STAR tool can be asked to provide a weakest strengthening such that a
given set of output nodes takes on non-X values. The adaption needed to the algorithm
presented in the previous section is trivial. We have used this “wiggling”-mode of STAR

on several different kinds of circuits (CAMs, memories, and arithmetic circuits), always
quickly obtaining a weakest strengthening making a set of given outputs non-X.

Future Work. We would like to investigate whether we can use the presented tech-
nique for automatic discovery of symbolic indexing schemes [6].
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Abstract. Symbolic Trajectory Evaluation (STE) is a powerful technique for
model checking. It is based on 3-valued symbolic simulation, using 0,1 and X
(”unknown”). The X value is used to abstract away parts of the circuit. The ab-
straction is derived from the user’s specification. Currently the process of ab-
straction and refinement in STE is performed manually. This paper presents an
automatic refinement technique for STE. The technique is based on a clever se-
lection of constraints that are added to the specification so that on the one hand
the semantics of the original specification is preserved, and on the other hand, the
part of the state space in which the ”unknown” result is received is significantly
decreased or totally eliminated. In addition, this paper raises the problem of vacu-
ity of passed and failed specifications. This problem was never discussed in the
framework of STE. We describe when an STE specification may vacuously pass
or fail, and propose a method for vacuity detection in STE.

1 Introduction

Symbolic Trajectory Evaluation (STE) [11] is a powerful technique for hardware model
checking. STE is based on combining 3-valued simulation with symbolic simulation.
It is applied to a circuit M , described as a graph over nodes (gates and latches). The
specification consists of assertions in a restricted temporal language. The assertions
are of the form A =⇒ C, where the antecedent A expresses constraints on nodes n at
different times t, and the consequent C expresses requirements that should hold on such
nodes (n, t). STE computes a symbolic representation for each node (n, t). The size of
this representation depends on the size of A, rather than on the circuit size. Abstraction
in STE is derived from the specification by initializing all inputs not appearing in A
to the X (“unknown”) value. A forth value, ⊥, represents a contradiction between the
constraint of A on some node (n, t) and its actual behavior. A refinement amounts to
changing the assertion in order to present nodes values more accurately.

STE assertions may either pass or fail on M . In [5], a 4-valued truth domain {0, 1, X,
⊥} is defined for the temporal language of STE, corresponding to the 4-valued domain
of the values of the circuit nodes. The motivation for a 4-valued semantics is to dis-
tinguish between different causes for the pass or fail of an STE assertion. The X truth
value distinguishes the case in which the STE assertion fails due to partial information
about the state space from the case in which it is actually violated by M . In the latter
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case a counterexample is produced, representing an execution of M that satisfies A but
contradicts C. The X truth value stems from a too coarse antecedent which underspeci-
fies the circuit. The⊥ truth value indicates that the STE assertion passes vacuously due
to a contradiction between A and M .

Generalized STE (GSTE) [19] is a significant extension of STE that can verify all ω-
regular properties. Manual refinement methods for GSTE are presented in [18]. In [16],
SAT-based STE is used for manual refinement of GSTE assertion graphs.

(G)STE has been in active use in the industry, and has been very successful in
verifying huge circuits containing large data paths [12,10,17]. Its main drawback, how-
ever, is the need for manual abstraction and refinement, which can be very labor-
intensive.

Our Contribution. We propose a technique for automatic refinement of assertions in
STE. In our technique, the initial abstraction is derived, as usual in STE, from the given
specification. The refinement is an iterative process, which stops when a truth value
other than X is achieved. In case of a 0 truth value, a counterexample is presented to
the user. Our automatic refinement is applied when the STE specification results with
X . We compute a set of input nodes, whose refinement is sufficient for eliminating
the X truth value. We further suggest heuristics for choosing a small subset of this
set.

Selecting a ”right” set of inputs has a crucial role in the success of the abstraction
and refinement process: selecting too many inputs will add many variables to the com-
putation of the symbolic representation, and may result in memory and time explosion.
On the other hand, selecting too few inputs or selecting inputs that do not affect the
result of the verification will lead to many iterations with an X truth value.

We point out that, as in any automated verification framework, we are limited by
the following observations. First, there is no automatic way to determine whether the
provided specification is correct. Therefore, we assume it is, and we make sure that our
refined assertion passes on the concrete circuit iff the original assertion does. Second,
bugs cannot automatically be fixed. Thus, counterexamples are analyzed by the user.

Abstraction-Refinement is a well known methodology in model checking [4,6] for
fighting the state explosion problem. In [3], it is shown that the abstraction in STE is an
abstract interpretation via a Galois connection. [9] presents a SAT-based algorithm to
assist in manual refinement of STE assertions. However, automatic refinement has never
been suggested before for STE. The work that is closest to ours is [15], which suggests
an automatic abstraction-refinement for symbolic simulation. However, the suggested
heuristics are significantly different from ours.

Another important contribution of our work is identifying that STE results may hide
vacuity. This possibility was never raised before. Hidden vacuity may occur since an
abstract execution of M on which the truth value of the specification is 1 or 0, might
not correspond to any concrete execution of M . In such a case, a pass is vacuous, while
a counterexample is spurious. We propose a method for detecting these cases.

We implemented our automatic refinement technique within Intel’s Forte environ-
ment [12]. We ran it on two nontrivial circuits with several assertions. Our experimen-
tal results show success in automatically identifying a set of inputs that are crucial for
reaching a definite truth value. Thus, a small number of iterations were needed.
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2 Basic Definitions

A circuit M consists of a set of nodes N , connected by directed edges. The nodes
consist of inputs and internal nodes. Internal nodes consist of latches and combinational
nodes. Each combinational node is associated with a Boolean function. We say that a
node n1 enters a node n2 if there exists a directed edge from n1 to n2. The nodes
entering a certain node are its source nodes, and the nodes to which a node enters are
its sink nodes. The value of a latch at time t can be expressed as a Boolean expression
over its source nodes at times t and t − 1, and over the latch value at time t − 1. The
directed graph induced by M may contain loops but no combinational loops.
Throughout the paper we refer to a node n at a specific time t as (n, t).

The bounded cone of influence (BCOI) of a node (n, t) contains all nodes (n′, t′)
with t′ ≤ t that may influence the value of (n, t), and is defined recursively as follows:
the BCOI of a combinational node at time t is the union of the BCOI of its source nodes
at time t, and the BCOI of a latch at time t is the union of the BCOI of its source nodes
at times t and t− 1 according to the latch type.

AND X 0 1 ⊥
X X 0 X ⊥
0 0 0 0 ⊥
1 X 0 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

OR X 0 1 ⊥
X X X 1 ⊥
0 X 0 1 ⊥
1 1 1 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

NOT
X X
0 1
1 0
⊥ ⊥

Fig. 1. Quaternary operations

Usually, the circuit nodes receive
Boolean values. In STE, a third value,
X (”unknown”), is introduced. At-
taching X to a certain node repre-
sents lack of information regarding the
truth value of that node. A forth value,
⊥, is added to represent the over-
constrained value, in which a node is
forced both to 0 and to 1. This value indicates that contradiction exists between external
assumptions on the circuit and its actual behavior. The set of valuesQ ≡ {0, 1, X,⊥}
forms a complete lattice with the partial order 0 � X , 1 � X , ⊥ � 0 and ⊥ � 1. This
order corresponds to set inclusion, where X represents the set {0, 1}, and ⊥ represents
the empty set. As a result, the greatest lower bound � corresponds to set intersection
and the least upper bound � corresponds to set union. The Boolean operations AND,
OR and NOT are extended to the domainQ as shown in Figure 1.

A state s of the circuit M is an assignment of values from Q to all circuit nodes,
s : N → Q. Given two states s1, s2, we say that s1 � s2 ⇐⇒ ((∃n ∈ N : s1(n) =
⊥) ∨ (∀n ∈ N : s1(n) � s2(n))). A state is concrete if all nodes are assigned with
values out of {0, 1}. A state s is an abstraction of a concrete state sc if sc � s.

A sequence σ is any infinite series of states. We denote by σ(i), i ∈ N, the state
at time i in σ, and by σ(i)(n), i ∈ N, n ∈ N , the value of node n in the state σ(i).
σi, i ∈ N, denotes the suffix of σ starting at time i. We say that σ1 � σ2 ⇐⇒ ((∃i ≥
0, n ∈ N : σ1(i)(n) = ⊥) ∨ (∀ i ≥ 0 : σ1(i) � σ2(i))). Note that we refer to states
and sequences that contain ⊥ values as least elements w.r.t �.

Let V be a set of symbolic Boolean variables over the domain {0, 1}. A symbolic
expression over V is an expression consisting of quaternary operations, applied to V ∪
Q. A symbolic state over V is a mapping which maps each node of M to a symbolic
expression. Each symbolic state represents a set of states, one for each assignment to the
variables in V . A symbolic sequence over V is a series of symbolic states. It represents
a set of sequences, one for each assignment to V . Given a symbolic sequence σ and
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an assignment φ to V , φ(σ) denotes the sequence that is received by applying φ to all
symbolic expressions in σ. Given two symbolic sequences σ1,σ2 over V , we say that
σ1 � σ2 if for all assignments φ to V , φ(σ1) � φ(σ2).

A Trajectory Evaluation Logic (TEL) formula is defined recursively over V as fol-
lows:

f ::= n is p | f1 ∧ f2 | p→ f |Nf

where n ∈ N , p is a Boolean expression over V and N is the next time operator.
Note that TEL formulas can be expressed as a finite set of constraints on values of
specific nodes at specific times. N t denotes the application of t next time operators.
The constraints on (n, t) are those appearing in the scope of N t. The maximal depth of
a TEL formula f , denoted depth(f ), is the maximal time t for which a constraint exists
in f on some node (n, t), plus 1.

Usually, the satisfaction of a TEL formula f on a symbolic sequence σ is defined
in the 2-valued truth domain [11], i.e., f is either satisfied or not satisfied. In [5], Q is
used also as a 4-valued truth domain for an extension of TEL. Our 4-valued semantics
definition is different from [5] w.r.t ⊥ values. In [5], a sequence σ containing ⊥ values
could satisfy f with a truth value different from⊥. In our definition this is not allowed.
We believe that our definition captures better the intent behind the specification w.r.t
contradictory information about the state space. Given a TEL formula f over V , a sym-
bolic sequence σ over V , and an assignment φ to V , we define the satisfaction of f as
follows:

[φ, σ |= f ] = ⊥ ↔ ∃i ≥ 0, n ∈ N : φ(σ)(i)(n) = ⊥. Otherwise:
[φ, σ |= n is p] = 1 ↔ φ(σ)(0)(n) = φ(p)
[φ, σ |= n is p] = 0 ↔ φ(σ)(0)(n) �= φ(p) and φ(σ)(0)(n) ∈ {0, 1}
[φ, σ |= n is p] = X ↔ φ(σ)(0)(n) = X φ, σ |= p→ f = (¬φ(p) ∨ φ, σ |= f)
φ, σ |= f1 ∧ f2 = (φ, σ |= f1 ∧ φ, σ |= f2) φ, σ |= Nf = φ, σ1 |= f

Note that given an assignment φ to V , φ(p) is a constant (0 or 1). In addition, the⊥ truth
value is determined only according to φ and σ, regardless of f . It is proven in [5] that
the satisfaction relation is monotonic, i.e., for all TEL formulas f , symbolic sequences
σ1, σ2 and assignments φ to V , if φ(σ2) � φ(σ1) then [φ, σ2 |= f ] � [φ, σ1 |= f ]. This
also holds for our satisfaction definition. We define the truth value of σ |= f as follows:

[σ |= f ] = 0 ↔ ∃φ : [φ, σ |= f ] = 0
[σ |= f ] = X ↔ ∀φ : [φ, σ |= f ] �= 0 and ∃φ : [φ, σ |= f ] = X
[σ |= f ] = 1 ↔ ∀φ : [φ, σ |= f ] �∈ {0, X} and ∃φ : [φ, σ |= f ] = 1
[σ |= f ] = ⊥ ↔ ∀φ : [φ, σ |= f ] = ⊥

It is proven in [5] that every TEL formula f has a defining sequence, which is a
symbolic sequence σf so that [σf |= f ] = 1 and for all σ, [σ |= f ] ∈ {1,⊥} iff
σ � σf . For example, σq→(n is p) is the sequence s(n,q→p)sxsxsx..., where s(n,q→p)
is the state in which n equals (q → p) ∧ (¬q → X), and all other nodes equal X , and
sx is the state in which all nodes equal X . σf may be incompatible with the behavior
of M . A (symbolic) trajectory π is a (symbolic) sequence that is compatible with the
behavior of M [8]: let val(n, t) be the value of a node (n, t) as computed according to
its source nodes values in π. It is required that for all nodes (n, t), π(t)(n) � val(n, t)
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(strict equality is not required in order to allow external assumptions on nodes values to
be embedded into π). A trajectory is concrete if all its states are concrete. A trajectory
π is an abstraction of a concrete trajectory πc if πc � π.

The defining trajectory πf of M and f is a symbolic trajectory so that [πf |= f ] ∈
{1,⊥} and for all trajectories π of M , [π |= f ] ∈ {1,⊥} iff π � πf (Similar definitions
for σf and πf exist in [11] w.r.t a 2-valued truth domain). Given σf , πf is computed as
follows: ∀i, πf (i) is initialized to σf (i), and the nodes values from time i and i− 1 are
propagated forward to nodes at time i until no new values are derived. The � operator
is used to incorporate a propagated value into the current value of a node (n, i).

STE assertions are of the form A =⇒ C, where A (the antecedent) and C (the
consequent) are TEL formulas. A expresses constraints on circuit nodes at specific
times, and C expresses requirements that should hold on circuit nodes at specific times.
M |= (A =⇒ C) iff for all concrete trajectories π of M and assignments φ to V ,
[φ, π |= A] = 1 implies that [φ, π |= C] = 1.

N4

N5

N3

N6

In1

In2

In3
N2

N1

Fig. 2. A Circuit

A natural verification algorithm for an STE asser-
tion A =⇒ C is to compute the defining trajectory
πA of M and A and then compute the truth value of
πA |= C. If [πA |= C] ∈ {1,⊥} then it holds that
M |= (A =⇒ C). If [πA |= C] = 0 then it holds that
M �|= (A =⇒ C). If [πA |= C] = X , then it cannot
be determined whether M |= (A =⇒ C). The case
in which there is φ so that φ(πA) contains ⊥ is known
as an antecedent failure. The default behavior of most
STE implementations is to consider antecedent failures
as illegal, and the user is required to change A in order to eliminate any ⊥ values.
For lack of space, in the rest of the paper, we take the same approach. The alternative
approach of STE implementations that supports occurrences of ⊥ in πA is described
in [13]. Note that although πA is infinite, it is suffice to examine only a bounded prefix
of length depth(A) in order to detect⊥ in πA. The first⊥ in πA is the result of the � op-
eration on some node (n, t), where both operands have contradicting assignments 0 and
1. Since ∀i > depth(A) : σA(i) = sx, it must hold that t ≤ depth(A). In order to com-
pute πA |= C (assuming πA does not contain ⊥), πA is compared to σC , the defining
sequence of C. If πA � σC , then [πA |= C] = 1. If there are φ, i ≥ 0, n ∈ N so that
φ(πA)(i)(n) �� φ(σC)(i)(n) and φ(πA)(i)(n) �- φ(σC)(i)(n), then [πA |= C] = 0.
Otherwise, [πA |= C] = X . Note that although πA and σC are infinite, it is suffice to
examine only a bounded prefix of length depth(C), since ∀i > depth(C) : σC(i) = sx.

Example 1. Consider the circuitM in Figure 2, containing three inputs In1, In2 and In3,
two OR nodes N1 and N2, two AND nodes N3 and N6, and two latches N4 and N5. For
simplicity, the latches clocks were omitted and at each time t the latches sample their
data source node from time t−1. Note the negation on the source node In2 of N2. Also
consider the STE assertion A =⇒ C, where A = (In1 is 0)∧(In3 is v1)∧(N3 is 1), and
C = N(N6 is 1). Figure 3 describes the defining trajectory πA of M and A, up to time
1. It contains the symbolic expression of each node at time 0 and 1. The state πA(i) is
represented by row i. The notation v1?1 : X stands for ”if v1 holds then 1 else X”. σC

is the sequence in which all nodes at all times are assigned X , except for node N6 at
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time 1, which is assigned 1. [πA |= C] = 0 due to those assignments in which v1 = 0.
We will return to this example in Section 5.

Time In1 In2 In3 N1 N2 N3 N4 N5 N6
0 0 X v1 X v1?1 : X 1 X X X
1 X X X X X X 1 v1 v1

Fig. 3. The Defining Trajectory πA

STE implementations use a specific
encoding called dual rail in order
to represent the nodes (n, t) in se-
quences. The dual rail of a node
(n, t) in πA consists of two func-
tions defined from V to {0, 1}: f1

n,t

and f0
n,t, where V is the set of variables appearing in A. For each assignment φ to V ,

if f1
n,t ∧ ¬f0

n,t holds under φ, then (n, t) equals 1 under φ. Similarly, ¬f1
n,t ∧ f0

n,t,
¬f1

n,t∧¬f0
n,t and f1

n,t∧ f0
n,t stand for 0, X and⊥ under φ, respectively. Likewise, g1

n,t

and g0
n,t is the dual rail representation of (n, t) in σC . Note that g1

n,t ∧ g0
n,t never holds,

since we always assume that C is not self-contradicting.

3 Choosing Our Automatic Refinement Methodology

Intuitively, the defining trajectory πA of a circuit M and an antecedent A is an ab-
straction of all concrete trajectories of M on which the consequent C is required to
hold. This abstraction is directly derived from A. If [πA |= C] = X , then A is too
coarse, that is, contains too few constraints on the values of circuit nodes. Our goal is to
automatically refine A (and subsequently πA) in order to eliminate the X truth value.

In this section we examine the requirements that should be imposed on automatic
refinement in STE. We then describe our automatic refinement methodology, and for-
mally state the relationship between the two abstractions, derived from the original and
refined antecedent. We refer only to STE implementations that compute πA. We assume
that antecedent failures are handled as described in Chapter 2.

Traditionally, the abstraction and refinement process in STE works as follows: the
user writes an STE assertion A =⇒ C for M , and receives a result from STE. If
[πA |= C] = 0, then the set of all φ so that [φ, πA |= C] = 0 is provided to the user.
This set, called the symbolic counterexample, is given by the Boolean expression over
V :
∨

(n,t)∈C((g1
n,t∧¬f1

n,t∧f0
n,t)∨(g0

n,t∧f1
n,t∧¬f0

n,t)). It stems from either an illegal
behavior of the circuit, or an erroneous specification. The user decides which of these
possibilities the counterexample displays. If [πA |= C] = X , then the set of all φ so
that [φ, πA |= C] = X is provided to the user. This set, called the symbolic incomplete
trace, is given by:

∨
(n,t)∈C((g1

n,t ∨ g0
n,t) ∧ ¬f1

n,t ∧ ¬f0
n,t). The user decides how to

refine the specification in order to eliminate the partial information that causes the X
truth value. Otherwise, [πA |= C] = 1 and the verification completes successfully.

As mentioned before, we must assume that the given specification is correct. Thus,
automatic refinement of A must preserve the semantics of A =⇒ C: Let Anew =⇒ C
denote the refined assertion. Let runs(M) denote the set of all concrete trajectories of
M . We require that Anew =⇒ C holds on runs(M) iff A =⇒ C holds on runs(M).

In order to achieve the above preservation, we chose our automatic refinement as
follows. Whenever [πA |= C] = X , we add constraints to A that force the value of
input nodes at certain times (and initial values of latches) to the value of fresh symbolic
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variables, that is, symbolic variables that do not already appear in V . By initializing
an input (in, t) with a fresh symbolic variable instead of X , we represent the value
of (in, t) accurately and add knowledge about its effect on M . However, we do not
constrain input behavior that was allowed by A, nor do we allow input behavior that
was forbidden by A. Thus, the semantics of A is preserved. In Section 4, a small but
significant addition is made to our refinement technique.

We now formally state the relationship between the abstractions derived from the
original and the refined antecedents. Let A be the antecedent we want to refine. Let Aorg

be the original antecedent written by the user. Let Vnew be a set of symbolic variables
so that V ∩ Vnew = ∅. Let PIref be the set of inputs at specific times, selected for
refinement. Let Anew be a refinement of A over V ∪ Vnew , where Anew is received
from A by attaching to each input (in, t) ∈ PIref a unique variable vin,t ∈ Vnew and
adding conditions to A as follows: Anew = A ∧

∧
(in,t)∈PIref

N t(p → (in is vin,t)),
where p = ¬q if (in, t) has a constraint N t(q → (in is e)) in Aorg for some Boolean
expressions q and e over V , and p = 1 otherwise ((in, t) has no constraint in Aorg).
The reason we consider Aorg is to avoid a contradiction between the added constraints
and the original ones, due to constraints in Aorg of the form q → f .

Let πAnew be the defining trajectory of M and Anew, over V ∪ Vnew . Let φ be an
assignment to V . Then runs(Anew ,M, φ) denotes the set of all concrete trajectories π
for which there is an assignment φ′ to Vnew so that (φ ∪ φ′)(πAnew) is an abstraction
of π. Since for all concrete trajectories π, [(φ ∪ φ′), π |= Anew ] = 1 ⇐⇒ π �
(φ ∪ φ′)(πAnew ), we get that runs(Anew,M, φ) are exactly those π for which there is
φ′ so that [(φ ∪ φ′), π |= Anew ] = 1.

Theorem 1. 1. For all assignments φ to V , runs(A,M, φ) = runs(Anew ,M, φ).
2. If [πAnew |= C] = 1 then ∀φ it holds that ∀π ∈ runs(A,M, φ) : [φ, π |= C] = 1.
3. If there is φ′ to Vnew and π ∈ runs(Anew ,M, φ ∪ φ′) so that [(φ ∪ φ′), π |=

Anew ] = 1 but [(φ∪φ′), π |= C] = 0 then π ∈ runs(A,M, φ) and [φ, π |= A] = 1
and [φ, π |= C] = 0.

Theorem 1 implies that if Anew =⇒ C holds on all concrete trajectories of M , then so
does A =⇒ C. Moreover, if Anew =⇒ C yields a concrete counterexample ce, then ce
is also a concrete counterexample w.r.t A =⇒ C.

4 Selecting Inputs for Refinement

In this section we describe how exactly the refinement process is performed. We assume
that [πA |= C] = X , and thus automatic refinement is activated. Our goal is to add a
small number of constraints to A forcing inputs to the value of fresh symbolic variables,
while eliminating as many assignments φ as possible so that [φ, πA |= C] = X . The
refinement process is incremental - inputs (in, t) that are switched from X to a fresh
symbolic variable will not be reduced to X in subsequent iterations.

Choosing Our Refinement Goal. Assume that [πA |= C] = X , and the symbolic in-
complete trace is generated. This trace contains all assignments φ for which [φ, πA |=
C] = X . For each such assignment φ, the trajectory φ(πA) is called an incomplete
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trajectory. In addition, this trace may contain multiple nodes that are required by C to a
definite value (either 0 or 1) for some assignment φ, but equal X . We refer to such nodes
as undecided nodes. We want to keep the number of added constraints small. There-
fore, we choose to eliminate one undecided node (n, t) in each refinement iteration,
since different nodes may depend on different inputs. A motivation for eliminating only
part of the undecided nodes is that an eliminated X value may be replaced in the next
iteration with a definite value that contradicts the required value (a counterexample).
We suggest to choose an undecided node (n, t) with minimal number of inputs in its
BCOI. Out of those, we choose a node with minimal number of nodes in its BCOI. Our
experimental results support this choice. The chosen undecided node is our refinement
goal and is denoted (root, tt). We also choose to eliminate at once all incomplete tra-
jectories in which (root, tt) is undecided. These trajectories are likely to be eliminated
by similar sets of inputs. Thus, by considering them all at once we can considerably
reduce the number of refinement iterations, without adding too many variables.

The Boolean expression (¬f1
root,tt∧¬f0

root,tt∧(g1
root,tt∨g0

root,tt)) represents the set
of all φ for which (root, tt) is undecided in φ(πA). Our goal is to add a small number
of constraints to A so that (root, tt) will not be X whenever (g1

root,tt ∨ g0
root,tt) holds.

Eliminating Irrelevant Inputs. Once we have a refinement goal (root, tt), we need to
choose inputs (in, t) for which constraints will be added to A. Naturally, only inputs in
the BCOI of (root, tt) are considered, but some of these inputs can be safely eliminated.

Consider an input (in, t), an assignment φ to V and the defining trajectory πA. We
say that (in, t) is relevant to (root, tt) under φ, if there is a path of nodes P from
(in, t) to (root, tt) in M , so that for all nodes (n, t′) in P , φ(πA)(t′)(n) = X . (in, t)
is relevant to (root, tt) if there exists φ so that (in, t) is relevant to (root, tt) under φ.

For each (in, t), we compute the set of assignments to V for which (in, t) is rel-
evant to (root, tt). The computation is performed recursively starting from (root, tt).
(root, tt) is relevant when it is X and is required to have a definite value: (¬f1

root,tt ∧
¬f0

root,tt ∧ (g1
root,tt ∨ g0

root,tt)). A source node (n, t) of (root, tt) is relevant when-
ever (root, tt) is relevant and (n, t) equals X . Let out(n, t) return the sink nodes
of (n, t) that are in the BCOI of (root, tt). Proceeding recursively, we compute for
each node (n, t) the set of assignments relevantn,t given by the Boolean expression
(
∨

(m,t′)∈out(n,t) relevantm,t′) ∧ ¬f0
n,t ∧ ¬f1

n,t, until we reach the input nodes (in, t).
For all φ that are not in relevantin,t, changing (in, t) from X to 0 or to 1 in φ(πA)

can never change the value of (root, tt) in φ(πA) from X to 0 or to 1. Thus, if (in, t) is
chosen for refinement, a possible optimization is to constrain it to a fresh symbolic vari-
able only when relevantin,t holds, as follows: relevantin,t → Nt(in is vin,t). If (in, t)
is chosen in a subsequent iteration for refinement of a new refinement goal (root′, tt′),
then the previous constraint is extended by disjunction to include the condition under
which (in, t) is relevant to (root′, tt′). Theorem 1 holds also for the optimized re-
finement. Let PI be the set of inputs of M . The set of all inputs that are relevant to
(root, tt) is PI(root,tt) ≡ {(in, t) | in ∈ PI ∧ relevantin,t �≡ 0}. Adding constraints
to A for all relevant inputs (in, t) will result in a refined antecedent Anew . In πAnew , it
is guaranteed that (root, tt) will not be undecided. Note that PI(root,tt) is sufficient but
not minimal for elimination of all undesired X values from (root, tt). Namely, adding
constraints for all inputs in PI(root,tt) will eliminate all cases in which (root, tt) is
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undecided. However, adding constraints for only a subset of PI(root,tt) may still elim-
inate all such cases. The set PI(root,tt) may be valuable to the user even if automatic
refinement does not take place, since it excludes inputs that are in the BCOI of (root, tt)
but will not change the verification results w.r.t (root, tt).

Heuristics for Selection of Important Inputs. We now propose heuristics for select-
ing a subset of PI(root,tt) for refinement. A motivation for this is that a 1 or 0 truth
value may be reached even without adding constraints for all relevant inputs.

We apply the following heuristics: each node (n, t) selects a subset of PI(root,tt) as
candidates for refinement. The final set of inputs for refinement is selected out of the
candidates of (root, tt). Each input in PI(root,tt) selects itself as a candidate. Other
inputs have no candidates for refinement. sourceCandn,t denotes the sets of candi-
dates of the source nodes of a node (n, t), excluding the source nodes that do not have
candidates. The candidates of (n, t) are determined as follows:

1. If there are candidate inputs that appear in all sets of sourceCandn,t, then they are
the candidates of (n, t).

2. Otherwise, if (n, t) has source nodes that can be classified as control and data, then
the candidates of (n, t) are the union of the candidates of its control source nodes,
if this union is not empty. For example, a latch has one data source node and at
least one control source node - its clock. The identity of control source nodes is
automatically extracted from the netlist representation of the circuit.

3. If none of the above holds, then the candidates of (n, t) are the inputs with the
largest number of occurrences in sourceCandn,t.

We prefer to refine inputs that affect control before those that affect data since the
value of control inputs has usually more affect on the verification result. Moreover, the
control inputs determine when data is sampled. Therefore, if the value of a data input is
required for verification, it can be restricted according to the value of previously refined
control inputs. In the final set of candidates, sets of nodes that are entries of the same
vector are treated as one candidate. Since the heuristics could not prefer one entry of the
vector over the other, then probably only their joint value can change the verification
result. Additional heuristics choose a fixed number of l candidates out of the final set.

5 Detecting Vacuity and Spurious Counterexamples

In this section we raise the problem of hidden vacuity and spurious counterexamples
that may occur in STE. This problem was never addressed before in the context of STE.

In STE, A functions both as determining the level of the abstraction of M , and as
determining the trajectories of M on which C is required to hold. An important point is
that the constraints imposed by A are applied (using the � operator) to abstract trajec-
tories of M . If for some node (n, t) and assignment φ to V , there is a contradiction be-
tween φ(σA)(t)(n) and the value propagated through M to (n, t), then φ(πA)(t)(n) =
⊥, indicating that there is no concrete trajectory π so that [φ, π |= A] = 1.

In this section we point out that due to the abstraction in STE, it is possible that for
some assignment φ to V , there are no concrete trajectories π so that [φ, π |= A] = 1,
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but still φ(πA) does not contain ⊥ values. This is due to the fact that an abstract tra-
jectory may represent more concrete trajectories than the ones that actually exist in M .
Consequently, it may be that [φ, πA |= C] ∈ {1, 0}, and there is no indication that this
result is vacuous, i.e., for all concrete trajectories π, [φ, π |= A] = 0. Note that this
problem may only happen if A contains constraints on internal nodes of M . Given a
constraint a on an input, there always exists a concrete trajectory that satisfies a (unless
a itself is a contradiction, which can be easily detected). This problem exists also in
STE implementations that do not compute πA, such as [8].

Example 2. We return to Example 1 from Section 2. Note that the defining trajectory
πA does not contain ⊥. In addition, [πA |= C] = 0 due to the assignments to V in
which v1 = 0. However, A never holds on concrete trajectories of M when v1 = 0,
since N3 at time 0 will not be equal to 1. Thus, the counterexample is spurious, but
we have no indication of this fact. The problem occurs when calculating the value of
(N3,0) by computing X � 1 = 1. If A had contained a constraint on the value of In2 at
time 0, say (In2 is v2), then the value of (N3,0) in πA would have been (v1 ∧ v2)� 1 =
(v1 ∧ v2?1 : ⊥), indicating that for all assignments in which v1 = 0 or v2 = 0, πA does
not correspond to any concrete trajectory of M .

Vacuity may also occur if for some φ to V , C under φ imposes no requirements. This
is due to constraints of the form p→ f where φ(p) is 0.

An STE assertion A =⇒ C is vacuous in M if for all concrete trajectories π of M
and assignments φ to V , either [φ, π |= A] = 0, or C under φ imposes no requirements.
This definition is compatible with the definition in [1] for ACTL.

We say that A =⇒ C passes vacuously on M if A =⇒ C is vacuous in M and
[πA |= C] ∈ {⊥, 1}. A counterexample π is spurious if there is no concrete trajectory
πc of M so that πc � π. Given πA, the symbolic counterexample ce is spurious if for
all assignments φ to V in ce, φ(πA) is spurious. A =⇒ C fails vacuously on M if
[πA |= C] = 0 and ce is spurious.

As explained before, vacuity detection is required only when A constrains internal
nodes. It is performed only if [πA |= C] ∈ {0, 1} (if [πA |= C] = ⊥ then surely
A =⇒ C passes vacuously). In order to detect non-vacuous results in STE, we need to
check whether there exists an assignment φ to V and a concrete trajectory π of M so
that C under φ imposes some requirement and [φ, π |= A] = 1. In case [πA |= C] = 0,
we also require that [φ, π |= C] = 0. Since A can be expressed as an LTL formula, we
can translate A and M into a Bounded Model Checking (BMC) [2] problem. Note that
in this BMC problem we search for a satisfying assignment for A, not for its negation.
Additional constraints should be added to the BMC formula as follows.

For detection of vacuous pass, the BMC formula is constrained as follows: Recall
that (g1

n,t, g
0
n,t) denotes the dual rail representation of (n, t) in σC . The Boolean expres-

sion g1
n,t∨g0

n,t represents all assignments φ to V under which C imposes a requirement
on (n, t). Thus,

∨
(n,t)∈C g1

n,t ∨ g0
n,t represents all assignments φ under which C im-

poses some requirement, and is added as an additional constraint to the BMC formula.
A satisfying assignment to the resulting formula constitutes a witness for A =⇒ C.

For detection of vacuous fail, the BMC formula is constrained by conjunction with
the symbolic counterexample ce =

∨
(n,t)∈C((g1

n,t∧¬f1
n,t∧f0

n,t)∨(g0
n,t∧f1

n,t∧¬f0
n,t)).
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ce represents all assignments φ for which [φ, πA |= C] = 0. A satisfying assignment to
the resulting formula constitutes a concrete counterexample for A =⇒ C.

If BMC finds a satisfying assignment to the resulting formula, then the original truth
value of [πA |= C] is returned. Otherwise, we conclude that the STE result is vacuous.
In [13], we suggest an alternative vacuity detection algorithm that uses STE and present
an additional vacuity problem that arises in constraint-based STE [8].

6 Experimental Results

We implemented our automatic refinement algorithm AutoSTE on top of STE in Intel’s
FORTE environment [12]. AutoSTE receives a circuit M and an STE assertion A =⇒
C. When [πA |= C] = X , it chooses a refinement goal (root, tt) out of the undecided
nodes, as described in Section 4. Next, it computes the set of relevant inputs (in, t). The
Heuristics described in Section 4 are applied in order to choose a subset of those inputs.
In our experimental results we restrict the number of refined candidates in each iteration
to 1. A is changed as described in Section 4 and STE is rerun on the new assertion.

We ran AutoSTE on two different circuits, which are challenging for Model Check-
ing: the Content Addressable Memory (CAM) from Intel’s GSTE tutorial, and IBM’s
Calculator 2 design [14]. The latter has a complex specification.Therefore, it constitutes
a good example for the benefit the user can gain from automatic refinement in STE. All
runs were performed on a 3.2 GHz Pentium 4 computer with 4 GB memory.

hitTAG MEMORY

DATA MEMORY

n

n

d

aread

dwrite
dout

daddr[log(n)−1..0]

datain[d−1..0]

t

tagin[t−1..0]

taddr[log(n)−1..0]

twrite

Fig. 4. Content Addressable Memory. Tag size=t,
Number of entries=n, Data size=d.

Content Addressable Memory. The
CAM shown in Figure 4 contains 16
entries, has a data size of 64 bits and
a tag size of 8 bits. It contains 1152
latches, 83 inputs and 5064 combi-
national gates. CAMs use bit fields
called tags to identify particular data
entries stored in an array. The associa-
tive read operation (aread) of CAMs
consists of searching in parallel all
tags in the CAM tag memory to find
a match to an input tag (tagin). If a match is found, the CAM outputs the associated
data entry to dout. The verification of the aread operation using STE is described in [7].
The assertions in [7] contain assumptions on the internal state of the tag memory. The
user may want to check the aread operation after a write operation to the tag memory. In
STE such cases can be checked by bounding the time that passed between the writing
and the reading of the tag. We present the results of AutoSTE on 3 such assertions.
Figure 5 reports the final result, number of refinement iterations, run-time in seconds
and peak BDD nodes for each assertion. Table 1 reports the refinement goal and added
constraint in each refinement iteration. vn,t denotes a fresh symbolic variable for node
(n, t). −→v n,t denotes a vector of fresh symbolic variables for a vector of nodes (n, t).

Assertion 1 checks that if a tag value
−−→
TAG is written to an address

−→
A in the tag

memory at time 0 (where
−−→
TAG and

−→
A are vectors of symbolic variables over {0, 1}),

and at time 1
−−→
TAG is read, then it should be found in the tag memory and hit should
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be 1: (tagin is
−−→
TAG)∧(taddr is

−→
A )∧(twrite is 1)∧N((areadis1)∧(taginis−−−→TAG)) =⇒

N(hitis1). Assertion 1 should pass: if at time 1 there is no write operation to the tag
memory (twrite is 0), then

−−→
TAG should be found in address

−→
A . If at time 1 twrite is 1,

Assertion result Total Iter. Time BDD Nodes
1 pass 2 3 4768
2 fail 7 20 57424
3 fail 3 17 29006

Fig. 5. Automatic Refinement Performance on
CAM Assertions

−−→
TAG should be found since it is writ-
ten again to the tag memory. However,
[πA |= C] = X . Since twrite and
taddr at time 1 are X , the CAM cannot
determine whether to write the value
of tagin at time 1 to the tag memory,
and to which tag entry to write it. As a
result, the entire tag memory at time 1
is X .Thus, hit at time 1 is X .

After two refinements, AutoSTE returns a pass result. Note that only constraints
necessary for obtaining the pass result were added.

−−→
TAG �= 0 appears in the constraint

since in this CAM implementation, the default value of the data source nodes of the tag
memory is 0. Thus, when

−−→
TAG = 0, even without knowing if and to which entry a tag is

written at time 1, the CAM determines that a tag that equals 0 exists in the tag memory.
Assertion 2 is an extension of Assertion 1. We add a constraint to the antecedent

that at time 0, datamem[−→A ] is
−→
D . We also add a requirement to the consequent that at

time 1, dout is
−→
D . The first two refinements are the same as for assertion 1. The next

refinement goal is dout[0]. In iterations 3-4, twrite and taddr at time 1 are added to
A when

−−→
TAG = 0, since they are required in order to determine the value of dout[0]

at time 1. The relevant inputs for refinement in iterations 5-7 were dwrite, daddr and
din[0], all at times 0 and 1, the initial values of all tag memory entries and of bit number
0 of all data memory entries. The final iteration yields a counterexample in which dwrite
at time 1 equals 1, daddr at time 1 equals taddr at time 0, and din[0] at time 1 is different
from D[0]. This counterexample stems from an erroneous specification. If new data is
written at time 1 to the data entry associated with

−−→
TAG, then dout at time 1 will be equal

to the new data. Note that only constraints relevant to this counterexample were added.
Assertion 3 is as follows: (tagin is

−−−→
TAG)∧(taddr is

−→
A )∧(twrite is 1)∧(datamem[−→A ]

is
−→
D) ∧N((twrite is 0) ∧ (dwrite is 0)) ∧ N2((aread is 1) ∧ (tagin is

−−−→
TAG) ∧

Table 1. Automatic Refinement of CAM Assertions

Assertion Iteration Goal Added Constraint
1,2 1 hit,1 N(

−−→
TAG �= 0 → twrite is vtwrite,1)

1,2 2 hit,1 N((
−−→
TAG �= 0 ∧ vtwrite,1 = 1) → taddr is −→v taddr,1)

2 3 dout[0],1 N(
−−→
TAG = 0 → twrite is vtwrite,1)

2 4 dout[0],1 N((
−−→
TAG = 0 ∧ vtwrite,1 = 1) → −−→

taddr is −→v taddr,1)

2 5 dout[0],1 N(dwrite is vdwrite,1)

2 6 dout[0],1 N(vdwrite,1 = 1 → −−−→
daddr is −→v daddr,1)

2 7 dout[0],1 N(((vdwrite,1 = 1) ∧ (−→v daddr,1 =
−→
A ))→ din[0] is vdin[0],1)

3 1 dout[0],2 D[0] �= 0→ dwrite is vdwrite,0

3 2 dout[0],2 (D[0] �= 0 ∧ vdwrite,0 = 1)→ −−−→
daddr is −→v daddr,0

3 3 dout[0],2 (D[0] �= 0 ∧ −→A �= 0) → tagmem0 is −→v tagmem0,0



202 R. Tzoref and O. Grumberg

(twrite is 0) ∧ (dwrite is 0)) =⇒ N2((hit is 1) ∧ (dout is
−→
D)). This assertion should

fail since the tag memory may already hold at time 0 a tag that equals
−−→
TAG. Though

usually it is assumed that the CAM environment will not write the same tag to two
different entries, most CAM implementations do not assume so. AutoSTE generates a
counterexample after 3 refinement iterations. In the counterexample, tag entry 0 equals−−→
TAG, and the address

−→
A to which

−−→
TAG is written is different from 0. The data asso-

ciated with tag entry 0 appears in dout, rather than the one written to address
−→
A . This

assertion demonstrates the case in which there is a need for refinement of initial values
of latches (tagmem0 at time 0). Since our heuristics prefer inputs that influence control,
the constraint on tagmem0 was added after constraints were added on dwrite and

−−−→
daddr

at time 0.

Calculator Design. Calculator 2 design [14] shown in Figure 6 is used as a case study
design in simulation based verification. It contains 2781 latches, 157 inputs and 56960
combinational gates. The calculator supports 4 types of commands: add, sub, shift right
and shift left. none stands for no command. Any other command is invalid. It has two
internal arithmetic pipelines: one for add/sub and one for shifts. The first argument of
the command is sent at the same cycle as the command. The second argument is sent in
the next cycle. The tag is a unique identifer for each of the commands from each of the 4
ports. It is sent at the same cycle as the command. The commands may be executed out
of order. However, commands from the same port that use the same pipeline must return
in order. The response is 1 for good, 2 for underflow, overflow or invalid command, 3
for an internal error and 0 for no response. Reset is 1 for the first 3 cycles.

SHIFT PIPELINE

PIPELINE

ADD/SUB

reset

c_clk

req1_cmd_in[0:3]
req1_data_in[0:31]
req1_tag_in[0:1]

req2_cmd_in[0:3]
req2_data_in[0:31]
req2_tag_in[0:1]

req3_cmd_in[0:3]
req3_data_in[0:31]
req3_tag_in[0:1]

req4_cmd_in[0:3]
req4_data_in[0:31]
req4_tag_in[0:1]

out_resp1[0:1]

out_data1[0:31]
out_tag1[0:1]

out_resp2[0:1]
out_data2[0:31]
out_tag2[0:1]

out_resp3[0:1]
out_data3[0:31]

out_resp4[0:1]
out_data4[0:31]
out_tag4[0:1]

out_tag3[0:1]

Fig. 6. Calculator

We present the results of AutoSTE on 4
assertions. Figure 7 reports the final result,
number of refinement iterations, run-time in
seconds and peak BDD nodes for each asser-
tion. For lack of space, the description of as-
sertion 4 exists in [13]. Table 2 reports the
refinement goal and added constraint in each
refinement iteration for assertions 1-3.

Assertion 1 checks whether after reset, if
a port sends an add or sub command, and the
other ports send no command or a command
other than add and sub, then the port that
sent the add/sub command receives a good
response with the appropriate tag at the first
available time (4 cycles after the commands were sent). A vector

−→
P of symbolic vari-

ables is used to determine which port is sending the add or sub command.
In the counterexample, a data overflow occurs for an add command sent by port

1, which triggers an invalid response at cycle 7. The BCOI of out resp1[0] contains all
command, tag and data inputs of all ports at different times. However, the set of relevant
inputs contains only all entries of req1 data in at cycles 3 and 4. req1 data in[31] at
cycles 3 and 4 is the minimal subset that is suffice to produce a counterexample, and is
indeed the one chosen by our heuristics.
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Assertion 2 constrains the command sent by port i to add. The msb bits of the sent
data are constrained to 0 to avoid a possible overflow. The requirement is that the output
data for port i should match the expected data. No constraints exist on the commands
sent by other ports. In the counterexample, both ports 1 and 2 send an add command.
Port 1 is answered before port 2. The assertion fails due to an erroneous specification:
since port 1 has priority over port 2, port 2 may not receive a response at the first possible
cycle. Due to the implementation of the priority queue, the value of an additional port
had to be definite. The BCOI of (out resp2[0],7) contains cmd, data and tag inputs of all
ports at cycles 3 and 4. Out of them, only the cmd and data inputs are relevant inputs.

Assertion result Total Iter. Time BDD Nodes
1 fail 2 87 6241
2 fail 2 100 20134
3 fail 1 220 530733
4 pass 11 494 17323

Fig. 7. Automatic Refinement Performance on Cal-
culator Assertions

Assertion 3 presents the following
constraints: after reset, a port sends
an add or sub command, followed by
an add command with a certain tag
and data arguments, while limiting the
msb of the data to 0 to avoid a possible
overflow. All other ports do not send
an add or sub command during this
time. The requirements are: the port
that sent the add command receives a
response with the appropriate tag value and expected output data. There was one refine-
ment iteration. The BCOI of resp out1[0] includes all data and tag inputs of all ports.
However, only the tags of all ports at cycles 3-5 are relevant inputs. Our heuristics chose
the tag of port 1 at cycle 3. Choosing any other input would require additional iterations
in order to produce a counterexample. In the counterexample, the tag values of port 1
at cycles 3 and 4 are not consecutive. This counterexample stems from a planted de-
sign bug documented in [14]. There is supposed to be no restriction on tag ordering.
However, commands whose tags are out of order are treated as invalid.

Table 2. Automatic Refinement of Calculator Assertions

Assert. Iteration Goal Added Constraint
1 1 out resp1[0],7 N3−→P = 1→ req1 data in[31] is vreq1 data in[31],3

1 2 out resp1[0],7 N4−→P = 1→ req1 data in[31] is vreq1 data in[31],4

2 1 out resp2[0],7 N3−→P = 2 → req1 cmd in is −→v req1 cmd in,3

2 2 out resp2[0],7 N3(
−→
P = 2 ∧ −→v req1 cmd in,3 = (add ∨ sub))→

req3 cmd in is −→v req3 cmd in,3

3 1 out resp1[0],9 N3−→P = 1 → req1 tag in is −→v req1 tag in,3

Acknowledgement. We thank Eli Singerman for introducing us to STE and to the Forte
environment.
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Some Complexity Results

for SystemVerilog Assertions

Doron Bustan and John Havlicek

Freescale Semiconductor, Inc.

Abstract. SystemVerilog Assertions (SVA) is a linear temporal logic
within the recently approved IEEE 1800 SystemVerilog standard. The
complexities of the satisfiability and model-checking problems are stud-
ied for a basic subset of SVA and for extensions of the basic subset ob-
tained by adding each of the following features: local variables, regular
expression intersection, quantified variables, and property declarations
with arguments. It is shown that the complexities for the basic subset
are PSPACE-complete, while the complexities increase to EXPSPACE-
complete 1 in each of the extensions. Alternating Büchi automata con-
structions provide the upper bounds, while reductions from PSPACE
and EXPSPACE tiling problems provide the lower bounds.

1 Introduction

SystemVerilog Assertions, abbreviated SVA, is the assertion sublanguage of the
recently approved IEEE 1800 SystemVerilog standard [14]. It is a linear tem-
poral logic that is intended to be used to represent correctness properties and
functional coverage events for the validation and verification of SystemVerilog
designs. Prior to revision in the IEEE P1800 committee, development of Sys-
temVerilog was carried out within the Accellera Organization, culminating in
Accellera SystemVerilog 3.1a [1]. Industrial interest in SVA has been growing, as
evidenced by its support in electronic design automation (EDA) tools, its dis-
cussion among verification engineers [19], and its deployment by semiconductor
companies.

SVA has been developed in parallel with another recently approved standard
assertion language, IEEE 1850 Property Specification Language (PSL) [15]. The
two languages share a common core based on regular expressions. The common
core includes temporal properties built using implication with regular expression
antecedent and the standard logical boolean operators. While SVA and PSL have
syntactic differences, there has been substantial work within Accellera and IEEE
committees to ensure that the languages are aligned on the semantics of the
common core. The two languages differ more substantially outside the common
core.

1 EXPCACE is defined us
⋃

k∈� DSPACE(2nk

).

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 205–218, 2006.
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PSL provides the standard LTL operators, which are not in SVA, quantified
variables, and numerous derived operators.2 PSL, similar languages, such as For-
Spec, and academic simplifications have also received attention in recent liter-
ature [5,4,9,6]. However, there remain gaps in the analysis of the complexity of
these languages for model checking. SVA, on the other hand, provides local vari-
ables as one of its distinguishing features. A local variable is used to capture the
value of an expression at one point within a property and hold it for later refer-
ence, after which the local variable may be reassigned. Without local variables,
complex auxiliary state machines are often required to represent temporal prop-
erties of practical interest. This makes local variables extremely useful for an
industrially deployed temporal logic. The semantics of local variables has been
studied in the committees [10], but SVA with local variables has received little
attention in the literature and the expressiveness and complexity of the logic
have not been studied before. This theoretical deficit has resulted in a certain
amount of confusion in the industrial verification community. EDA companies
disagree on what part of SVA should be supported in model checking, and ver-
ification engineers do not know whether properties that run in simulation can
reasonably be expected to be supported in formal verification.

In this paper, we fill some of the theoretical gaps by studying the expres-
siveness and complexity of a basic subset of SVA and several of its extensions.
The basic subset is obtained from the common core by eliminating the intersec-
tion operator on regular expressions. Previous work shows that the basic subset
can express all omega-regular languages [4] and that the satisfiability and model-
checking problems for the basic subset are in PSPACE [7,8]. We prove a matching
lower bound, hence these problems for the basic subset are PSPACE-complete.

We prove that extending the basic subset of SVA with either local variables or
intersection of regular expressions increases the complexity of satisfiability and
model-checking from PSPACE-complete to EXPSPACE-complete. For each of
these extensions, we present a construction of alternating Büchi automata that
gives an algorithm with tight complexity for the satisfiability and model-checking
problems. These constructions also prove that the extensions do not increase
expressiveness. Adding both local variables and intersection, the complexity of
these problems in the combined extension remains EXSPACE-complete. We also
study extension of the basic subset with quantified variables analogous to those
in PSL. The satisfiability and model-checking problems for this extension are
EXSPACE-complete. Finally, we study extension of the basic subset with de-
clared properties and arguments. Their addition also results in EXPSPACE-
complete complexity for satisfiability and model checking. With the exception of
those involving local variables, each of the results also holds for the correspond-
ing subset of PSL.

Our lower bounds imply that, from the point of view of complexity classes,
addition to the basic subset of any one of local variables, regular expression inter-
section, quantified variables, or declared properties with arguments is not harder

2 PSL also offers a branching subset with CTL-like syntax and semantics. In this paper
we consider only the linear subset of PSL.
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than another. Statements like “local variables cannot be used in model checking”
and “local variables can be used in model checking only if they are restricted to
analogues of PSL quantified variables” are not justified by our complexity anal-
ysis. The jump from PSPACE-hard to EXPSPACE-hard is significant, though,
and model checking of arbitrary properties in these extensions is not gener-
ally considered practical. This does not mean that such features should not be
supported in model-checking tools. Consider the simple use of integer constant
parameters in operators, such as [*n] (repeat n times). This feature also makes
the model-checking problem EXPSPACE-hard because integers have logarith-
mic representation [2]. We do not conclude that parameters should be written in
unary or that declaration and instantiation of properties with arguments should
be disallowed for formal verification. Such features are considered indispensable
in industrially deployed languages. Similarly, local variables, regular expression
intersection, and quantified variables are in the standardized assertion languages
because they have proven to be very useful for writing properties in industrial
practice. By understanding how the various language features contribute to the
complexity, verification engineers can make more informed decisions about trade-
offs in coding styles for properties and can better estimate their tractability in
formal verification. Tool builders also can better target the sources of hardness
for model checking while providing a richer feature set in the property language
that is supported. Hopefully, the automata constructions from this paper will
provide a starting point for broader EDA tool support for formal verification
using SVA.

2 Preliminaries

Given a set A, A∗ denotes the set of finite words over A, Aω denotes the set
of infinite words over A, and A∞ denotes the union A∗ ∪ Aω. The length of
word u ∈ A∞ is denoted |u|. The empty word is denoted ε. The letters of u
are indicated by superscripts and are indexed consecutively beginning at zero. If
|u| > 0, then the first letter of u is denoted u0; if |u| > 1, then the second letter
of u is denoted u1; and so forth.

SVA has four language layers: boolean, sequence, property, and statement. The
boolean layer consists of boolean expressions in which each variable referenced
is either a design variable or a local variable of the assertion. Σ denotes the
finite alphabet of valuations of the design variables. The sequence layer consists
of regular expressions over the boolean layer. Every regular language of finite
words over Σ can be represented by a suitably chosen sequence. The property
layer combines sequences to create temporal logic formulas. The statement layer
defines whether a property is to be evaluated as an obligation, an assumption,
or a coverage goal. SVA statements are not discussed further in this paper.

For simplicity, we restrict each local variable to have a single-bit, boolean
type (i.e., type bit in SystemVerilog). For a given finite set of sequences and
properties, there is a finite set V of local variables that appear therein. The set of
valuations of these local variables is 2V . It is understood that V is disjoint from
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the set of design variables. The set of semantic equivalence classes of boolean
expressions can be identified with 2Σ×2V

. The constant “true” is denoted 1, and
the constant “false” is denoted 0.

For the rest of this document we use the following notations: σ denotes a letter
in Σ; w, x, y, z denote finite or infinite words over Σ; v denotes a one-bit local
variable; b and e denote boolean expressions; R denotes a sequence; P denotes a
property; and L denotes a local variable valuation in 2V . Primes, subscripts, and
superscripts are also added to these notations. The grammar for SVA sequences
is

R ::= b | (1, v = e) | ( R ) | R ##0 R | R ##1 R | R or R |
R intersect R | R[*0] | R[*1:$]

R[*0:$] is an abbreviation for R[*0] or R[*1:$], and, for n > 0, R[*n] is
an abbreviation for the concatenation R ##1 · · · ##1 R (n copies of R).

The grammar for SVA properties is

P ::= R | ( P ) | P or P | P and P | R |-> P | not P

R seq P is an abbreviation for not(R |-> (not P)). The operator seq is the
dual of |->.3

Tight Satisfaction of Sequences. Tight satisfaction is a four-way relation,
denoted w,L0, L1 |≡ R, that defines when a finite word w together with input
local variable valuation L0 satisfies a sequence R and yields output local variable
valuation L1. Determination of whether the relation holds can be thought of
as evaluation of R over w starting with local variable valuation L0. As R is
evaluated, its local variables may be assigned, reassigned, and referenced at
various points. In order for the result of the evaluation to be well-defined, a
reference to a local variable must not be made unless the structure of R ensures
that the local variable holds a well-defined value at that point. There is some
subtelty to this requirement. For example, a local variable may be assigned
inconsistently in the two operands of intersect, after which a well-defined value
cannot be guaranteed.

The IEEE 1800 standard addresses this problem by restricting syntactically
the places within a sequence or property at which a given local variable can be
referenced.4 These restrictions ensure that references to local variables yield well-
defined values [10]. For example, if a local variable is assigned in both operands of
an intersect, then the local variable cannot be referenced after the intersect
until it has been reassigned a well-defined value. We assume that all top-level
properties satisfy the restrictions (e.g., as checked by a compiler). This allows
us to simplify the definition of tight satisfaction from that given in [14].

For a boolean expression b and (σ, L) ∈ Σ×2V , let b[σ, L] denote the boolean
value obtained by evaluating the expression b using the valuation (σ, L) of the
design and local variables. The tight satisfaction relation is defined as follows:
3 “seq” is not an explicit operator of SVA. It is equivalent to the the follows by operator

of ForSpec [4].
4 See the recursive functions flow , sample, and block defined in Annex E of [14].
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– w,L0, L1 |≡ b iff |w| = 1 and b[w0, L0] = 1 and L1 = L0.
– w,L0, L1 |≡ (1, v = e) iff |w| = 1 and L1 results from L0 by assigning

e[w0, L0] to v.
– w,L0, L1 |≡ ( R ) iff w,L0, L1 |≡ R.
– w,L0, L1 |≡ R1 ##0 R2 iff there exist x, y, z, L′ such that w = xyz and
|y| = 1 and xy, L0, L

′ |≡ R1 and yz, L′, L1 |≡ R2.
– w,L0, L1 |≡ R1 ##1 R2 iff there exist x, y, L′ such that w = xy and

x, L0, L
′ |≡ R1 and y, L′, L1 |≡ R2.

– w,L0, L1 |≡ R1 or R2 iff either w,L0, L1 |≡ R1 or w,L0, L1 |≡ R2.
– w,L0, L1 |≡ R1 intersect R2 iff there exist L′, L′′ such that w,L0, L

′ |≡ R1
and w,L0, L

′′ |≡ R2 and L1(v) = L′(v) if v is assigned in R1, and L1(v) =
L′′(v) otherwise.

– w,L0, L1 |≡ R[*0] iff |w| = 0 and L1 = L0.
– w,L0, L1 |≡ R[*1:$] iff there exist j ≥ 1 and L(0) = L0, w1, L(1), w2, L(2),

. . . , wj , L(j) = L1 such that w = w1w2 · · ·wj and for every i such that
1 ≤ i ≤ j, wi, L(i−1), L(i) |≡ R.

The asymmetry of the definition of L1 in the case of intersect is justified as
follows. If v is assigned in both R1 and R2, then the syntactic restrictions bar
its reference after the intersect until it is reassigned. Therefore, we are free to
let v take either the value from L′ or the value from L′′.

Satisfaction of Properties. Satisfaction is a three-way relation, denoted
w,L |= P , that defines when an infinite word w together with input local
variable valuation L satisfies a property P

– w,L |= R iff there exist x, y, L′ such that w = xy, |x| > 0, and x, L, L′ |≡ R.
– w,L |= ( P ) iff w,L |= P .
– w,L |= P1 or P2 iff either w,L |= P1 or w,L |= P2.
– w,L |= P1 and P2 iff both w,L |= P1 and w,L |= P2.
– w,L |= R |-> P iff for all x, y, z, L′ such that w = xyz and |y| = 1 and

xy, L, L′ |≡ R, yz, L′ |= P .
– w,L |= not P iff w,L �|= P .

Let P be a top-level property. The syntactic restrictions on references to local
variables guarantee that for any L,L′, w,L |= P iff w,L′ |= P . We write w |= P
iff for some (equivalently, for all) L ∈ 2V , w,L |= P , and we let L(P ) denote the
set {w ∈ Σω | w |= P}. A model satisfies P iff each of its infinite computation
traces satisfies P .

An SVA property is in positive normal form (PNF) if it does not contain
any not operator. Positive normal form can be achieved by using DeMorgan’s
laws and the duality of |-> and seq to push all not operators down until they
apply only to the boolean layer, where they can be absorbed into the boolean
expressions. The case of not R is handled by using the fact that, as property, R
is equivalent to R seq 1.
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Automata. A nondeterministic finite word automaton (NFW ) is a tuple N =
〈Σ,S, S0, ρ, F 〉, where Σ is a finite alphabet, S is a finite set of states, ρ ⊆
S×Σ×S is a transition relation,5 S0 ⊆ S is a set of initial states, and F ⊆ S is
a set of accepting states. A sequence ξ = ξ0ξ1 · · · ξk ∈ S∗ (k ≥ 0) is a run of N
over the finite word w ∈ Σ∗ provided k = |w|, ξ0 ∈ S0, and for every 0 ≤ i < |w|,
(ξi, wi, ξi+1) ∈ ρ. The run ξ is accepting if ξ|w| ∈ F . An NFW N accepts a word
w if there exists an accepting run of N over w. We use L(N) to denote the set
of words in Σ∗ that are accepted by N .

A nondeterministic Büchi automaton (NBW ) is a tuple 〈Σ,S, S0, ρ, F 〉 de-
fined similarly to NFW. The automaton accepts an infinite word w iff it has an
infinite run over w which contains infinitely many accepting states.

For a given set X , let Bool+(X) be the set of positive Boolean formulas over
X (i.e., Boolean formulas built from elements in X using ∧ and ∨), where we
also allow the formulas true and false. Let Y ⊆ X . We say that Y satisfies a
formula θ ∈ Bool+(X) if the truth assignment that assigns true to the members
of Y and assigns false to the members of X\Y satisfies θ. A tree is a prefix-closed
subset X ⊆ N∗.

An alternating Büchi word automaton (ABW ) is a tuple B = 〈Σ,Z, z0, δ, A〉,
where Σ, Z, and A are as Σ, S, and F (respectively) in the definition of NFW,
z0 ∈ Z is a single initial state, and δ : Z×Σ → Bool+(Z) is a transition function.
A run tree of B on an infinite word w ∈ Σω is a pair (X, τ) where X is a (possibly
infinite) tree and τ : X → Z is a labeling function such that τ(ε) = z0 and such
that the following holds: if x ∈ X , |x| = i, τ(x) = z, and δ(z, wi) = θ, then x has
k children x1, . . . , xk in X for some 0 ≤ k ≤ |Z| and {τ(x1), . . . , τ(xk)} satisfies
θ. The run tree (X, τ) is accepting if every infinite branch in X has infinitely
many labels in A. Note that the run tree can also have finite branches: if |x| = i,
τ(x) = z, and δ(z, wi) = true, then x need not have any children. B accepts a
word w ∈ Σω if there exists an accepting run tree of B over w. We use L(B) to
denote the set of words in Σω that are accepted by B.

An alternating transition system (ATS ) is a tuple B = 〈Σ,Z,Z0, δ, A〉, where
Σ, Z, δ, and A are as in the definition of ABW and Z0 ⊆ Z is a set of initial
states. For z ∈ Z0, B(z) is the ABW that results from B by replacing Z0 by z.

SVA Subsets. The basic subset of SVA, denoted SVAb, is obtained by limiting
the sequence operators to ##1, ##0, or, [*0], and [*1:$]. All SVA property
operators are allowed, but local variables and intersect are excluded. Every
operator in SVAb has an equivalent operator in PSL. We consider the following
extensions to the basic subset: (1) SVAb+l, obtained by adding local variables;
(2) SVAb+i, obtained by adding the intersect operator; (3) SVAb+d, obtained
by adding declared properties with arguments; and (4) SVAb+q, obtained by
adding quantified variables analogous to those in PSL.6 SVAb+l+i denotes the
extension of SVAb by adding both local variables and the intersect operator.
The quantified variables feature is defined as follows. Let P be a property with
5 ρ can also be given as a function S ×Σ → 2S .
6 SVA does not have quantified variables, so SVAb+q is not, strictly speaking, a subset

of SVA. However, SVAb+q is equivalent to a subset of PSL.
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free variable x. Then “for x in S: and P” is equivalent to “ands∈SP |x←s” and
“for x in S: or P” is equivalent to “ors∈SP |x←s”. P |x←s results from P by
replacing every occurrence of x by s.

3 Automata Constructions for SVA

In [7] it is shown how to construct an ABW for each formula from a subset of
PSL. The size of the ABW is linear in the size of the formula. Every operator in
SVAb has an equivalent operator in this subset of PSL. Thus, for every property P
in SVAb there exists an ABW with size linear in the size of P that accepts L(P ).
For every property P in SVAb+q or in SVAb+d there is a simple exponential
translation to a property in SVAb. Therefore, there exists an ABW with size
exponential in the size of P that accepts L(P ).

The construction presented in [7] first builds particular NFWs for the se-
quences and then uses these NFWs to construct the ABW. The construction of
the ABW can take any NFW in place of the particular ones given for sequences,
and the size of the ABW is linear in the sizes of the NFWs plus the number
of property operators. While the PSL subset considered in [7] does not include
intersection, an exponential construction for NFWs for regular expressions with
the intersect operator is given in [13]. Using this construction, it follows that for
every property P in SVAb+i there exists an ABW with size exponential in the
size of P that accepts L(P ). In the rest of this section we present exponential
ABW constructions for the SVAb+l and SVAb+l+i subsets.

NFW for Sequences with Local Variables. Let R be a sequence in SVAb+l.
We present an inductive construction of an NFW N(R) for R. The construction
will arrange a function λ mapping the set of states of N(R) to 2V . The base
cases are as follows.

– N(b) = 〈Σ, {0, 1}×2V , {0}×2V , ρ, {1}×2V 〉, where ρ is the set of ((0, L), σ,
(1, L)) such that b[σ, L] = 1. λ((0, L)) = λ((1, L)) = L.

– N(R[*0]) = 〈Σ, {0} × 2V , {0} × 2V , ∅, {0} × 2V 〉. λ((0, L)) = L.
– N((1, v = e)) = 〈Σ, {0, 1} × 2V , {0} × 2V , ρ, {1} × 2V 〉, where ρ is the set

of ((0, L), σ, (1, L′)) such that L′ results from L by assigning e[σ, L] to v.
λ((0, L)) = λ((1, L)) = L.

For the inductive cases, assume that we have constructed NFWs N(R1) =
〈Σ,S1, I1, ρ1, F1〉 and N(R2)=〈Σ,S2, I2, ρ2, F2〉 and associated functions λ1, λ2.
The sets S1 and S2 are assumed to have been made disjoint.

– N((R1)) = N(R1). λ = λ1.
– N(R1 ##0 R2) = 〈Σ,S1∪S2, I1, ρ1∪ρ2∪ρ, F2〉, where ρ is the set of (s1, σ, s2)

such that there exist s′ ∈ F1 and s′′ ∈ I2 such that (s1, σ, s
′) ∈ ρ1 and

(s′′, σ, s2) ∈ ρ2 and λ1(s′) = λ2(s′′). λ = λ1 ∪ λ2.
– N(R1 ##1 R2) = 〈Σ,S1∪S2, I, ρ1∪ρ2∪ρ, F2〉, where I = I1∪I2 if I1∩F1 �= ∅,

I = I1 otherwise, and ρ is the set of (s1, σ, s2) such that s2 ∈ I2 and there
exists s′ ∈ F1 such that (s1, σ, s

′) ∈ ρ1 and λ1(s′) = λ2(s2). λ = λ1 ∪ λ2.
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– N(R1 or R2) = 〈Σ,S1 ∪ S2, I1 ∪ I2, ρ1 ∪ ρ2, F1 ∪ F2〉. λ = λ1 ∪ λ2.
– N(R1[*1:$]) = 〈Σ,S1, I1, ρ1∪ρ, F1〉, where ρ is the set of (s, σ, s′) such that

s ∈ F1 and there exists s′′ ∈ I1 such that (s′′, σ, s′) ∈ ρ1 and λ1(s) = λ1(s′′).
λ = λ1.

By N(R)|L we mean the automaton obtained from N(R) by eliminating from
the set of initial states those that are not mapped by λ to L.

Lemma 1. Let R be a sequence in SVAb+l, and let w ∈ Σ∗. w,L0, L1 |≡ R iff
N(R)|L0 has an accepting run over w that ends in a state mapped by λ to L1.

Lemma 2. Let R be a sequence in SVAb+l, let V be the set of local variables in R,
and let S(R) be the set of states in the NFW N(R). Then |S(R)| = O(|R| ·2|V |).

ABW for Properties with Local Variables. Let P be a property in SVAb+l.
We present an inductive construction of an ATS B(P ) for P , which extend the
construction presented in [7]. The construction will arrange a function λ mapping
the set of states of B(P ) to 2V in such a way that λ induces a bijection when
restricted to the set of initial states. For L ∈ 2V , B(P )|L is the ABW that results
from B(P ) by restricting to the single initial state that is mapped by λ to L.

We assume that the properties are in PNF. Wherever a sequence R other than
1 or 0 appears as a property, we understand it to be replaced by R seq 1. The
base cases of the construction are as follows.

– B(1) = 〈Σ, {0}×2V , {0}×2V , δ, ∅〉, where δ((0, L), σ) = true. λ((0, L)) = L.
– B(0) = 〈Σ, {0}×2V , {0}×2V , δ, ∅〉, where δ((0, L), σ) = false. λ((0, L)) = L.

For the inductive cases, assume that we have constructed the NFW N(R) =
〈Σ,S, I, ρ, F 〉 and function λR for sequence R and, for i = 1, 2, the ATS Bi =
〈Σ,Zi, Zi0, δi, Ai〉 and function λi for property Pi. Let ρ be given as a function
2S × Σ → 2S, where ρ(S′, σ) = ∪s∈S′ρ(s, σ) for S′ ⊆ S. Assume also that the
state sets S,Z1, Z2 have been made disjoint and are disjoint from {0}× 2V . Let
I|L = I ∩ λ−1

R (L) and, for i = 1, 2, let zi0,L be the unique state of Zi0 mapped
by λi to L.

– B((P1)) = B(P1). λ = λ1.
– B(R |-> P1) = 〈Σ, ({0}× 2V )∪ S ∪Z1, {0}× 2V , δ ∪ δ1, S ∪A1〉, where δ is

defined over (({0} × 2V ) ∪ S)×Σ as follows.
• δ((0, L), σ) =

∧
ρ(I|L, σ) ∧

∧
δ1(Z, σ), where Z is the set of z ∈ Z10

such that λ1(z) ∈ λR(ρ(I|L, σ) ∩ F ).
• δ(s, σ) =

∧
ρ(s, σ) ∧

∧
δ1(Z, σ), where Z is the set of z ∈ Z10 such that

λ1(z) ∈ λR(ρ(s, σ) ∩ F ).
λ = λ′ ∪ λR ∪ λ1, where λ′ maps {0} × 2V by ((0, L)) .→ L.

– B(R seq P1) = 〈Σ, ({0} × 2V ) ∪ S ∪ Z1, {0} × 2V , δ ∪ δ1, A1〉, where δ is
defined over (({0} × 2V ) ∪ S)×Σ as follows.
• δ((0, L), σ) =

∨
ρ(I|L, σ) ∨

∨
δ1(Z, σ), where Z is the set of z ∈ Z10

such that λ1(z) ∈ λR(ρ(I|L, σ) ∩ F ).
• δ(s, σ) =

∨
ρ(s, σ) ∨

∨
δ1(Z, σ), where Z is the set of z ∈ Z10 such that

λ1(z) ∈ λR(ρ(s, σ) ∩ F ).
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λ = λ′ ∪ λR ∪ λ1, where λ′ maps {0} × 2V by ((0, L)) .→ L.
– B(P1 or P2) = 〈Σ, ({0}×2V )∪Z1∪Z2, {0}×2V , δ∪δ1∪δ2, A1∪A2〉, where

δ is defined over ({0}× 2V )×Σ by δ((0, L), σ) = δ1(z10,L, σ) ∨ δ2(z20,L, σ).
λ = λ′ ∪ λ1 ∪ λ2, where λ′ maps {0} × 2V by ((0, L)) .→ L.

– B(P1 and P2) = 〈Σ, ({0}×2V )∪Z1∪Z2, {0}×2V , δ∪δ1∪δ2, A1∪A2〉, where
δ is defined over ({0}× 2V )×Σ by δ((0, L), σ) = δ1(z10,L, σ) ∧ δ2(z20,L, σ).
λ = λ′ ∪ λ1 ∪ λ2, where λ′ maps {0} × 2V by ((0, L)) .→ L.

Lemma 3. Let P be a property in SVAb+l in PNF, and let w ∈ Σω. w,L |= P
iff w ∈ L(B(P )|L).

Lemma 4. Let P be a property in SVAb+l in PNF, let V be the set of local
variables in P , and let Z(P ) be the set of states in the ATS B(P ). Then |Z(P )| =
O(|P | · 2|V |).

The Intersect Operator. In this section we extend the construction of ABWs
for properties in SVAb+l to SVAb+l+i. Assume that for the sequences R1 and R2
we have constructed the NFWs N1 = 〈Σ,S1, I1, ρ1, F1〉 with mapping λ1 : S1 →
2V and N2 = 〈Σ,S2, I2, ρ2, F2〉 with mapping λ2 : S2 → 2V , respectively. We
define N(R1 intersect R2) = 〈Σ,S1 × S2, I, ρ, F1 × F2〉, where I = {(i1, i2) ∈
I1 × I2 | λ1(i1) = λ2(i2)} and

ρ = {((s1, s2), σ, (s′1, s
′
2)) | (s1, σ, s

′
1) ∈ ρ1 and (s2, σ, s

′
2) ∈ ρ2}

and we define λ : S1 × S2 → 2V by λ((s1, s2))(v) = λ1(s1)(v) if v is assigned in
R1 and λ((s1, s2))(v) = λ2(s2)(v) otherwise. The following lemma extends the
result of Lemma 1 to SVAb+l+i.

Lemma 5. Let R be a sequence in SVAb+l+i, and let w ∈ Σ∗. w,L0, L1 |≡ R iff
N(R)|L0 has an accepting run over w that ends in a state mapped by λ to L1.

Lemma 6. Let R be a sequence in SVAb+l+i, let V be the set of local variables
in R, and let S(R) be the set of states in the NFW N(R). If V is non-empty,
then |S(R)| = O(2|R|·|V |). Otherwise |S(R)| = O(2|R|).

Lemma 7. Let P be a property in SVAb+l+i in PNF, let V be the set of local
variables in P , and let Z(P ) be the set of states in the ATS B(P ). If V is
non-empty, then |Z(P )| = O(2|P |·|V |). Otherwise |Z(P )| = O(2|P |).

Upper Bound Complexity. Following the automata-theoretic approach of
[17], the satisfiability and model-checking problems for linear temporal logics are
solved by representing the property by an ABW and then translating the ABW
into an exponentially larger NBW [12]. Satisfiability is solved by checking for
emptiness of the NBW, and model-checking is solved by checking for emptiness
of the product of the model with the NBW for the negation of the property.
Since the emptiness problem for NBWs is in NLOGSPACE [18], the complexity
of these problems is in PSPACE with respect to the number of states of the
ABW [17]. These observations and the automata constructions of the preceding
sections lead to the following theorem.
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Theorem 1

– The satisfiability and model-checking problems for properties in any of the
extensions SVAb+i, SVAb+q, SVAb+d are in EXPSPACE with respect to |P |.

– The satisfiability and model-checking problems for properties in SVAb+l are
in EXPSPACE with respect to |V | and in PSPACE with respect to |P |.

– The satisfiability and model-checking problems for properties in SVAb+l+i are
in EXPSPACE with respect to |V | · |P |.

4 Lower Bounds

In this section we explore some of the “sources of hardness” of SVA satisfiability
and model-checking. In the previous section we showed that the satisfiability and
model checking problems for properties in SVAb are in PSPACE. A reduction
from the PSPACE tiling problem [20,11,16] can be used to prove the following.

Proposition 1. The satisfiability and model checking problems for properties in
SVAb are PSPACE-hard.

When SVAb is extended by local variables, regular expression intersection, de-
clared properties with arguments, or quantified variables, the complexity of the
model-checking and satisfiability problems become EXPSPACE-hard.

Theorem 2. The satisfiability and model checking problems for properties in
SVAb+l, SVAb+i, SVAb+d, and SVAb+q are EXPSPACE-hard.

We present a proof sketch by outlining a reduction from a version of the EX-
PSPACE tiling problem [20,11,16] to each of the subsets. In the EXPSPACE
tiling problem, the following are given: a finite set T of “tiles”, vertical and hor-
izontal restrictive relations V ⊆ T × T and H ⊆ T × T , an initial tile τ0 ∈ T ,
a final tile τa ∈ T , and an integer n > 0. The problem is to decide whether
there exists m > 0 such that there exists a tiling of a 2n ×m grid such that the
following hold: (1) τ0 is in the bottom left corner; (2) the first occurrence of τa

is in the top left corner; (3) every pair of horizontally neighboring tiles is in H;
and (4) every pair of vertically neighboring tiles is in V .

Given an EXPSPACE tiling problem T = 〈T,V ,H, τ0, τa, n〉, we define for
each subset a property P , polynomial7 in n, such that there exists an infinite
word w that satisfies P iff there exists a tiling for T = 〈T,V ,H, τ0, τa, n〉. The
idea is to partition w into substrings of length n called “blocks” such that every
block represents one tile. The n letters in a block provide a binary encoding
of a number between 0 and 2n − 1, inclusive. We refer to this number as the
counter value of the block. The blocks are enumerated in the order of increasing
counter values modulo 2n, starting from 0. Pairs of consecutive blocks (except
those enumerated (2n−1, 0)) must satisfiedH, and pairs of blocks whose counter
values are equal and are separated by 2n−1 intermediate blocks must satisfy V .

7 Quadratic for SVAb+i and SVAb+d, linear for the other extensions.
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We construct the properties for the reductions to the different subsets in two
parts. The shared part is common to all the properties and is in SVAb. For each
subset we construct its specific part using the extending feature of the subset.

The alphabet for all properties is 2{♣,♦,c,z} × T , where ♣ is a special signal
that marks the beginning of a block, ♦ is a special signal that is first high one
letter after the last block of the tiling, c is a one-bit signal used to represent
the counter value of the block, and z is an auxiliary variable used to represent
the carry over when incrementing the counter value. We use the convention that
the value of c in the first (resp., last) letter of a block is the least (resp., most)
significant bit of the counter value. The set T of tiles is of constant size. The
T component of a letter is referenced by the signal t. The tile represented by a
block is understood to be the value of t in its last letter.

For lack of space, we do not present the shared part. It is obtained by creating
properties in SVAb of size O(n) requiring that (1) a prefix of w be partitioned
into blocks of length n, the first letter of each being indicated by ♣; (2) the
counter values of the blocks increment modulo 2n starting at 0; (3) ♦ appear for
the first time after a block with counter value 2n − 1 and mark the first letter
after the end of the prefix; (4) the first block’s tile value be τ0; (5) the tile value
of the first block in the last row be τa; and (6) every two consecutive blocks in the
same row be in H. It remains to construct for each of the extensions the specific
part of the property requiring that a pair of blocks with the same counter value
that are separated by 2n − 1 intermediate blocks be in V .

For the local variable extension, we let Rc �=v denote a sequence that is tightly
satisfied by a block iff the counter value of the block is different than the binary
value represented by the local variables v0, v1, . . . , vn−1. Such a sequence can be
created with size O(n). Also, we let Rc=v denote the sequence
c == v0 ##1 c == v1 ##1 · · · ##1 c == vn−1,
which is tightly satisfied by a block iff the counter value of the block is equal to
the binary value represent by v0, v1, . . . , vn−1. The specific part P l

V for the local
variable extension is as follows:

(1[*n] ##0 t!= τa)[*0:$] ##1
(1,v0 = c) ##1 (1,v1 = c) ##1 · · · ##1 (1,vn−1 = c) ##0 t!= τa |->
andτ1∈T (t == τ1 |-> 1 ##1 Rc �=v[*1:$] ##1 Rc=v ##0 ||V(τ1,τ2)t == τ2)

After any number of blocks with tile other than τa, the counter value is stored
in v0, v1, . . . , vn−1. Then a conjunction over τ1 ∈ T of implications whose an-
tecedents test t == τ1 ensures that (τ1, τ2) ∈ V , where τ2 is the tile of the next
block at which the counter value equals the binary value saved in v0, v1, . . . , vn−1.
The size of P l

V is O(n).
The specific part for the extension by quantified variables is similar:
for v0,. . .,vn−1 in bit: and
(1[*n] ##0 t!= τa)[*0:$] ##1 Rc=v ##0 t!= τa |->
andτ1∈T (t == τ1 |-> 1 ##1 Rc �=v[*1:$] ##1 Rc=v ##0 ||V(τ1,τ2)t == τ2)

Instances of properties with arguments can be used to universally quantify
the arguments. In this way, we can adapt the specific part with quantified
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variables to serve as the specific part using declared properties with arguments.
Here is an example to illustrate. Let P (a, b, c) be a declared property with argu-
ments. Define P1(b, c) = P (1, b, c) and P (0, b, c), P2(c) = P1(1, c) and P1(0, c),
P3 = P2(1) and P2(0). The property P3 is equivalent to ∀a∀b∀c : P (a, b, c). The
adaptation involves n declared properties, each of size O(n), so the specific part
is of size O(n2).

For the specific part using intersect, we assume that the following auxiliary
sequences of size O(n) have been constructed. For 0 ≤ i ≤ n − 2, Ri is a
sequence that is tightly satisfied by a series of two or more blocks provided
the ith bits of the counters of the first and last blocks are equal. Rn−1 is a
sequence that is tightly satisfied by a series of two or more blocks provided the
(n−1)st bits of the counters of the first and last blocks are equal and, in addition,
counter bit n− 1 changes its value exactly twice in the intermediate blocks. The
minimum number of intermediate blocks is 2n−1, and the maximum number is
3 ·2n−1 +2. Inside these boundaries, distinct blocks have distinct counter values.
The sequence Rtiles in V is tightly satisfied by a series of blocks provided the pair
formed by the tiles of the first and last blocks is in V . From these auxiliary
sequences, we construct Rnext = R0 intersect · · · intersect Rn−1, which is
tightly satisfied by a series of blocks provided the first and last blocks have the
same counter value and there are exactly 2n− 1 intermediate blocks. Rnext is of
size O(n2). The specific part P i

V is as follows:

(1[*n− 1] ##1 t!= τa)[*0:$] ##1 1 |->
(1[*n− 1] ##1 t == τa) or (Rnext intersect Rtiles in V)

The consequent is tightly satisfied by a series of two or more blocks provided
that either the tile of the first block is τa or the first and last blocks have the
same counter value, their tiles are in V , and there are exactly 2n−1 intermediate
blocks. The property P i

V requires the consequent for every block before τa occurs.

5 Conclusions and Related Work

There has been some prior work on the complexity of satisfiability and model
checking of PSL and similar languages. In [4], the complexity of the ForSpec
language is shown to be PSPACE-complete. In [3] there is a discussion of the
complexity of the reset operator in Sugar and ForSpec. Symbolic verification of
PSL properties restricted to negated sequences is explored in [6]. A construction
of alternating Büchi automata for a large subset of PSL is presented in [7]. The
automata from this construction run over both finite and infinite words, and the
construction accounts for the neutral semantic variant for finite words.

In this paper we have explored the complexity of SVA. We have shown that
when features like local variables, regular expression intersection, and declared
properties with argument are used, the complexity of the language becomes
EXPSPACE-complete. These results invite further investigation of the practical
usage of these features and the performance of model-checking algorithms that
support them. Other theoretical gaps in the complexity analysis remain. For
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example, the expressiveness and complexity of SVA with recursive properties
and the complexity of checking SVA in simulation are still open.
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Abstract. Live Sequence Charts (LSCs) are an established visual for-
malism for requirements in formal, model-based development, in par-
ticular aiming at formal verification of the model. The model-checking
problem for LSCs is principally long solved as each LSC has an equiva-
lent LTL formula, but even for moderate sized LSCs the formulae grow
prohibitively large. In this paper we elaborate on practically relevant sub-
classes of LSCs, namely bonded and time bounded, which don’t require
the full power of LTL model-checking. For bonded LSCs, a combination
of observer automaton and fixed small liveness property and for addi-
tionally time bounded LSCs reachability checking is sufficient.

1 Introduction

Scenario-based approaches in general and Live Sequence Charts (LSCs) [1] in
particular have shown adequate for the formal specification of inter-object re-
quirements on distributed systems in formal, model-based development(cf. [2] for
references). That is, requirements on a system under design are formally spec-
ified by LSCs before a model of the system is built. Model-checking can then
automatically check whether the model satisfies the requirements to find errors
early, before the actual implementation.

The model-checking problem of LSCs vs. Kripke structures is principally
solved since universal LSCs translate to equivalent LTL formulae [3] and ex-
istential LSCs translate to observer automata, i.e. 1-acceptance [4], or CTL∗

thus corresponding model-checkers can directly be employed. Accordingly there
are proof-of-concept results for the formal verification of LSCs against State-
mate [5,6] and UML [7,8] models. In particular with the industrial case study
considered in [5] it turned out that the LTL formulae grow large even for LSCs
of moderate size. That is, formal verification becomes expensive due to the size
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of the requirements (for details cf. [3,9]). Our subject is efficient formal verifi-
cation of LSCs. We identify two sub-classes of LSCs for which techniques that
are faster but less powerful than LTL model-checking are sufficient, or help in
finding errors fast.

Related Work. Model-checking LSCs against system models has been first
investigated by [10]. They manually derive a selection of small, local LTL prop-
erties from an LSC and check whether they hold for a model of a bus protocol.
The limited size of the checked properties didn’t raise the need to consider more
efficient procedures. In [11], model-checking is used as a technique to obtain sat-
isfying paths for a set of LSCs in the context of playing-out LSCs [12]. Their
representation of LSCs employs one automaton per instance-line. Similarly, [13]
check a set of LSCs for consistency using a CSP semantics of LSCs, namely one
CSP process per instance line, and the FDR model-checker. Both are particu-
larly tailored for checking LSCs against each other and don’t discuss the relation
to general system model. Furthermore, both discuss only a limited subset of the
dialect [5], in particular excluding time. We use the term “LSC verification” sim-
ilar to, for instance, “LTL verification” which means checking a formula against
a model. The observer based approach for LSC model-checking has been intro-
duced in [14] and further studied in the context of Symbolic Timing Diagrams
(STDs) in [15]. Our results slightly extend [15] since we have to discuss the case
of non-deterministic automata which are needed for non-bonded LSCs while
deterministic automata are sufficient for the scope of [15].

The remainder of the paper is structured as follows. In Sect. 2 we briefly
recall LSCs. Section 3 introduces Timed Symbolic Automata (TSA), the seman-
tical foundation of LSCs, together with the notions of determinism and time
boundedness. It provides the basic strategy for efficient verification of TSAs.
The application to LSC model-checking is discussed in Sect. 4. Section 5 sup-
plies experimental results and Sect. 6 concludes.

2 Live Sequence Charts

The visual formalism LSCs has been introduced in [1] to overcome several short-
comings of the well-known Message Sequence Charts (MSC) wrt. a formal usage.

Table 1. Modalities of LSC elements and their semantics

mandatory/hot/universal possible/cold/existential

chart . . . each activating system run
suffix adheres to scenario

. . . there is an activating and ad-
hering system run suffix

location progress enforced progress not enforced

condition/
local invar.

system violates LSC if condition
doesn’t hold

system satisfies LSC if condition
doesn’t hold

message reception has to be observed reception needn’t be observed
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It is a conservative extension of basic MSCs that gains increased expressive power
by adding modalities to charts, locations, and elements (cf. Table 1).

The mode of a chart can be either existential or universal. An existential
LSC is satisfied by a system if there is at least one system run adhering to the
LSC. Conversely, a universal LSC is satisfied if all runs of the system adhere
to it. A location’s mode, either hot or cold, expresses liveness requirements. An
element following a hot location has to be observed finally in order to satisfy
the LSC. A cold location doesn’t enforce progress. Conditions are, in contrast to
MSCs, semantically relevant in LSCs and have a mode. If a mandatory (or hot)
condition isn’t satisfied when supposed to according to the scenario, the chart
is violated. If a possible (or cold) condition isn’t satisfied, the whole chart is
immediately considered satisfied. It is legally exited. This interpretation applies
alike to local invariants. They have been introduced in [5] to state requirements
on spans of time instead of only single points in time as with conditions. The
mode of a message, either mandatory (hot) or possible (cold), denotes whether
the message may get lost. The reception of a hot message has to be observed to
satisfy the LSC, for a cold message it needn’t be observed.

In addition to modes, LSCs add to MSCs means that characterise the situ-
ations to which the scenario applies, i.e. its activation. Activation in general
is characterised by a prefix of the LSC called pre-chart meaning whenever the
pre-chart is observed then the system shall adhere to the rest of the LSC, the
main-chart. The activation condition is a shortcut for pre-charts with a single
condition only. For formal verification, [5] adds the activation mode – one of
initial, invariant, or iterative – to further restrict activation. Initial LSCs may
only be activated in initial system states. Iterative LSCs disregard violations
of reactivating LSCs, i.e. LSCs that comprise a sequence that adheres to the
LSC’s own pre-chart again. Furthermore, both [5,12] have added the notion of
strict vs. tolerant (or weak) interpretation. The strict interpretation requires
that messages used in the chart don’t occur at other points in time than the
ones given by the LSC. The tolerant interpretation ignores additional messages.
For example, a system sending red on once again before expiration of the timer
would not satisfy the LSC from Fig. 1 strictly.

Fig. 1(a) is a simplified requirement on a level crossing controller. It is ac-
tivated when the crossing controller receives an asynchronous message ‘secreq’
from the environment. The crossing controller shall finally, as indicated by the
solid segment of its instance line, start the lights and barrier controllers by
synchronous messages ‘lights on’ and ‘barrier down’. The timing interval [5, 15]
requires lowering the barrier to take between 5 and 15 units of time and the hot
local invariant ¬MvUp requires the barrier not to move up from ‘barrier down’
reception up to and including the point in time where ‘barrier ok ’ is sent. If the
traffic lights controller is not operational when receiving ‘lights on’, the LSC is
legally exited at the cold condition ‘Operational ’. Otherwise timer t is started.
Timeout of t shall occur when sending ‘lights ok ’, i.e. switching on the lights
shall take exactly 7 units of time. The order of ‘lights ok ’ and ‘barrier ok ’ is ex-
plicitly relaxed by enclosing them in a coregion as indicated by the dotted line.
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LSC: sec xing
AC: true
AM: invariant

Environment LightsCtrl

t(7)

Operational

t

CrossingCtrl BarrierCtrl

[5, 15]

secreq

lights on barrier down

red on

lights ok

barrier ok

¬MvUp

done

(a) LSC for securing a level crossing.

q0l on, b dn

q1 b ok, red,¬Up

q2 red q3
b ok, l ok,¬Up

q4l ok q5 b ok,¬Up

q6
donesnd

q7donercv

q8true qexittrue

l on, b dn, Op {c0, c1}
l on, b dn,¬Op

red, b ok,¬Up

b ok, red,¬Up
[5 ≤ c1 ≤ 15]

(1)
(2) l ok, b ok,¬Up

[c0 = 7]
(3)

red

l ok [c0 = 7]
b ok,¬Up
[5 ≤ c1 ≤ 15]

donesnd

donercv

(1) red, b ok,¬Up [5 ≤ c1 ≤ 15]
(2) b ok, l ok,¬Up [5 ≤ c1 ≤ 15]
(3) l ok, b ok,¬Up [c0 = 7, 5 ≤ c1 ≤ 15]

(b) sec xing’s body TSA (Sect.3).

Fig. 1. For brevity, overlining denotes negation and comma denotes conjunction in
Fig. 1(b). E.g. q0’s loop fires if neither ‘lights on’ nor ‘barrier down’ are observed.

The messages may occur in any order, even simultaneously. When both have
been received, the crossing controller may send ‘done’ back to the environment
as no hot location enforces progress at this position.

We postpone recalling the formal semantics of LSC following [5] to Sect. 4,
thus after the introduction of Timed Symbolic Automata in Sect. 3. Note that
we discuss the LSC dialect of [5] which is tailored for the application domain of
formal verification in contrast to the play-engine dialect of [12]. This is not an
exclusive choice as both share a large common sublanguage. LSC specifications
may well be played in following [12] and then strengthened for formal verification
using the features from [5]. Furthermore we assume well-formed LSCs [2], i.e.
LSCs without internal contradictions.

3 Efficient TSA Model-Checking

3.1 Preliminaries

We use ExprS to denote the propositional logic formulae over signature S, and
I |= ψ to denote that interpretation I satisfies ψ ∈ ExprS with fixed non-
empty universe U . Let C be a set of clocks. A clock valuation is a mapping
τ : C → N0, and T (C) denotes the set of all clock valuations. The update of a
time valuation τ ∈ T (C) by a value x ∈ N0, written τ+x, is pointwise defined as
(τ + x)(c) := τ(c) + x for all c ∈ C. The set of clock constraints Φ(C) is defined
by the grammar φ ::= true | c ≤ x | c ≥ x, ϕ ::= φ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2, c ∈ C,
x ∈ N0. We write τ |= ϕ to denote that the clock valuation τ ∈ T (C) satisfies
the clock constraint ϕ ∈ Φ(C). The definition of satisfaction is standard.
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3.2 Timed Symbolic Automata

Timed Symbolic Automata (TSA) are a variant of timed Büchi automata where
transitions are labelled by expressions from ExprS instead of just an element of
an alphabet (cf. [15] for references). The new notion of default transitions sig-
nificantly eases the formal definition of the clock propagation introduced below.

Formally, a TSA over a signature S is a tuple A = (Q, qs, C,�, D, F ) with
a finite set of states Q, initial state qs ∈ Q, a finite set of clocks C, transition
relation �⊆ Q × ExprS × Φ(C) × 2C × Q, default transitions D ⊆ Q × Q,
and accepting states F ⊆ Q. We define →⊆ Q × Q as →:= D ∪ {(q, q′) |
∃ (q, ψ, ϕ, ρ, q′) ∈�}. A TSA is called Partially Ordered TSA (POTSA) if the
reflexive transitive closure of → is a partial order, i.e. →∗ is anti-symmetric.
Note that all loops in a POTSA are consequently self-loops.

Let S be a signature and U a fixed universe. A timed interpretation sequence
is a sequence r = ((ιi, ti))i∈N0 with ιi an interpretation of S and ti ∈ N0 a
timestamp such that ti < ti+1, i ∈ N0. Let ((qi, τi))i∈N0 be a sequence with
qi ∈ Q a state and τi ∈ T (C) a valuation of the clocks, i ∈ N0. It is called
timed run of A over r iff it starts in the initial state, i.e. q0 = qs, the clocks
initially have value zero, i.e. τ0(c) = 0, c ∈ C, and states are A-successors.
That is, for i ∈ N0 either there is a transition (qi, ψi, ϕi, ρi, qi+1) ∈� such
that the boolean and clock constraints hold, ιi |= ψi and (τi + (ti+1 − ti)) |=
ϕi, and the clock valuations are updated according to ρi, i.e. τi+1|ρi = 0 and
τi+1|C\ρi

= (τi + (ti+1 − ti))|C\ρi
, or there is a default transition (qi, qi+1) ∈ D

and τi+1 = τi +(ti+1 − ti). A timed run ((qi, τi))i∈N0 is called accepting if qi ∈ F
for infinitely many i ∈ N0. The language accepted by A, denoted by L(A), is the
set of timed interpretation sequences for which an accepting run exists.

In the following we introduce two subclasses of TSAs, namely deterministic
and time-bounded ones. In Sect. 3.4 we will see how membership in these classes
determines the efficiency of the model-checking procedure.

We call a state q ∈ Q determinstic if the constraints on all outgoing transi-
tions are mutually disjoint, i.e. for each two transitions (q, ψ1, ϕ1, ρ1, q1), (q, ψ2,
ϕ2, ρ2, q2) ∈� with q1 �= q2 we have (ι |= ψ1 ∧ τ |= ϕ1) → ¬(ι |= ψ2 ∧ τ |= ϕ2)
for any ι and τ . It is called reaching-deterministic if all q′ ∈ Q with q′ →∗ q are
deterministic. We call A determinstic iff all its states are deterministic.

Given a set of clocks C, the set of upper bounded clock constraints Φ�(C) ⊆
Φ(C) is defined by the grammar φ ::= x1 ≤ c∧c ≤ x2, ϕ ::= φ | ϕ1∧ϕ2 | ϕ1∨ϕ2,
c ∈ C, x1, x2 ∈ N0. We call a state q ∈ Q time bounded iff the clock constraints
on all outgoing transitions are from Φ�(C). We call A time bounded iff all states
from Q \ F are time bounded. Now let A be a POTSA and q a state of it s.t.
all outgoing transitions impose a finite upper bound on clock c. Let q′ be a
state from which an accepting state is only reached by visiting q and let c not
be reset along the path from q′ to q. Then the boundedness of c transitively
induces bounds on all transitions between q′ and q, including self-loops [15].
For example, clock constraint c0 = 7 at the transition from state q4 to q6 in
Fig. 1(b) propagates to the transition from q2 to q4 and to the self-loops at q4
and q2. Consequently, the number of time bounded states can be increased by
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propagating clock constraints backwards through the automaton, i.e. making the
implicit constraints explicit. In [15] we give an algorithm which performs clock
propagation on POTSAs and yields a language-equivalent POTSA.

Another operation of interest is the failure state completion [15] of A. For each
reaching-deterministic state in Q, it adds a default transition to a designated fail-
ure state ‘qfail’, i.e. it yields the language equivalent [15] TSA (Q ∪̇{qfail}, qs, C,
�, D′, F ) with D′ := D ∪ {(q, qfail) | q is reaching-deterministic}. Then reaching
‘qfail’ with sequence r is a sufficient criterion for r /∈ L(A).

3.3 Timed Symbolic Automata as Specification

A Kripke Structure is a tuple K = (AP,S,S0,R,L) with atomic propositions
AP, states S, initial states S0 ⊆ S, transition relation R ⊆ S × S, and labelling
function L : S→ 2AP, AP and S finite. As TSAs are defined using interpretation
sequences, we assume that each subset � ⊆ AP defines an interpretation ι� of S.
The TSA and the model are then called compatible. A run s0, s1, . . . of K induces
the timed interpretation sequence ((ιi, ti))i∈N0 with ιi = L(si), ti = i. The set of
all timed interpretation sequences induced by the runs of K is denoted by R(K).

Using a TSA A as a specification on K means relating R(K) to L(A). To
increase precision of the specification, here we always consider an activation
condition ν ∈ ExprS and an activation mode of initial, invariant, and iterative to-
gether with A. We say K satisfies A initially wrt. ν, denoted by K |=ν,init A, iff all
((ιi, ti))i∈N0 ∈ R(K) with ι0 |= ν are in L(A). It satisfies A invariantly wrt. ν, de-
noted by K |=ν,inv A, iff ιi |= ν implies that the suffix (!ιi+1,!ti+1)(!ιi+n,!ti+n) . . .
is in L(A). Iterative satisfaction, denoted by K |=ν,iter A, is special to POTSAs.
It is similar to invariant but excludes overlapping activations of A. The motiva-
tion to introduce this mode was to ease the understanding of counter-examples.
It is easier to uniquely identify where activation takes place if there are no over-
lapping activations. But this mode has the serious drawback that if it is used for
a TSA that actually has an overlapping activation, a violation may be shadowed.
Checking whether a TSA doesn’t have an overlapping activation (it is then called
non-reactivating) or not is an additional non-trivial task.

Note that by the definition above we choose model steps as time units. In
general, other notions of time have to be supported, for instance, the supersteps
of Statemate models. In [15], the approach presented here has been extended to
support two notions of time by assuming that the passing of time is observable on
the model, for instance by a special signal of the model which is raised whenever
a superstep is completed. To keep the discussion focused and to adhere to space
restrictions, we only consider step time. Adding the more general treatment of
time following [15] is actually straightforward.

3.4 Efficient POTSA Model-Checking

Each non-iterative POTSA with step clocks has an equivalent LTL formula [16]
in negative normal form, thus LTL model-checking can be applied to decide
whether K satisfies A. For all POTSAs, there is an additional approach based
on composing in parallel to the model a number of time counters, one for each
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s0

{resetc, (c = 0)}
sc
1

{(c = 1)}
sc
2

{(c = 2)}
. . . sc

N

{(c = N)}

Fig. 2. Kripke structure of timer c with upper bound N + 1

clock, and a kind of transition system view of the TSA, i.e. dismissing the Büchi
criterion. This parallel composition is then checked for reachability of certain
states or for a small fixed liveness formula. In this section we introduce the
parallel composition of K with observers. Section 3.4.3 discusses when to apply
which approach.

3.4.1 Timer Extension
In model-checking timed TSA properties, we can’t directly employ the sequences
from R(K) as the time stamps are unbounded. By [15] it is sufficient for the
observer approach to consider finite time counters for each clock of the (not nec-
essarily time bounded) TSA and these bounds are effectively computable. These
time counters are transition systems that count model steps until their finite
upper bound is reached and that may reset themselves any time and then set a
reset flag (cf. Fig. 2). They are composed in parallel to the model. More formally,
let c be a clock with upper bound N + 1, and Sc = {sc

0, . . . , s
c
N} a set of fresh

states wrt. S. The timer extension of K for c is Kc = (APc,Sc,Sc
0,R

c,Lc) with

– APc = AP ∪̇{resetc, (c = 0), . . . , (c = N)}, Sc = S× Sc, Sc
0 = S0 × {sc

0},
– Rc = {((s, sc

i ), (s
′, sc

0)), ((s, s
c
N ), (s′, sc

N )) | (s, s′) ∈ R}
∪ {((s, sc

i ), (s
′, sc

i + 1)) | (s, s′) ∈ R, 0 ≤ i < N}
– Lc((s, sc

i )) = L(s) ∪ {resetc | i = 0} ∪ {(c = i)}.

The timer extension Kc is by the same procedure extended to Kc,c′
for a second

clock. We use KC := Kc1,...,cn to denote the timer extension of K for all clocks
from C. A state s ∈ KC canonically defines a clock valuation τs as τs(c) := i if
(c = i) ∈ L(s). The clocks reset in s are ρs := {c | resetc ∈ L(s)}.

3.4.2 Observer Extension
Let A = (Q, qs, C,�, D, F ) be a TSA compatible with K and KC the timer
extension of K. Using sC to denote the components of states that are introduced
by the timer extension, the observer extension of K for activation expression ν
and initial activation A is KA/init = (APA,SA,SA

0 ,RA,LA) with

– APA = (APC ∪̇{fair, fail}), SA = SC × (Q ∪̇{qidle}),
– SA

0 = {(s, sC , qs) | (s, sC) ∈ SC
0 , ιL(s) |= ν}

∪{(s, sC , qidle) | (s, sC) ∈ SC
0 , ιL(s) �|= ν},

– ((s, sC , q), (s′, s′C , q
′)) ∈ RA iff ((s, sC), (s′, s′C)) ∈ RC and q = q′ = qidle or

• either there is a regular transition (q, ψ, ϕ, ρ, q′) ∈� with
ιL(s) |= ψ, τ(s′, s′C) |= ϕ, and ρs = ρ

• or there is a default transition (q, q′) ∈ D and ρs = ∅,
– LA((s, sC , q)) = LC((s, sC)) ∪ {fair | q ∈ F} ∪ {fail | q = qfail}.
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For invariant activation, the observer KA/inv is activated non-deterministically
thus additionally all (s, sC , qidle) are in SA

0 independent from satisfaction of ν.
Furthermore there is a transition from q = qidle to q′ = qs whenever ιL(s) |= ν.
For iterative activation, the initial states of the observer extension are as in
KA/init. KA/iter remains in qidle only if ν is not satisfied and takes the transition
to qs whenever possible. In addition there are transitions back to qidle and qs

from each accepting state with only a self-loop. The transition is to qs if ν is
satisfied and to qidle otherwise. Thus KA/iter is slightly smaller than KA/inv.
Note that KA/m, m a mode, restricts the behaviour of the clocks, but not the
behaviour of the model. In KA/m, clocks are only reset if there is a transition in
the TSA with a corresponding reset set. KA/m sets the flag ‘fail ’ iff the failure
state of the TSA is reached and ‘fair ’ iff the TSA is in an accepting state. We call
a state sA ∈ SA a failure state iff fail ∈ LA(sA) and fair state iff fair ∈ LA(sA).

3.4.3 Putting It All Together
Now we can devise a strategy for deciding whether a given Kripke structure
satisfies a failure state completed POTSA using four different standard model-
checking procedures of different worst-case complexity, namely reachability check-
ing with safety observer, ACTL model-checking with and without observer, and
LTL model-checking. The following Lemma states that the less powerful tech-
niques are helpful for finding violations early and that they are sufficient for
deterministic (time bounded) POTSAs.

Lemma 1. Let A be a POTSA, K a Kripke structure, ν a condition, m a mode.

1. [15] If a failure state of KA/m is reachable, then K �|=ν,m A. If A is deter-
ministic and time bounded then K �|=ν,m A implies reachability of a failure
state.

2. [15] If KA/m |= AGAF fair, then K |=ν,m A. If A is deterministic then
K |=ν,m A implies KA/m |= AGAF fair.

3. If A is non-deterministic, then there is no LTL formula λ using only atomic
proposition ‘fair’ s.t. KA/m �|=ν,m λ implies K �|=ν,m A. ♦

Proof. (1.3) Assuming such a formula λ, exploit non-determinism in observer to
construct a Kripke structure K s.t. KA/m doesn’t satisfy λ but K |=ν,m A. ��

Note that Lemma 1.3 implies that there is no known procedure to decide satis-
faction of iterative non-deterministic TSAs because within an LTL formula we
cannot, as with observer extensions, refer to the own state of activation.

Using that the ACTL formula obtained from an LTL formula in negative
normal form by prefixing all modal operators by ‘A ’ implies the LTL formula,
we devise the strategy depicted in the following control flow diagram for the
verification of POTSA specifications. The idea is to apply the procedure with
the best worst-case complexity first to find contradictions early. Only if no errors
are unveiled and the procedure is too weak for the POTSA, the next expensive
procedure is applied. The increasing prevalence of multi-processor or multi-core
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hosts allows to apply the procedures in parallel and stop all other procedures
once a significant result is obtained.

start

1.(a):fail reachable in
KA/iter?

K �|=ν,m A
K |=ν,m A︸ ︷︷ ︸
by Lemma 1.11.(b):fail reachable in

KA/inv?

K �|=ν,m A
K |=ν,m A︸ ︷︷ ︸
by Lemma 1.12.(a):KA/iter |= AG AF fair?

K �|=ν,m A
K |=ν,m A︸ ︷︷ ︸
by Lemma 1.22.(b):KA/inv |= AG AF fair?

K �|=ν,m A
K |=ν,m A︸ ︷︷ ︸
by Lemma 1.23:KC |= ACTL(A)? [16]

K �|=ν,m A
K |=ν,m A︸ ︷︷ ︸

by ACTL → LTL4:KC |= LTL(A)? [16] result is authoritative

no reaching-det. state in A

yes

no, A det., time-bnd., and
(non-react. or iterative)

else

no, A react., invariant

yes

no, A det. and time-boundedelse

no

yes, A deterministic, and
(non-react. or iterative)

else

no, A react., invariant

no

yes, A deterministicelse

no, counter-example is path

yesno, counter-example is tree

The refinement of steps 1 and 2 into (a) and (b) is a minor optimisation using
the expectation that checking A iteratively is less expensive (cf. 3.4.2). An initial
TSA is treated like an interative one, as the time of activation is then uniquely
determined to be an initial state.

Note that the time and space resource consumption of certain observer based
tasks can be reduced by applying a POTSA version of the decomposition algo-
rithm presented in [9] and conducting the decomposed, smaller tasks in parallel.

4 Efficient LSC Model-Checking

The following transfer of the results from the previous section to the domain
of LSCs is effective as most practically used LSCs yield deterministic POTSAs.
Furthermore, unbounded liveness requirements typically only occur in early and
rather abstract parts of a system’s LSC specification and are restricted by bounds
in later, more detailed versions thus most LSCs yield time-bounded TSAs.

Section 4.1 briefly recalls the LSC semantics in terms of TSA and relates the
TSA classes identified in Sect. 3 to LSCs. For a complete definition of the LSC
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α

StepL

(α,Scl1)
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(α,Scln)
αexit

. . .
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ExitL(α)
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(a) Outgoing transitions from state α.

α0

α⊥

αfinαexit
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ExitL(α0)

HoldL(α)ExitL(α⊥)

truetrue

(b) Overall structure of AL.

Fig. 3. Structure of the LSC body automaton. Double lined states are in F .

language, its abstract syntax, and the semantics-giving unwinding procedure
the reader is referred to [5]. The discussion of LSC verification starts in Sect. 4.2
with the simplest case, namely invariant universal LSCs without pre-chart or
assumptions. The additional features of LSCs are then discussed in isolation in
the subsequent sections.

4.1 LSC Semantics and TSA Properties

The central concept of the LSC semantics [5] is the notion of the cut, i.e. a set
of at least one location per instance line (more than one for coregions). The
gray line in Fig. 1(a) indicates a cut. Each TSA state corresponds to one cut of
the LSC, e.g. the example cut in Fig. 1(a) corresponds to state q6 in Fig. 1(b).
Intuitively, a system satisfies the LSC if for each system run suffix with a prefix
in the language of the pre-chart TSA, the rest of the run is in the language of
the main-chart TSA. The algorithm of [5] translates the pre- and main-chart
of each commitment and assumption LSC of a requirement into separate TSAs.
Fig. 3(a) schematically shows a state of the TSA obtained by the unwinding
procedure [5]. It has a self-loop awaiting the subsequent LSC elements and one
transition for each combination of occurrence and non-occurrence of awaited
elements. Violations of cold conditions lead to the accepting state αexit. Fig. 3(b)
shows the overall structure of the TSA. The state α⊥ corresponds to the cut with
all instance heads and αfin to complete traversal. Fig. 1(b) gives the TSA of the
main-chart from Fig. 1(a). (The initial TSA state α0 is omitted for brevity.)

Following [3], each TSA of an LSC is a POTSA. The timer propagation algo-
rithm of [15] applies directly. In [3], we have introduced a sufficient criterion on
LSCs that implies determinism of the corresponding TSAs. The TSAs are de-
terministic if all conditions and local invariants occur bonded in the LSCs. That
is, if they are in a simultaneous region with at least one message, timeout, or
instance head. Then the evaluation time for the condition is well-defined. This
criterion is easily [2] checkable on the abstract syntax of the LSC. The observer
automaton construction of [15] as introduced in Sect. 3 applies directly as LSCs
share activation modes initial, invariant, and iterative with TSAs.

4.2 LSC Model-Checking

Note that an LSC’s strict or tolerant interpretation is mostly orthogonal to the
issues discussed below. In the TSA, strictness is expressed by strenghtening the
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transition annotations. Each expression is additionally conjoined with a term that
excludes all messages that are not referred to by the expression. Thus the strict
TSA doesn’t introduce new non-determinism and as it only considers messages,
non-determism is not resolved except for few pathological cases. Consequently we
needn’t treat the interpretation explicitly below.

4.2.1 Universal, No Pre-chart or Assumption
In the easiest case, we only have to consider the TSA A of the main-chart and
an activation condition. Then the algorithm from Sect. 3.4.3 applies directly.

4.2.2 Pre-chart
For the pre-chart of an LSC, a separate TSA is constructed. The slightly dif-
ferent algorithm adjusts transitions to the special interpretation of pre-charts
which don’t have a notion of violation. Using the ACTL/LTL way there are two
options for checking an LSC with pre-chart. Let ϕpc and ϕL be the LTL formu-
lae corresponding to the pre-chart and the whole LSC, i.e. pre- and main-chart
together. Following [17], we can check G (ϕpc → ϕL). This formula tends to grow
large since the pre-chart part occurs twice, even if the more compact formulae
also presented in [17] is usable.

As the semantics of the pre-chart is indication of complete traversal of its
scenario, the Büchi criterion is actually not needed. Finite automaton acceptance
is sufficient. This can be exploited by composing in parallel with the observer
extension of a model a (non-deterministically activating) observer for the pre-
chart that drives an additional proposition ‘pc’ which holds iff the pre-chart has
just been observed. By changing the main-chart observer such that its activation
expression is ‘pc’ the algorithm from Sect. 3.4.3 still applies directly.

If the observer way is too weak, then G (pc → ϕmc) (or the ACTL correspon-
dence) is checked in steps 3 and 4; ϕmc being the main-chart’s LTL formula.

4.2.3 Assumptions
The semantics of LSC assumptions is standard. A system satisfies a universal
LSC with assumptions iff all runs satisfying all assumptions also satisfy the
commitment. Thus, iff

(G (ϕa1 ∧ · · · ∧ ϕam
))→ (G (pc→ ϕmc)), (1)

with ϕa1 , . . . , ϕam
the LTL formulae for the assumptions, ‘pc’ the pre-chart ob-

server from Sect. 4.2.2, and ϕmc the main-chart’s LTL formula.
To avoid representing the assumption part as (again large) formulae, we can

start with properties which are stronger than (1), i.e. that imply (1), but are
easier to check. On the downside, obtaining a counter-example is then no longer
directly significant as the counter-example may be a false negative. It has to be
checked not to be spurious, for example by simulation.

An approach stronger than (1) is to consider the tableau of the parallel compo-
sition of all assumptions as an additional observer, i.e. parallel composed to the
observer extension. The formula to check is then (AGAF afair)→ (AG AF fair) (2)
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where ‘afair’ holds iff the tableau is in an accepting state. If (2) passes and if
the LSC and all assumptions are bonded, then the system satisfies the LSC. A
failure may be a false negative.

An approach stronger than (2) is to check for reachability of a state with
¬afail ∧ fail in the parallel composition of KA with one iteratively activated
observer automaton per assumption, i.e. not the tableaux. If such a state isn’t
reachable and if the LSC and all assumptions are bonded and time-bounded and
no assumption is invariant, then the system satisfies the LSC.

With these three (non exhaustive) options, the algorithm from Sect. 4.2.1
can be extended as follows. Pragmatically we don’t consider all of the possible
combinations with procedures for the commitment. In step 1, only the first option
is used for assumptions in order to obtain a reachability property. In each substep
of 2, the first option for assumptions can be tried first, followed by the second
option from above. In steps 3 and 4, all three options can be tried subsequently,
trading size of the formula for size of the model.

Note that a non-bonded assumption is typically easily violated by “clever
choice” of transitions in the TSA. Therefore non-bonded assumptions in general
are of limited use as an easily violated assumption excludes too many system runs
from consideration; the requirement may even be trivially satisfied if all system
runs are excluded. As a consequence, all LSCs used in assumption/guarantee
style verification should be bonded.

4.2.4 Existential LSCs
Recall from Sect. 2 that an existential LSC is satisfied by a system iff there is
at least one system run that adheres to the LSC. Using CTL∗, we obtain an
equivalent formula by prefixing the LTL formula with the existential quantifiers
‘E ’ or ‘EF ’ [3].

But the existential mode is different from the universal mode in that one
wants to obtain a witness if the formula is satisfied. That is, similar to pre-
charts, the Büchi criterion isn’t used and thus the ACTL/LTL way is practically
not relevant. Furthermore, in practice one is typically interested in an example
system run that traverses the LSC completely [18] instead of taking a legal exit
on a cold condition. To achieve all this, the states of the main-chart TSA are
turned into non-accepting states except for the state corresponding to the final
cut. If the LSC has a pre-chart, the main-chart TSA is again activated by the
pre-chart observer ‘pc’ as discussed in Sect. 4.2.2. Verifying the existential LSC
is then equivalent to reachability of the remaining unique accepting state under
all given assumptions.

5 Figures, Please

Table 2 supports our claims with exemplary experimental results. It lists pure
model-checking time, i.e. without constructing and loading the transition re-
lation BDD, and without counter-example post processing, for all techniques
discussed in Sect. 4 (VIS 2.0 [Brayton et al.], Intel Xeon 3.06GHz, 4GByte). The
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Table 2. Experimental Results. Model-checking time in seconds.

rch/iter rch/inv AGAF/iter AGAF/inv ACTL LTL

Fig.1/tb 36.3s/✘∗ 48.6s/✘ 303.4s/✘ 294.9s/✘ 755.2s/✘ –

Fig.1/tb 37.3s/✔∗ 45.0s/✔ 41.0s/✔ 31.5s/✔ 698.8s/✔ –

Fig.1 72.7s/✔ 82.2s/✔ 81.8s/✔∗ 57.4s/✔ 468.1s/✔ –

Fig.1/as 359.3s/✔ 49.2s/✔ 47.2s/✔∗ 29.0s/✔ 757.7s/✔ –

Fig.1/nd 56.9s/✔ 48.7s/✔ 134.2s/✘ 128.4s/✘ – –

[9]/2 31.0s/✔ 44.5s/✔ 96.3s/✔∗ 37.5s/✔ 258.1s/✔ –

[9]/3 43.6s/✔ 121.6s/✔ 60.7s/✔∗ 87.5s/✔ – –

(✔= passed, ✘= failed, – = terminated after 1h, ∗ = first significant result.)

pre-chart is always an observer and the tableau is used for assumptions. The im-
plementation is taken from [5] and [15]. To isolate the effects under discussion,
all experiments use a model that first solves a puzzle to provide some complexity
and then adds one or two paths relevant for the LSC.

All experiments use a model which first solves a puzzle to provide some com-
plexity and then adds one or two paths relevant for the LSC.

The first (singleton) group is a time bounded version of the LSC from Fig. 1
on a model not satisfying it due to a condition violation. From the table we can
see that the reachability-based approach is significantly faster than the others.

The second group uses a model satisfying the LSC. Its first row is the LSC
from Fig. 1, ‘as’ is a variant with an assumption, and ‘nd’ is a non-determistic
variant where the condition Operational is moved downwards such that it is no
longer bonded. In this group, the table indicates that the reachability approach
is not always faster, in particular if the property actually holds. In case ‘nd’
we remain inconclusive whether the system satisfies the LSC or not. The ‘✔’
results of the reachability way only indicate that there is no safety violation.
The following two ‘✘’ results only indicate that it’s possible to avoid a fair state.

The last group is the example from [9], an untimed but highly concurrent LSC
with extraordinary large corresponding formulae. It uses only 6 (9) messages to
require that 2 (3) agents are started concurrently, then work concurrently, and
then report back concurrently. This LSC is bonded, but not time bounded. From
the table we can see that the observer approach allows to establish the property
in the given amount of time and space while the formula doesn’t.

Noticeable in the table is that the LTL way is always terminated prematurely,
even if the preceding puzzle is removed. If the model has only a single trace and
the LSC is changed s.t. it comprises no timing requirements and no concurrency,
the task completes within ∼1h, thus the LTL way seems rather impractical.

6 Conclusion

Although LSC model-checking is basically solved as each LSC has an equivalent
temporal logic formula, in practice direct model-checking of the formula is pro-
hibitively expensive due to its size. Our results indicate that full model-checking
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power is only necessary for non-bonded LSCs which occur seldom in practice.
In contrast, bonded, time-bounded LSCs are as easy as a reachability problem.
To the practically most relevant class of bonded, non-time-bounded LSCs, an
approach in between both techniques applies that uses an observer automaton
and a small fixed liveness formula. Experimental data indicates that it’s ben-
eficial to apply the reachability approach even to non-time-bounded LSCs as
contradictions are found faster.

Although our criteria classify most practically occurring LSCs correctly, it is
of academic interest to have an algorithm deciding time boundedness. It would
be a minor improvement to identify more states as deterministic by more so-
phisticated procedures.
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Abstract. We present an approach for applying symmetry reduction
techniques to probabilistic model checking, a formal verification method
for the quantitative analysis of systems with stochastic characteristics.
We target systems with a set of non-trivial, but interchangeable, com-
ponents such as those which commonly arise in randomised distributed
algorithms or probabilistic communication protocols. We show, for three
types of probabilistic models, that symmetry reduction, similarly to the
non-probabilistic case, allows verification to instead be performed on a
bisimilar quotient model which may be up to factorially smaller. We
then propose an efficient algorithm for the construction of the quotient
model using a symbolic implementation based on multi-terminal binary
decision diagrams (MTBDDs) and, using four large case studies, demon-
strate that this approach offers not only a dramatic increase in the size
of probabilistic model which can be quantitatively analysed but also a
significant decrease in the corresponding run-times.

1 Introduction

Probabilistic model checking is a formal verification technique for the analysis
of systems which exhibit stochastic behaviour. It has been successfully applied
to case studies from a wide range of application domains, including randomised
distributed algorithms, communication and security protocols, dynamic power
management schemes and biological systems. The key strength of the technique
is the ability to automatically compute precise quantitative results based on an
exhaustive analysis of a formal model. This allows reasoning about, for example,
“the worst-case probability of system failure within T seconds” or “the minimum
expected power consumption over all possible schedulings”.

As with conventional model checking, the principal limiting factor with such
techniques is the size of the models to be analysed. Although the development
of symbolic implementations, which use binary decision diagrams (BDDs) and
related data structures, have provided a significant increase in the applicability
of the techniques, model size remains a major issue. In this paper we employ
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symmetry reduction, a way of exploiting the presence of replication in a model
which has yielded considerable success in non-probabilistic verification. In fact,
this is particularly appealing in the context of probabilistic model checking since
one of its more common, and indeed promising, applications is for the analysis
of randomised distributed algorithms. These algorithms, which use electronic
coin-flipping or random number generation, are increasingly used to provide
elegant and efficient symmetric solutions to distributed coordination problems,
as evidenced by the fact that they represent crucial components of many modern
communication protocols such as Firewire, Bluetooth and Zeroconf.

We consider the case of component symmetry, in which any pair from a set
of symmetric components in a model can be exchanged with no effect on the
overall behaviour. We show that the key ideas of symmetry reduction in this
case, namely that verification of a model can instead be performed on a bisimilar
quotient model which is up to factorially smaller, carry across with relative ease
to the probabilistic verification of three types of models: discrete-time Markov
chains, continuous-time Markov chains and Markov decision processes.

We then propose an efficient algorithm for the construction of these quo-
tient models which builds on the existing efficient symbolic implementations of
probabilistic model checking in the tool PRISM [15, 24], based on the MTBDD
(multi-terminal BDD) data structure [9, 3]. In doing so, we use ideas from the
dynamic symmetry reduction technique of Emerson and Wahl [13]. Once the quo-
tient model has been constructed, it can be analysed with existing algorithms
and their implementations. Using experimental results from four large case stud-
ies, we show that our approach results in significant increases in both the size of
models which can be verified and the speed with which this can be performed.

2 Background

2.1 Symmetry Reduction

Symmetry reduction is a way of exploiting the occurrence of replication in a
model. Consider a transition system M = (S,R) comprising a (finite) set S of
states and a transition relation R ⊆ S×S. A permutation π : S → S on the state
space is called an automorphism when it preserves the transition relation R, i.e.
if (s, s′) ∈ R, then (π(s), π(s′)) ∈ R. Given a group G of such automorphisms
under function composition, there is a corresponding equivalence relation θ on
the set of states S where (s, s′) ∈ θ if there is a permutation in G mapping s to
s′, i.e. if s and s′ are symmetric. This relation θ is known as the orbit relation
and its equivalence classes are called orbits .

If we then choose a set S containing a unique representative state for each
equivalence class, we can define a function rep : S → S which selects the cor-
responding unique representative rep(s) ∈ S for each state s ∈ S and use this
to induce a new transition relation R = {(rep(s), rep(s′)) | (s, s′) ∈ R}. Since
all permutations in G preserve the transition relation R, this quotient transition
system (S,R) is bisimilar to the original transition system (S,R).



236 M. Kwiatkowska, G. Norman, and D. Parker

In many cases, this means that an analysis of the full system can instead be
performed on the (smaller) quotient model. For example, if the states of the
transition system (S,R) are labelled with atomic propositions from some set
AP and we wish to model check a formula in the temporal logic CTL, then
provided the atomic propositions in AP are preserved by the orbit relation,
model checking can safely be carried out on the reduced model [11, 8].

In this paper, we consider component symmetry in which a model contains N
symmetric components, any pair of which can be exchanged without any effect
on the behaviour of the system. For a (global) state s of the model, we denote
the local states of the N components by s1, . . . , sN , respectively. A permutation
π of S operates by mapping s to s′ in which the values s1, . . . , sN are themselves
permuted. Applying symmetry reduction to such a model where each of the N
symmetric components has M local states provides, in the best case, a reduction
in state space size from MN to

(
M+N−1

N

)
, which tends towards N ! as M increases.

In the case of component symmetry, one way to define a unique representative
for each set of symmetric states is to select the lexicographically least (given
some ordering of the local states). This can be obtained by sorting the elements
of the state. An alternative is to count the number of processes which are in each
possible local state. Consider the case of 4 symmetric processes each with two
local states A and B (where A < B). The states (A,B,A,A) and (A,A,B,A) are
equivalent. Using the two schemes described above, they would both be mapped
to (A,A,A,B) and (A = 3, B = 1), respectively.

2.2 Symmetry Reduction for Symbolic Model Checking

The practicalities of exploiting symmetry reduction in the context of model
checking have been studied at some length in the literature. Given a method
of computing the representative rep(s) for any state s it is possible, as shown
by Ip and Dill [17], to compute the quotient transition system directly with a
simple modification of a conventional, explicit state-space exploration algorithm:
at every step of the exploration, each newly discovered state is immediately
converted to its unique representative.

Clearly it would be desirable to combine symbolic model checking techniques,
which have proven very successful for improving the efficiency of model checking,
with symmetry reduction. Early results were discouraging: in [8], it was proved
that for common types of symmetry, including component symmetry, the size of
the BDD representing the orbit relation θ is exponential in either the number N
of symmetric processes or the number M of local states that each can occupy.
Progress was made in this area with several ways of reducing BDD sizes by,
for example, allowing multiple representatives for each state [8], or attempting
an under-approximation of reachability (aimed principally at falsification rather
than verification) [5].

Recently, a promising approach known as dynamic symmetry reduction was
proposed by Emerson and Wahl [13]. Their technique bypasses the construction
of the orbit relation by only computing representatives for the set of states
that are found during the process of model exploration (which, depending on
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the property, may not even be the set of all reachable states). This is achieved
by sorting the components of all the currently explored states at each step.
This procedure works using a bubble sort algorithm, applied directly to a BDD
representation of the state set.

An alternative approach to symmetry reduction for systems exhibiting compo-
nent symmetry, which is amenable to both explicit and symbolic model checking
techniques, is counter abstraction [23] or generic representatives [12]. This is
based on the idea of counting the number of processes in each local state, a
process which in many cases can be carried out with a conversion of the model
in the context of the high-level formalism in which it is described. Counter ab-
straction has been shown to perform particularly well, especially in situations
where there are a large number of processes with a relatively small number of
local states. For larger local state spaces, however, the exponential blow-up in
variables required makes it very inefficient.

It should be noted that the work described above represents only a fraction
of the available literature on symmetry reduction, the focus being on techniques
for component symmetry and those targeted at a symbolic implementation.

2.3 Probabilistic Model Checking

Probabilistic model checking is an extension of model checking that is applied
to transition systems augmented with information about the likelihood that
each transition will occur. For a model with set of states S, its behaviour is
specified not by a transition relation on S but a transition function. We most
commonly deal with three types of probabilistic model: discrete-time Markov
chains (DTMCs), continuous-time Markov chains (CTMCs) and Markov decision
processes (MDPs). See e.g. [25] for an overview.

DTMCs are defined by a function P : S×S → [0, 1] satisfying
∑

s′∈S P (s, s′) =
1 for each s ∈ S. This function, known as the transition probability matrix , gives
the probability P (s, s′) of making a transition from each state s to any other
state s′. DTMCs are typically used to represent synchronous systems with a
discrete model of time. CTMCs, on the other hand, are defined by a transition
rate matrix R : S × S → IR≥0 giving the rate R(s, s′) at which transitions
between state pairs (s, s′) occur. This rate is interpreted as the parameter of
a negative exponential distribution, resulting in a dense model of time. Lastly,
MDPs are defined by a function Steps : S → 2Dist(S) mapping each state s
to a finite, non-empty set Steps(s) of probability distributions over the state
space S. Intuitively, this is interpreted as a nondeterministic choice between
several probabilistic behaviours, and is thus useful for example to represent the
asynchronous parallel composition of several stochastic processes.

Probabilistic model checking is applied to DTMCs, CTMCs and MDPs by
formulating properties in the temporal logics PCTL and CSL which are proba-
bilistic extensions of the logic CTL. This allows reasoning about, for example,
“the probability of the algorithm terminating in error”, “the probability that k
packets are successfully transmitted within t seconds” or “the expected num-
ber of rounds for the protocol to complete”. Because these are quantitative in
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nature, probabilistic model checking algorithms must perform numerical com-
putation (typically iterative solution of linear equation systems or linear optimi-
sation problems) in addition to the usual reachability-based algorithms.

Probabilistic model checking has been successfully applied to a large number
of case studies from a wide range of application domains; see for example [20,
24]. In this paper, we have implemented our techniques using the open-source
probabilistic model checker PRISM [15, 24].

2.4 Symbolic Techniques for Probabilistic Model Checking

Symbolic model checking techniques, i.e. those using BDDs or similar data struc-
tures have been successfully adapted to the field of probabilistic model checking.
As in the non-probabilistic case, the key idea is that, by exploiting high-level
structure and regularity in a model, it is possible to derive a very compact rep-
resentation which can be efficiently manipulated. A popular data structure for
this purpose, and the one used in the probabilistic model checker PRISM upon
which our implementation is based, is multi-terminal BDDs (MTBDDs) [9, 3].

An MTBDD M is a directed acyclic graph, the nodes of which are labelled
with Boolean variables from some set x = {x1, . . . , xn}. The MTBDD represents a
real-valued function fM(x1, . . . , xn) : {0, 1}n → IR . A BDD is thus a special case
of an MTBDD which only maps to the two values 0 and 1. Given an encoding
of the state space S of a probabilistic model into n Boolean variables, and two
disjoint sets of n such variables x = {x1, . . . , xn} and y = {y1, . . . , yn}, the
transition probability/rate matrix of a DTMC or a CTMC can be represented
as an MTBDD over these 2n variables. An MDP, although defined as a mapping
to sets of probability distributions, can also be represented as a non-square
k·|S|× |S| matrix (where there are k = maxs∈S |Steps(s)| rows corresponding to
each state) and represented in similar fashion [14].

Given a high-level description of a probabilistic model in some formalism, e.g.
a stochastic process algebra or, as in our case, the PRISM modelling language, it
is possible to construct the corresponding MTBDD directly, in a compositional
fashion [14], often resulting in a very compact representation. Subsequently, we
usually implement probabilistic model checking in one of two ways: (a) entirely
with MTBDDs; or (b) using a combination of MTBDDs and explicit data struc-
tures such as sparse matrices and arrays [19]. In the PRISM tool, these are
referred to as the “MTBDD” and “hybrid” engines, respectively. The former,
where applicable, has successfully been applied to huge probabilistic models (see
e.g. [21]) but this is highly dependent on model regularity and in many cases,
where irregularities introduced during numerical solution become a factor, has
infeasible time and/or memory usage. The “hybrid” approach is usually faster
but, due to storage requirements linear in the size of the state space, is gener-
ally limited to models of approximately 107−108 states. It is frequently the case
that compact symbolic representations can be constructed for extremely large
probabilistic models, but that verification, in particular via numerical compu-
tation, of these models is prohibitively expensive, both in terms of time and
space.
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3 Symmetry Reduction for Probabilistic Model Checking

The notion of symmetry in DTMCs, CTMCs and MDPs can be formulated
analogously to the non-probabilistic case, described in Section 2.1. We consider
permutations π : S → S on the state space which preserve the transition func-
tion. For DTMCs, we require that P (π(s), π(s′)) = P (s, s′) for all s, s′ ∈ S.
Similarly, for CTMCs, we need R(π(s), π(s′)) = R(s, s′) for all s, s′ ∈ S. In the
case of MDPs, for each s ∈ S and each distribution µ ∈ Steps(s), there must be
a distribution µ′ ∈ Steps(π(s)) such that µ′(π(s′)) = µ(s′) for all s′ ∈ S.

As before, we consider a group G of such permutations on S and the corre-
sponding orbit relation θ. From the equivalence classes of the latter we define
a reduced state space S containing a unique representative for each orbit and
a function rep : S → S which computes the representative for each state. Con-
struction of the quotient model can then be carried out as follows. For a DTMC
(S, P ), we build (S, P ) where for each pair of states s, s′ ∈ S:

P (s, s′) =
∑

{s′∈S | rep(s′)=s′}
P (s, s′) . (1)

For a CTMC (S,R), the quotient model is (S,R) where for s, s′ ∈ S:

R(s, s′) =
∑

{s′∈S | rep(s′)=s′}
R(s, s′) . (2)

Finally, for an MDP (S,Steps), the quotient model is (S,Steps) where if s ∈ S,
then Steps(s) contains a distribution µ if and only if there exists µ ∈ Steps(s)
such that for each s′ ∈ S:

µ(s′) =
∑

{s′∈S | rep(s′)=s′}
µ(s′) . (3)

Constructed in such a way, the quotient model in each of the three cases can
easily be shown to be equivalent to the original unreduced model in the context
of (strong) probabilistic bisimulation, which is well understood for DTMCs [22],
CTMCs [6] and MDPs [26]. Furthermore, from results in [2, 4, 26], we can hence
deduce that for formulas in the temporal logics PCTL (for DTMCs or MDPs)
and CSL (for CTMCs) using a set of atomic propositions AP which is preserved
by symmetry, probabilistic model checking can be performed equivalently on the
quotient model rather than the original, unreduced model. Additionally, quanti-
tative analysis of cost- and reward-based specifications are similarly preserved.

3.1 Example

We now consider a simple illustrative example: an MDP representing two sym-
metric processes with three states (0, 1 and 2) which interact as follows. Initially,
both are in state 0. First, one moves randomly to state 1 or 2 (each with proba-
bility 0.5). The other then does likewise. If, in the second step, state 2 is chosen
and a process is already in state 2, the one which moved first moves to state 1.
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Figure 1(a) shows the MDP. States are denoted by circles labelled ij, where
i and j represent the state of process 1 and 2, respectively. Each of the possible
probability distributions from a state is denoted by a set of probability-labelled
transitions (arrows) grouped by an arc. Figure 1(b) gives the function rep which
maps each state from the MDP to a unique symmetric representative and Fig-
ure 1(c) shows the resulting quotient model over the reduced state space.
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00 → 00
10 → 01
20 → 02
01 → 01
02 → 02
11 → 11
12 → 12
21 → 12 (c)

00

0.5 0.5

11 12

01 02

0.5
0.5

1

Fig. 1. A simple example: (a) full MDP (b) state representatives (c) quotient MDP

4 A Symbolic Implementation

We now consider in more detail how to exploit symmetry reduction for proba-
bilistic model checking. More precisely, we consider the problem of constructing,
for a DTMC, CTMC or MDP exhibiting component symmetry, the correspond-
ing quotient model upon which probabilistic model checking can instead be per-
formed. Although the method of Ip and Dill [17] can readily be adapted for this
purpose, it is only applicable only to the construction of models in an explicit
fashion. As stated earlier, we wish to instead build upon the efficient symbolic
model checking framework that already exists.

One way that this could be achieved is to use counter abstraction, which
works by applying symmetry reduction at a higher level: on the language de-
scription of the model. Preliminary results for the application of such techniques
to probabilistic model checking can be found in [10]. An advantage of this is that
existing efficient methods for the construction of a symbolic model can be used
unmodified; however it is known, from applications of this to non-probabilistic
model checking, that performance is typically poor for examples where symmet-
ric processes have many local states.

Previous experience with symbolic methods for probabilistic model checking
suggests that the most desirable way of constructing an MTBDD representing
the quotient model would be to do so directly from a high-level model descrip-
tion and in a compositional manner. Unfortunately, there is no obvious way of
achieving this due to the implicit introduction, during symmetry reduction, of
a large number of inter-component dependencies. Hence, our approach proceeds
by first building a symbolic representation for the full model and then reducing
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it to the quotient model. Working in an explicit context, this would negate any
benefit of symmetry reduction, since constructing and storing the model itself
represents the bottleneck. In a symbolic setting, though, this is not so: it is very
often the case that it is possible to build the MTBDD representing extremely
large models but that model checking cannot be carried out, either in a fully
symbolic fashion (because irregularity in the computation causes a blow-up in
MTBDD sizes) or with the use of explicit data structures (because of exces-
sive memory requirements). It is in such cases that symmetry reduction has the
potential to be very useful. In Section 5 we will demonstrate exactly this on a
number of large case studies.

4.1 The Algorithm

We now present our algorithm for converting a probabilistic model with N sym-
metric components to its reduced quotient form which is applicable to all three
model types: DTMCs, CTMCs and MDPs. In the following we shall refer to the
transition matrix , which corresponds to P , R and Steps, respectively, for the
three models. As described in Section 2.4, for an MDP, Steps can be thought
of as non-square matrix where there are multiple rows corresponding to each
state.

Our algorithm proceeds in three steps. Firstly, we identify the quotient state
space: the set S. Secondly, every row in the transition matrix corresponding to
states not in S is removed (replaced with a row of zeros). Thirdly, we modify
each of the remaining rows, moving entries in column s′ to column rep(s′). More
precisely, since a row may contain multiple non-zero entries which move to the
same column, we replace each element of row s of the matrix with the sum of
the values from columns s′ for which s = rep(s′). Note that this corresponds
precisely to our three definitions of the quotient model in Section 3.

The full algorithm, expressed in terms of the operations on BDDs and MTB-
DDs, is shown in Figure 2. The inputs to the algorithm are a BDD reach over set
of variables x representing the set of reachable states S and an MTBDD trans
over the variable sets x and y representing the transition matrix (see Section 2.4).
Since this MTBDD is constructed in a compositional fashion, the variable sets x
and y are conveniently partitioned into subsets xi and yi for 1≤i≤N , one for each
of the N symmetric processes. We can illustrate this as follows. Let us assume
that the state space S of the model is simply the product of the (identical) local
state spaces Ŝ of each of the N symmetric components, i.e. S = ŜN . We have
both an encoding α : S → {0, 1}n of the whole state space S into n Boolean vari-
ables and an encoding α̂ : Ŝ → {0, 1}n/N of the local state space Ŝ into Boolean
variables. Consider for example an MTBDD M over variables x = {x1, . . . , xn}.
This MTBDD represents a real-valued function over the state space S which, for
a state s = (s1, . . . , sN) in S, can be defined either as fM(α(s)) or, equivalently,
fM(α̂(s1), . . . , α̂(sN )).

The output of the algorithm is a modified copy of the trans MTBDD repre-
senting the quotient transition matrix. This MTBDD is also over the variable
sets x and y, meaning that we retain the same encoding of the state space and
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// Step 1: Identify quotient state space, i.e. all representative states
1. repr := reach
2. for (i := 1..N − 1)
3. sortedi := VariablesLessThanEquals(yi, yi+1) ∧ reach
4. repr := repr ∧ sortedi

// Step 2: Remove rows corresponding to non-representative states
5. trans := Apply(×, trans,SwapVariables(repr, y, x))

// Step 3: Construct matrix for quotient model via bubble sort
6. for (i := N, . . . , 2)
7. trans prev := trans
8. for (j := 1, . . . , i−1)
9. good := Apply(×, trans, sortedj)

10. bad := Apply(×, trans,¬ sortedj)
11. fixed := SwapVariables(bad, yj, yj+1)

12. trans := Apply(+, good, fixed)
13. if (trans = trans prev) return trans
14. return trans

Fig. 2. MTBDD-based algorithm for computing the quotient model

remove (set to zero) all entries of rows and columns of the matrix correspond-
ing to states not in S, rather than select a new encoding for the set S. This is
important in order to preserve the regularity of the original data structure.

In the first step of the algorithm (lines 1-4) we compute the BDD repr repre-
senting the set S. This is in fact relatively easy. Since our unique representative
function rep simply sorts the values of symmetric components, S is the subset
of S containing states s in which s1 ≤ s2 ≤ · · · ≤ sN . Hence symm is formed
from the conjunction of reach and N−1 BDDs, the ith of which, denoted sortedi,
encodes all states in which si ≤ si+1. Given the BDD variable sets yi and yi+1,
encoding the ith and (i+1)th processes, the latter are small (linear in the size of
yi) and easy to construct (in the CUDD library which we use, there is a built-in
function to do so).

The second step of the algorithm (line 5) requires a single application of the
Apply function, a fundamental MTBDD operation which performs a pointwise
application of a binary function on two MTBDDs. We use a pointwise multipli-
cation of the BDD (0-1 valued MTBDD) repr and MTBDD trans. Since we are
removing rows from the matrix, not columns, we first swap the variables in repr
from y to x.

The third and most important step (lines 6-14) permutes and sums matrix
elements to compute the MTBDD for the quotient matrix. Essentially, each el-
ement in column s of the matrix needs to move to column s′ where the latter
can be determined by sorting the components (s1, . . . , sN) of s into ascending
numerical order. We do this using a standard bubble sort algorithm comprising
N−1 passes, the ith of which compares sj and sj+1 for all j<i and swaps the
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Fig. 3. Executing the algorithm from Figure 2 on the MDP from Figure 1(a): (a) trans
(initially) (b) trans (after step 2) (c) good (d) bad (e) fixed (f) trans (finally)

two values if sj > sj+1. The novelty is that we perform this sorting process for
all elements of each row simultaneously and, furthermore, for all rows simulta-
neously. This concurrent approach to algorithm design is typical of symbolic, i.e.
BDD-based, implementations.

In terms of MTBDDs, each iteration of bubble sort, as described above, is
achieved as follows. We partition the current copy of the matrix trans into two
parts, good and bad, the latter containing all columns of the matrix for which in
the column index s, sj > sj+1. We can then use the primitive MTBDD operation
SwapVariables and the variable sets yj and yj+1 to convert bad to an equivalent
MTBDD fixed in which sj and sj+1 have been swapped for all column indices.
Summing (using Apply) the MTBDDs good and fixed gives the new version of
trans for this iteration.

A feature of bubble sort is that, if no swaps are performed in an entire outer
iteration, then we can deduce that the sort has been completed early. Thanks to
the canonicity property of MTBDDs, it is trivial to compare two MTBDDs for
equality. Hence, for each outer iteration of our algorithm, we check whether the
MTBDD trans has been modified (lines 7 and 13), terminating early if not.

4.2 Example

We now return to our example of Section 3.1 (Figure 1). Figure 3 illustrates
the execution of the algorithm from Figure 2 on the MDP from Figure 1(a).
Figure 3(a) shows the matrix trans for the full MDP. Figure 3(b) shows trans
after step 2 (line 5 of Figure 2). Since this example comprises just two processes,
we require only a single iteration of bubble sort. The matrices good, bad and
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fixed from this iteration are shown in Figures 3(c), 3(d) and 3(e), respectively.
The final resulting version of trans (i.e. good + fixed) is shown in Figure 3(f)
which corresponds exactly to the quotient MDP in Figure 1(c).

4.3 Efficiency of the Algorithm

Clearly, the most costly part of our method is the sorting process. As mentioned
previously our decision to use the bubble sort algorithm for this is motivated by
[13], where it is argued that, despite being a poor choice in general, bubble sort
is well suited for a BDD-based implementation. Firstly, it allows each step of the
algorithm to be applied in parallel to several separate sorting problems: in the
case of [13], values for all states in a set are sorted simultaneously, whereas in our
case we take this a step further, sorting values in all rows and columns of an entire
real-valued matrix. Secondly, the most costly operation at the BDD or MTBDD
level is the permutation of two sets of Boolean variables, the performance of
which worsens with an increase in the distance between the two sets in the
variable ordering. Bubble sort has the advantage that it only swaps the variables
corresponding to adjacent processes which are very close in the ordering.

The complexity of bubble sort is O(N2). Since model sizes are typically expo-
nential in the number of processes they contain, N will usually be comparatively
small. More crucial from a performance point of view will be the effect that the
sorting process will have on the size of the MTBDD representation of the ma-
trix. The unavoidable loss in regularity associated with this process would be
expected to have at least some detrimental effect in this respect but, as is always
the case with BDD and MTBDD-based implementations, the exact effect is hard
to predict. We will give an analysis based on empirical data in the next section.

5 Results

We now present experimental results to illustrate the performance of our ap-
proach, which has been implemented as a prototype extension of the PRISM
probabilistic model checker [15, 24] using the CUDD BDD/MTBDD library
[27]. For this, we have used four case studies: the IEEE 802.3 CSMA/CD com-
munication protocol [16], the shared coin component of Aspnes and Herlihy’s
randomised consensus protocol [1], studied in [21]; the randomised Byzantine
agreement protocol of Cachin, Kursawe and Shoup [7], studied in [18]; and a
simple peer-to-peer (P2P) protocol based on BitTorrent. The first three have
been modelled as MDPs, the latter as a CTMC. In all cases, we model check a
single quantitative property. All PRISM models and properties are available [24].
At this stage, symmetry has been identified manually; future work will involve
modifying the PRISM input language to facilitate automation of this process.

The table in Figure 4 summarises the results of our experiments, which were
executed on a 2.80GHz Pentium 4 PC with 1GB RAM running Linux. The first
two columns show the range of values of N (number of symmetric processes) for
which we have obtained results with each case study. The next three columns
show the sizes of the full and symmetry-reduced state spaces (i.e. |S| and |S|)
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Case N State space MTBDD size Time (sec.)
study Size Reduct. (nodes) Model Model Model checking

Normal Symm. factor Normal Symm. build sort Normal* Symm.*
CSMA 4 678,831 35,270 19.2 64,857 37,653 9.25 1.05 134 (H) 26.5 (H)

5 1.7e+7 203,271 81.9 207,837 105,768 45.3 4.17 1,988 (H) 131 (H)
6 3.2e+8 813,520 392 538,931 244,970 158 13.1 21,511 (M) 491 (H)
7 5.7e+9 2.8e+6 2,073 1.1e+6 510,618 499 31.5 Mem. out 1,934 (H)
8 1.0e+11 8.4e+6 11,962 2.1e+6 1.1e+6 1,831 76.8 Mem. out 5,281 (H)

Cons- 8 6.1e+7 46,482 1,313 15,529 15,883 1.41 0.46 5,447 (M) 74.6 (H)
ensus 10 2.8e+9 136,708 20,198 29,419 29,939 3.01 1.02 27,668 (M) 412 (H)

12 1.2e+11 339,729 352,407 50,037 50,741 5.71 2.11 > 24 hrs 2,047 (H)
14 5.0e+12 747,243 6.7e+6 78,171 79,123 9.59 5.05 > 24 hrs 6,816 (H)
16 2.1e+14 1.5e+6 1.4e+8 115,385 116,691 19.0 7.56 > 24 hrs 19,168 (H)

Byza- 8 6.4e+8 298,993 2,142 713,143 167,587 21.0 5.15 111 (M) 10.8 (M)
ntine 12 3.6e+12 3.3e+6 1.1e+6 2.6e+6 529,619 86.0 23.9 1,430 (M) 56.6 (M)

16 1.9e+16 1.2e+7 9.3e+8 6.6e+6 1.2e+6 241 75.3 Mem. out 186 (M)
20 9.5e+19 9.1e+7 1.0e+12 1.3e+7 2.3e+6 1,503 237 Mem. out 740 (M)

P2P 4 1.0e+6 52,360 20.0 2,735 28,684 0.10 0.34 34.1 (H) 8.75 (H)
5 3.4e+7 376,992 89.0 12,230 67,764 0.08 0.88 1,756 (H) 70.1 (H)
6 1.1e+9 2.3e+6 462 26,555 134,641 0.16 1.77 Mem. out 547 (H)
7 3.4e+10 1.3e+7 2,723 40,880 233,068 0.28 3.38 Mem. out 3,556 (H)

* (M) denotes use of MTBDD engine, (H) denotes use of hybrid engine

Fig. 4. Experimental results for the four case studies

and the factor of reduction achieved. In the next two columns, we give the size
of the MTBDD (number of nodes) representing the transition matrix for the
original model and the reduced quotient model.

We first note that, as expected, we can obtain large (several orders of magni-
tude) reductions in state space size using component symmetry and that these
reductions improve with an increase in N . Of equal importance, however, is the
size of the MTBDD representation of the quotient model. Our result shows that
in some cases this is actually smaller (approximately half the size for CSMA,
even smaller for Byzantine), in others there is little change (Consensus) but that
there can also be a significant increase in size (P2P). There are two contrast-
ing factors which influence this. Firstly, the removal of a large number of rows
decreases MTBDD size. The BDD representing the set of representative states
(repr in Figure 2) is normally quite regular, unlike for example the set of all
reachable states. On the other hand, the permutation of a large number of ma-
trix elements during sorting destroys a great deal of the matrix’s regularity and
hence increases MTBDD size. This is confirmed by a more detailed analysis of
the MTBDD size during the process of constructing the quotient model which
usually exhibits an initial decrease followed by a steady increase.

We thus observe that the example exhibiting the most regularity before sym-
metry, P2P (compare the MTBDD size and state space), suffers the highest
increase. Although the Consensus and Byzantine examples are also regular, the
fact that we can work with larger values of N results in a greater reduction
in state space and hence the gain from removal of rows outweighs the loss in
structure. Similarly, we can see that the effect of loss in regularity (increase in
MTBDD size) decreases with increasing N on the P2P example.

The last four columns in Figure 4 show the times taken for each part of our
experiments: building the original full model (including reachability), construc-
tion of the quotient model via bubble sort and performing model checking on
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each of the two models. In the latter case we use the fastest PRISM engine
which can complete the task: either the MTBDD (M) or hybrid (H) engine. All
experiments requiring more than 24 hours were discounted.

We see that the times for constructing the quotient model (i.e. to run the
algorithm in Figure 2), although slower on the CSMA and Byzantine examples
for which the MTBDDs are larger, are generally fast, certainly with respect to
the time required for model checking. More significantly, we observe that using
symmetry reduction we can obtain a dramatic increase in the size of models that
can be successfully verified. Note that this is true even on the P2P example for
which the MTBDD sizes increase. For three of our case studies, this is because
the large reduction in state space makes use of the hybrid engine possible after
symmetry reduction. Another consequence of this is that we also observe a sig-
nificant improvement in run-time using symmetry reduction. On the Consensus
case study, the total time required for solution drops from several weeks to a
few hours. For the Byzantine case study, where we use the MTBDD engine both
before and after reduction, the decrease in MTBDD size means that we still
obtain huge improvements in both state space and run-time.

6 Conclusion

We have presented an efficient approach for the exploitation of component sym-
metry in three types of probabilistic models: discrete-time Markov chains, contin-
uous time Markov chains and Markov decision processes. Our algorithm, based
on multi-terminal BDDs and implemented in the PRISM tool, has been ap-
plied to four large case studies and demonstrates that the technique performs
extremely well. In comparison to existing state-of-the-art implementations, it
allows quantitative verification to be performed on models many orders of mag-
nitude larger and results in significantly faster run-times.

Our work can be extended in several directions. Following ideas put forward
in [13], we hope to able to apply our technique to a wider range of symmetric
systems, including those based on rotational, rather than component, symmetry
(i.e. rings). We would also like to extend the PRISM modelling language with
a notion of scalarsets [17] in order to facilitate the automation of detecting and
exploiting symmetry. Finally, we hope to undertake a comparison with symmetry
reduction methods based on counter abstraction [10].
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Abstract. We study channel systems whose behaviour (sending and
receiving messages via unbounded FIFO channels) must follow given
timing constraints specifying the execution speeds of the local compo-
nents. We propose Communicating Timed Automata (CTA) to model
such systems. The goal is to study the borderline between decidable and
undecidable classes of channel systems in the timed setting. Our tech-
nical results include: (1) CTA with one channel without shared states
in the form (A1, A2, c1,2) is equivalent to one-counter machine, implying
that verification problems such as checking state reachability and chan-
nel boundedness are decidable, and (2) CTA with two channels without
sharing states in the form (A1, A2, A3, c1,2, c2,3) has the power of Tur-
ing machines. Note that in the untimed setting, these systems are no
more expressive than finite state machines. This shows that the capa-
bility of synchronizing on time makes it substantially more difficult to
verify channel systems.

1 Introduction

FIFO channels (i.e., unbounded buffers) are widely used as a communication
mechanism in concurrent systems. In many applications, channels are a critical
element for the correct functioning of such systems. In this work, we study
timed systems whose components communicate through (unbounded) channels.
An example of such systems is illustrated in Figure 1, where A1 is a producer (or
sender) which generates messages and puts them into the buffer c1,2 and A2 is
a consumer (or receiver) which gets messages from the buffer. Assume that the
production and consumption of messages must follow given timing constraints
(specifying the relative execution speeds of the producer and the consumer). A
relevant question to ask is whether the channel is bounded, and if it is, what is
the maximal size of the buffer. This is a typical scenario in designing embedded
systems, where it is desirable to know a priori the maximal size of a buffer
needed to avoid buffer overflow and over-allocation of memory blocks in the
final implementation.

� Partially supported by the European Research Training Network GAMES.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 249–262, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



250 P. Krcal and W. Yi

A1 A2

c1,2

Fig. 1. A schema of a CTA with one channel

In the literature, channel systems have been studied intensively in the un-
timed setting, within the context of verification of infinite state systems (see
below for related work which provides a brief summary of known results). To
our best knowledge, this is the first attempt to study channel systems in the
timed setting. The existing works address mainly channel systems that are a fi-
nite set of Communicating Finite State Machines (CFSMs). In the CFSM model,
no notion of time is assumed and systems run in a fully asynchronous manner in
the sense that any local move of a machine is allowed at any time. We observe
that for systems modeled as CFSMs, the source of infiniteness is in not only
unbounded channels but also the capability of synchronization or exchanging in-
formation between the machines. In fact, asynchronous systems – as illustrated
in Figure 1 and 2 with only one-directional communication, where the receivers
are not allowed to inform directly or indirectly the senders about the receipt
of messages – are no more expressive than finite state machines [Pac03, CF05],
and thus all properties such as reachability and channel boundedness are decid-
able. Roughly speaking, synchronization within CFSMs may be achieved through
either shared states [BZ83], or two-direction communication [FM97] or combina-
tion of accepting conditions and doubled one-direction channels [Pac03, Pac82].
The synchronization features together with the unboundedness of channels are
the essential source of undecidability for channel systems in the untimed setting.

A2

c1,2

A1

c2,3

A3

Fig. 2. A schema of a CTA with two channels

As a model for timed systems communicating via channels, we propose and
study Communicating Timed Automata (CTA), i.e., networks of timed automata
extended with (unbounded) channels. A CTA is a channel system where the
sending and receiving transitions of machines are constrained with clock con-
straints. We shall show that channel systems (with one channel) as illustrated
in Figure 1, which accept only regular languages in the untimed setting, are
expressive enough to simulate one-counter machines in the timed setting. How-
ever, the density of time adds no more expressive power (than discrete time),
and many questions of interests such as reachability and channel boundedness
are still decidable for CTA with one channel. As a main technical contribution,
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we present a novel proof showing that CTAs with one channel without sharing
states are no more expressive than one-counter machines. The proof uses the
notion of CDR (Clock Difference Relations) developed in [KP05]. To study the
borderline of decidability and undecidability for CTA, we have shown that CTAs
with two channels, as illustrated in Figure 2, can simulate Turing machines. By
this we show the theoretical limits of analysis of timed systems with unbounded
channels.

Related Work. Channel systems, i.e., networks of communicating finite state
machines (CFSMs) have been widely studied in the untimed setting, as a model
for communication protocols, in which no global notion of time is assumed
and any local move of FSMs at any time is allowed. The first undecidabil-
ity results for the untimed setting were presented in [BZ83] showing that two
FSMs with shared states and one channel can simulate Turing machines. Further
results consider even more restricted settings, showing that two identical sim-
ple FSMs with one channel in both directions are powerful enough to simu-
late a Turing machine [FM97]. A suprising result due to [Pac03, Pac82] is that
two FSMs connected by two channels going in the same direction can simu-
late Initial Post’s Correspondence Problem, and therefore have the power of
Turing machines. Classes of CFSMs with decidable reachability problems have
been identified in [CF05] (half-duplex systems), [Pac03] (cyclic systems with
one channel bounded), and [PP92] (cyclic systems with one-type messages).
Abstractions of CFSMs for acceleration in reachability analysis are presented
in [FPS03]. Another recent work [GMK04] shows the equivalence of several for-
malisms when the communication is existentially bounded. Apart from work
on systems with perfect channels, systems with unreliable channels have been
studied in [AJ96a, AJ96b]. An excellent survey on work in this direction can be
found in [CFP96].

2 Communicating Timed Automata

We assume that the reader is familiar with timed automata [AD94]. A network of
Communicating Timed Automata (CTA) is a tuple (A1, A2, . . . , An, ci1,j1 , ci2,j2 ,
. . . , cim,jm) where each Ai = (Qi,Act, Ci, Ei, q

0
i , Fi) is a timed automaton and

each ci,j , i, j ∈ {1 . . . n} is an unidirectional unbounded channel containing mes-
sages sent from Ai to Aj . Mutually disjoint finite sets Q1, . . . Qn contain loca-
tions of Ai’s. A finite set Act denotes a communication alphabet common for
all Ai’s. In addition, we assume that automata may perform an internal transi-
tion denoted by ε. Ci is a finite set of real-valued clocks (Ci, Cj are disjoint for
i �= j), q0

i ∈ Qi is an initial location, and Fi ⊆ Qi is a set of accepting locations.
Ei ⊆ Qi× ({1 . . . n}×{?, !}×Act)∪{ε}×G(C)×2C×Qi is the set of transitions
of Ai, where G(C) and 2C are timed automata guards and resets, respectively.
Transitions are labeled by not only a letter from Act, but also information about
whether a letter is sent or received (! or ?, respectively) and to or from which

channel. We write qi
k!a,g,r−→ q′i when (qi, k!a, g, r, q′i) ∈ E. Channels are assumed

to be perfect. We denote the contents of a channel by finite words over Act.
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Let νi : Ci .→ R≥0 denote a valuation of clocks in Ai. Let νi |= g denote
that the guard g is satisfied by νi and r(νi), r ⊆ Ci denote a valuation where all
clocks from r are reset and other clocks keep their values. A state of the system
is a tuple (q1, ν1, . . . , qn, νn, w1, . . . , wm), where qi ∈ Qi is a location of Ai and
wk ∈ Act∗ is the content of channel cik,jk

. We define the semantics of CTA based
on Labeled Transition System (LTS).

Definition 1 (Synchronized Semantics). The semantics of a CTA (A1, . . . ,
An, ci1,j1 , . . . , cim,jm) is a labeled transition system with initial state (q0

1 , ν
0
1 , q

0
2,

ν0
2 , . . . , q

0
n, ν

0
n, ε, ..., ε), where ν0

i (x) = 0 for all x ∈ Ci and two types of transitions
– time pass and discrete transition – defined as follows. Let s = (q1, ν1, . . . , qn, νn,
w1, . . . , wm) and s′ = (q′1, ν

′
1, . . . , q

′
n, ν

′
n, w

′
1, . . . , w

′
m).

– s
t−→ s′ if ν′i = νi + t, q′i = qi and w′

j = wj for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

– s
(a,i,k,!)−→ s′ if qi

k!a,g,r−→ q′i, w
′
l = a ·wl, where wl is the content of ci,k, νi |= g,

ν′i = r(νi), and q′j = qj , ν
′
j = νj , w

′
k = wk for all j �= i, k �= l,

– s
(a,i,k,?)−→ s′ if qi

k?a,g,r−→ q′i, a �= ε, w′
l · a = wl, where wl is the content of ck,i,

νi |= g, ν′i = r(νi), and q′j = qj , ν
′
j = νj , w

′
k = wk for all j �= i, k �= l, and

– s
(ε,i)−→ s′ if qi

ε,g,r−→ q′i, νi |= g, ν′i = r(νi), q′j = qj , ν
′
j = νj , w

′
k = wk for all

j �= i, k ∈ {1, . . . ,m}, and there is no qi
k?a,ḡ,r̄−→ q′′i such that νi |= ḡ and

wl = w′′
l · a, where wl is the content of ck,i.

All automata move synchronously; time passes at the same pace for all of them.
The automata read from the channels in an urgent manner, an automaton is not
allowed to take an ε-transition if it can take a receiving a-transition and a is at
the head of the corresponding channel. Another possibility is to define reading as
non-urgent, i.e., there are no restrictions on taking ε transitions. In Section 3, we
show by an example that CTA’s even with non-urgent reading from the channels
have strictly more expressive power than CFSMs in the untimed setting.

Let S be a CTA and TS be its corresponding LTS. By ρ we denote a finite
path in TS , by [ρ] a sequence of labels occurring along ρ, and by [ρ]!i ([ρ]?i ) a
sequence of letters from Act which is a projection of [ρ] to letters sent (received)
by an automaton Ai. If the location vector (q1, . . . , qn) of the last global state
of ρ is accepting (i.e., ∀i.qi ∈ Fi) then we say that the run is accepting, denoted
ρ � TS . A language accepted by a CTA S is a set LS(S) = {[ρ]!1 | ρ � TS}.

Note that we can model CFSMs by CTA. Therefore, all negative results proved
for CFSMs apply also to our model. In the following, we study the expressive
power of the model by identifying decidable and undecidable classes of CTA.

3 CTA with One Channel

Let us first consider a system (A1, A2, c1,2) schematically depicted in Figure 1.
It has been shown that CFSMs with such topology accept regular languages and
reachability and boundedness problems are decidable [Pac03, CF05]. We show
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that CTA of this form can accept also some non-regular context-free languages.
Moreover, we show that for such a CTA there is a one-counter machine which
accepts the same language. Therefore, state reachability and channel bounded-
ness problems are decidable, which follows from the decidability of emptiness
and infiniteness for context-free languages.

To establish the proof, we propose an alternative (desynchronized concrete)
semantics for CTA which resembles the reordering technique [Pac03] for CFSMs
and the local time semantics for timed systems [BJLY98]. However, states in
this semantics still contain concrete valuations of clocks. Therefore, we define a
(desynchronized symbolic) semantics where the continuous part of the state has
a finite symbolic representation. This symbolic semantics can be easily simu-
lated by a one-counter machine. We also show that instructions of a one-counter
machine can be simulated by a CTA of the form (A1, A2, c1,2) and thus the ex-
pressive power of CTA with this topology is equivalent to one-counter machine.

Intuitively, we let the automata to desynchronize so that there is at most one
message in the channel during the first part of the computation and that only
the producing automaton runs during the second part of the computation. Local
time (time from the beginning of the computation) can be different in A1 and
A2. We keep track of the difference between local times of automata in a real
valued variable. The acceptance condition is extended by a requirement that the
system should be synchronized, i.e., the value of this variable is equal to 0.

In the following, we denote A1 as A and A2 as B. We also write !a instead of 2!a
and ?a instead of 1?a. Without loss of generality, we assume that there is a clock
ti in each Ai which is never reset. The reason is to simplify the notation later. A
state in the concrete desynchronized semantics is a tuple (qA, νA, qB, νB, w, T ),
where qA ∈ QA, qB ∈ QB, w ∈ Act∗, valuations νA, νB are as in the original
semantics, and T ∈ R is the lag of B behind A (it is negative if B is ahead).
By (qA, νA) lab−→ (q′A, ν

′
A) we mean that there is a transition from (qA, νA) to

(q′A, ν
′
A) labeled by lab in the standard timed automata semantics LTS. We need

to take special care about reading – a letter should not be read before it has
been produced.

We let the automata to alternate in running as long as the size of the channel
content does not exceed 1. When it contains at least two letters then only A can
move. We assume a ∈ Act and w ∈ Act∗ in the following definition.

Definition 2 (Desynchronized Concrete Semantics). The desynchronized
concrete semantics of a CTA (A,B, qA,B) is a labeled transition system with
initial state (q0

A, ν
0
A, q

0
B, ν0

B, ε, 0) and transitions induced by the following rules:

– (qA, νA, qB , νB, w, T ) t−→dc (qA, νA + t, qB , νB, w, T + t) if (qA, νA) t−→ (qA,
νA + t),

– (qA, νA, qB , νB, w, T )
(a,1,2,!)−→dc (q′A, ν

′
A, qB, νB, a ·w, T ) if (qA, νA) !a−→ (q′A, ν

′
A),

– (qA, νA, qB , νB, w, T ) t−→dc (qA, νA, qB, νB + t, w, T − t) if (qB , νB) t−→ (qB ,
νB + t) and |w| ≤ 1,

– (qA, νA, qB , νB, a, T )
(a,2,1,?)−→dc (qA, νA, q

′
B, ν′B , ε, T ) if (qB , νB) ?a−→ (q′B, ν′B)

and T ≤ 0,
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– (qA, νA, qB , νB, w, T ) ε−→dc (qA, νA, q
′
B , ν′B, w, T ) if (qB , νB) ε−→ (q′B , ν′B),

|w| ≤ 1, if T ≥ 0 then (w = a ⇒ (qB , νB) ?a
�), and if T < 0 then (w =

a ∧ (qB , νB) ?a
�).

A run with the last state (qA, νA, qB, νB, w, T ) is accepting if qA ∈ FA, qB ∈
FB, and T = 0. Definition of the accepted language LDC(S) for a given CTA
S is the same as for synchronized semantics. The set of reachable states of a
given CTA is equal to the set of states reachable in its desynchronized concrete
semantics where T = 0. Also, the language accepted by a CTA is the same in
both semantics.

Lemma 1. For a given CTA S of the form (A,B, cA,B), the reachability set
{(qA, νA, qB, νB, w) | (q0

A, ν
0
A, q

0
B, ν0

B, ε) →∗ (qA, νA, qB, νB, w)} is equal to the
set {(qA, νA, qB ,νB , w) | (q0

A, ν
0
A, q

0
B , ν0

B, ε, 0) −→dc
∗ (qA, νA, qB, νB, w, 0)}.

Moreover, LS(S) = LDC(S).

The basic idea of the proof of this lemma is the same as in [Pac03]. Desynchro-
nized concrete semantics cannot reach more states where T = 0 or accept more
words because the counter gives us a possibility to check the following conditions
on the transitions of B. A letter can be read only after it has been produced
and ε-transitions can be taken only when no enabled transition is labeled by the
head of the buffer.

The desynchronization semantics shows how to avoid necessity to remember
the whole content of the buffer during the run of a CTA. Note that one does not
have to remember the content of the channel when its size exceeds 1, because
it will never be read. The price we have to pay is an additional real number
as a part of the state. In case of discrete time, T is an integer and therefore
one can replace such a system by a language equivalent (in fact, bisimilar) one-
counter machine. To be able to prove that there is a one-counter machine which
is language equivalent to such a system in the dense time, we need to handle real
valued clocks and T in a symbolic way, such that we get a finite state control
unit and one counter.

The first step is to use regions [AD94] instead of valuations for each automa-
ton. We denote regions by D,DA, DB. When D is a region over clocks of two au-
tomata A and B then by (νA, νB) ∈ D we mean that ν ∈ D where ν(x) = νA(x)
for all x ∈ CA and ν(y) = νB(y) for all y ∈ CB. We write D ⇒ DA if D is a
region over clocks of A,B, DA is a region over clocks of A, and for all (ν, ν′) ∈ D
it holds that ν ∈ DA.

Now we need to take care of T . There are two sources of infinity in T –
its integral part, which can grow arbitrarily large, and its fractional part. We
remember the integral part of T in a counter, denoted N . To remember the
fractional part of T , we use the extra local clocks tA and tB of A and B. We
observe that the difference of their fractional parts is equal to the fractional part
of T (we do not use their integral parts). More precisely, if (qA, νA, qB, νB, w, T )
is reachable and N = �T � then T = N + (fr(νA(tA)) − fr(νB(tB))) if νA(tA) ≥
νB(tB) and T = N + (1− (fr(νB(tB))− fr(νA(tA)))) if νA(tA) < νB(tB).
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The fractional parts of tA and tB are then symbolically represented by regions
and we remember their relative order as a constraint of the form tA �� tB, where
��∈ {<,=, >}. Assume that local regions DA, DB were reached during the stan-
dard reachability analysis. For two given local regions DA, DB, our goal is to
find a global region D which contains only valuations reachable in the desyn-
chronized concrete semantics. We can define D as an ordering of the fractional
parts of clocks which is consistent with DA, DB (D ⇒ DA, D ⇒ DB), and with
tA �� tB.

However, such constraints on global regions are not sufficient. There are CTA
for which symbolic analysis reaches DA, DB, tA �� tB, but there is a global region
D consistent with DA, DB, tA �� tB which contains unreachable valuations.

To eliminate such global regions, we will remember also relations between
clock differences. We use the fact that tA and tB are never reset and relate all
other clocks to them. The concept of clock difference relations has been used
before in [KP05] to characterize reachability relations. Here we give a slightly
modified definition which suits our purposes better. To differentiate this defini-
tion from the original one, we call it desynchronized clock difference relations
here, but later we will use only an abbreviation CDR or clock difference relation.

Definition 3. A desynchronized clock difference relation (CDR) is a set of
(in)equalities of the form exp �� exp or exp �� 1 − exp where exp is a clock
difference (over the clocks of either A or B) in the form: tA − x, x− tA, tB − y
or y − tB, x is a clock of A, y is a clock of B, and ��∈ {<,>,=}.
Definition 4. The semantics of a CDR is defined as follows. Assume C is a
CDR. We say that a pair of valuations (ν, ν′) satisfies C ((ν, ν′) � C) if:

– if x− y �� u− v ∈ C then fr(ν(x)) − fr(ν(y)) �� fr(ν′(u))− fr(ν′(v)),
– if x−y �� 1−(u−v) ∈ C then fr(ν(x))− fr(ν(y)) �� 1−(fr(ν′(u))− fr(ν′(v))),

Additionally, we require that for each x− y (or u− v), fr(ν(x))− fr(ν(y)) > 0.

We will use clock difference relations to restrict possible merges of regions over
clocks of A and B. The merged regions represent only reachable concrete desyn-
chronized valuations now.

States of the desynchronized symbolic system (qA, DA, qB, DB, C, tA �� tB,
w, N) consist of locations and regions of A and B, respectively, clock difference
relations, relation of tA and tB, w ∈ Act∗ is a content of the buffer, and N is an
integer used to remember the difference between the integral parts of tA and tB.

We need some more technical definitions before the definition of the semantics.
By D |= C where D is a global region we mean that there exists (νA, νB) ∈ D
such that (νA, νB) |= C. We write e for a clock difference relation (a single
(in)equality). We define a predicate Consistent(DA, DB, C, tA �� tB) = ∃D.D(tA)
�� D(tB), D |= C,D ⇒ DA, D ⇒ DB.

Definition 5 (Desynchronized Symbolic Semantics). The desynchronized
symbolic semantics of a CTA (A,B, qA,B) is a labeled transition system with ini-
tial state (q0

A, D
0
A, q

0
B, D0

B, ∅, tA = tB , ε, 0), transition rules are given in Table 1,
Table 2, and Table 3.
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Table 1. Rules for symbolic transitions induced by the region graph of A. For clarity,
we omit locations in the rules for time pass.

Time Pass:
DA → D′

A, ∃x ∈ integral (DA)

(DA, DB , C, tA < tB, w, N) −→ds (D′
A, DB , C, tA < tB, w, N)

(DA, DB , C, tA = tB, w, N) −→ds (D′
A, DB , C, tA > tB, w, N)

(DA, DB , C, tA > tB, w, N) −→ds (D′
A, DB , C, tA > tB, w, N)

DA, �x ∈ integral (DA)

(DA, DB , C, tA < tB, w, N) −→ds (DA, DB , C, tA = tB , w, N + 1)
if Consistent(DA, DB , C, tA = tB)

(DA, DB , C, tA = tB, w, N) −→ds (DA, DB , C, tA > tB, w, N)

DA → D′
A, ∃x ∈ integral (D′

A)

(DA, DB , C, tA < tB, w, N) −→ds (D′
A, DB , C′, tA = tB, w, N + 1)

if Consistent(D′
A, DB , C′, tA = tB)

(DA, DB , C, tA < tB, w, N) −→ds (D′
A, DB , C′, tA < tB, w, N)

if Consistent(D′
A, DB , C′, tA < tB)

(DA, DB , C, tA > tB, w, N) −→ds (D′
A, DB , C′, tA < tB, w, N)

if tA ∈ integral (D′
A), tB /∈ integral(DB)

(DA, DB , C, tA > tB, w, N) −→ds (D′
A, DB , C′, tA = tB, w, N + 1)

if tA ∈ integral (D′
A), tB ∈ integral(DB)

Discrete Transition:
(qA, DA)→ (q′

A, D′
A), x is reset

(qA, DA, qB , DB , C, tA �� tB, w, N)
(a,1,2,!)−→ds (q′

A, D′
A, qB , DB , C′, tA �� tB, a · w, N)

if a ∈ Act ∪ {ε} is the label on the corresponding
edge of A

(qA, DA)→ (q′
A, DA), no clock is reset

(qA, DA, qB , DB , C, tA �� tB, w, N)
(a,1,2,!)−→ds (q′

A, DA, qB , DB , C, tA �� tB, a · w, N)
if a ∈ Act ∪ {ε} is the label on the corresponding
edge of A

A run with the last state (qA, DA, qB, DB, C, tA �� tB, w,N) is accepting if
qA ∈ FA, qB ∈ FB, N = 0, and tA = tB. Definition of the accepted language
LDS(S) for a given CTA S is the same as for synchronized semantics. Now we
state that the desynchronized symbolic semantics is language equivalent to the
desynchronized concrete one.

Lemma 2. For a given CTA S, LDS(S) = LDC(S).

Proof. Proof is given in the full version of this paper [KY06].
Obviously, this system can be replaced by a one-counter machine accepting

the same language (actually, a bisimilar one-counter machine).

Theorem 1. State reachability and channel boundedness problems are decidable
for CTA of the form (A1, A2, c1,2).
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Table 2. Rules for symbolic transitions induced by the region graph of B. All tran-
sitions are constrained by |w| ≤ 1. Transitions for time pass are the same as for A
except for that N is never incremented, but it is decremented when tA = tB changes
to tA < tB and inequality signs in tA �� tB are inverted. Complete table is given in the
full version of this paper [KY06].

Discrete Transition:
(qB , DB)→ (q′

B , D′
B), x is reset

(qA, DA, qB , DB , C, tA �� tB, a, N)
(a,2,1,?)−→ds (qA, DA, q′

B , D′
B , C′, tA �� tB, ε, N)

if ?a, a ∈ Act is the label on the corresponding
edge of B, and N < 0 ∨ (N = 0 ∧ tA = tB)

(qA, DA, qB , DB , C, tA �� tB, w, N)
ε−→ds (qA, DA, q′

B , D′
B , C′, tA �� tB, w, N)

if ε is the label on the corresponding edge of B,

if N ≥ 0 then (w = a ⇒ (qB, νB)
?a
�) and

if N < 0 then (w = a ∧ (qB , νB)
?a
�)

Similarly when no clock is reset.

Proof. Follows from Lemma 1, Lemma 2, and basic language theory.
Now we show that the instructions of a one-counter machine can be encoded

in a CTA with one channel. The counter is encoded as the number of a’s in
the channel. Figure 3 shows how to encode incrementation of the counter qi:
C:=C+1; goto qj and conditional decrementation of the counter qi: if C=0 then
goto qj else C:=C-1; goto qk. Each transition takes exactly one time unit. We
omit clocks and guards on all other edges (they are labeled by x = 1, x := 0).
Test for zero is performed by a nondeterministic choice for A. To check that the
choice was correct, A produces b. If it was wrong then b is not consumed by the
corresponding transition of B, stays in the channel and eventually blocks the
computation of B. At the end of the computation, B has to check whether there
is any b in the channel. If it is the case then it moves to an error location.

To illustrate the expressive power of CTA, Figure 4 shows a (schematic de-
scription of a) CTA which accepts a non-regular context-free language anbanb.
Again, each transition takes exactly one time unit and we omit x = 1, x := 0
from all edges. The number of a’s is remembered in the size of the channel
content and we use different speed of production/consumption to maintain the
correct number of a’s in the channel. At the beginning, A produces twice faster
than B reads. There are n/2 a’s in the channel when B reads the first b and
from this moment B reads twice faster then A produces.

From the point of view of the desynchronized semantics, the number of a’s in
the channel corresponds to the level of desynchronization. After reading the first
n letters a the lag of B is 2n time units. Then it reads a dividing letter b and
reads a’s again. If there are n letters a then A and B get synchronized again and
the accepting configuration is reachable after two more steps. If there are more
a’s then B gets stuck reading them, because it reads faster than A produces. If
there are less a’s then B can read b immediately and it has to go down to the
error state. All locations of A are accepting, but the only accepting location of
B is the next to the last one.
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Table 3. Updates of the clock difference relations according to the type of the transition
of the desynchronized symbolic system. We write e for a clock difference relation (a
single (in)equality). We write exp for an expression of the form x − y or 1 − (x − y)
where x, y are clock from the automaton given by the context.

C’ Condition, A moves

DA → D′
A, ∃x ∈ integral (D′

A)

e e ∈ C, e does not contain any x ∈ integral (D′
A)

y − x ��−1 1− (exp) x− y �� exp ∈ C, x ∈ integral(D′
A)

DA → D′
A, x is reset

e e ∈ C, e does not contain x
tA − x > exp tA − y ≥ exp ∈ C

tA − x < 1− exp z − tA ≥ exp ∈ C

tA − x < tB − y tA < tB , y ∈ integral (DB)
tA − x < 1− (y − tB) tA < tB, DB(y) > DB(tB)

tA − x = tB − y tA = tB , y ∈ integral (DB)
tA − x > tB − y tA = tB, y /∈ integral (DB), DB(y) < DB(tB)

tA − x < 1− (y − tB) tA = tB, DB(y) > DB(tB)

tA − x > tB − y tA > tB, DB(y) < DB(tB)

C’ Condition, B moves

DB → D′
B , ∃x ∈ integral (D′

B)

e e ∈ C, e does not contain any x ∈ integral(D′
B)

exp �� y − x exp �� 1− (x− y) ∈ C, x ∈ integral (D′
B)

exp �� 1− (y − x) exp �� x− y ∈ C, x ∈ integral (D′
B)

DB → D′
B , x is reset

e e ∈ C, e does not contain x
exp < tB − x exp ≤ tB − y ∈ C

exp < 1− (tB − x) exp ≤ z − tB ∈ C

tA − y > tB − x tA > tB, y ∈ integral (DA)
y − tA < 1− (tB − x) tA > tB, DA(y) > DA(tA)

tA − y = tB − x tA = tB, y ∈ integral (DA)
tA − y < tB − x tA = tB, y /∈ integral (DA), DA(y) < DA(tA)

y − tA < 1− (tB − x) tA = tB, DA(y) > DA(tA)

tA − y < tB − x tA < tB, DA(y) < DA(tA)

This automaton accepts the same language also in discrete time. It also shows
the expressive power of CTA with one channel without urgency in the semantics,
i.e., ε-transitions of B are not restricted. The language accepted by the CTA in
Figure 4 remains the same even for non-urgent semantics when the only accepting
location of A is the location m.
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(a)

(b)

error

!aA:
qi qj

A:
ε

!b
qi ε

qj

qk

εB:
qi qj

ε

?b

?b
qi qj

qk?a

B:

Fig. 3. A CTA encoding instructions of a one-counter machine. (a) encodes incremen-
tation of the counter and (b) encodes conditional decrementation of the counter.

error

B:

A: ε

ε

?b

!b
ε

ε

!a

ε

?a

ε

?b ε ?b

ε!b

ε

ε

ε

?a

ε

ε

ε
ε

m

!a

ε

Fig. 4. A CTA accepting the language anbanb

4 CTA with Two Channels

Now we consider systems of the form (A1, A2, A3, c1,2, c2,3) shown in Figure 2.
We show that such CTA have the Turing power. This contrasts with the CFSMs,
where systems of this form can accept only regular languages. The notion of the
global time changes substantially the expressive power.

We cannot encode counters in the number of a’s as we did it for one-counter
machine, because there is no way how to verify nondeterministic choice of A1
when deciding whether c2,3 is empty. We will build on the construction from
Figure 4. Again, we use different speed of production/consumption to maintain
number of a’s in the channels.

To show the simulation of a two-counter machine by a CTA with two channels
we first notice that there is a system which accepts a language an(anbanb)∗.
Therefore, there is a system which can keep the number of a’s at the same level
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during the whole computation. It works on the same principle as the system
from Figure 4. Using the first channel (c1,2) and the desynchronization of the
automata we check that 2i-th and 2i+1-th sequence of a’s have the same length
and, at the same time, send the 2i+ 1-th sequence to the second channel (c2,3).
Then the same construction is used to check that 2i + 1-th sequence has the
same length as the 2i + 2-th sequence. A schematic description of this CTA is
given in the full version of this paper [KY06].

The CTA simulating a two-counter machine accepts a language corresponding
to the sequence of the encoded values of the counters during the computation
of this machine. The values m,n of the two counters C1, C2 are encoded by the
length of the sequence of a’s – the corresponding sequence is a2n3m

. Therefore,
incrementation of the counter C1 corresponds to doubling of the length of the
sequence, decrementation of C1 to halving, incrementation of C2 to multiplying
by 3, and decrementation of C2 to dividing by 3. To test a counter for zero, we
need to check whether the length of the sequence is divisible by 2 or 3. We use
the same trick as for the language anb(anbanb)∗. Just the consecutive sequences
can be of the form anba2n, anba3n, a2nban, or a3nban. This can be easily done,
since each of these pairs are context-free languages, and the correct overlapping
is secured by using both channels in an alternating manner.

Figure 5 depicts a fragment for doubling of the length of the sequence of a’s,
which corresponds to the incrementation of C1. The relative speed of production
and consumption is set so that A2 does not end in the error sink only if the second

?b

?b?b

εε

?a

!a !a ε

?a

?a
!b

?a

?b?b ?b

ε
ε?b ?b ?b

!b

ε ?a
ε

ε

ε
ε

!b

ε

ε

?a ε

ε

ε !b ε ε
ε!a

!b ε
ε

!b
!a !a ε

A1:

A2:

A3:

Fig. 5. A widget for doubling of the number of a’s – incrementation of C1
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sequence is twice as long as the first one. The third sequence is as long as the
second one (otherwise, A3 ends up in the error sink), but A2 gets desynchronized
at the same time. This is a preparation for the next operation. Therefore, the
simulation of the next instruction does not start with the first loop, but it goes
directly to the second loop (behind the dashed line). This is to ensure overlapping
of the length checking. Each transition takes one time unit, we omit guards and
resets (x = 1, x := 0). All these constructions also work in the discrete time, but
they do not work for non-urgent semantics. The encodings for halving and test
for zero are given in the full version of this paper [KY06].

Theorem 2. Reachability for networks of communicating timed automata of the
form (A1, A2, A3, c1,2, c2,3) is undecidable.

5 Conclusions

To the best of our knowledge, this is the first attempt to study channel systems in
the timed setting. We have proposed CTA as a general framework for modeling
of channel systems in which the relative speeds of message production and con-
sumption by local components must meet given timing constraints. Our goal is
to mark the basic ground by identifying decidable and undecidable problems for
such systems and raise relevant questions for future work. Our technical results
can be summarized as follows: (1) CTA with one channel without sharing states
in the form (A1, A2, c1,2) (as shown in Figure 1) is equivalent to one-counter
machine and therefore questions such as state reachability and channel bound-
edness are decidable for such systems, and (2) CTA with two channels without
sharing states in the form (A1, A2, A3, c1,2, c2,3) (as shown in Figure 2) has the
power of Turing machines.

An interesting question related to the timed setting is whether one can synthe-
size the clock constraints of a CTA (or a controller for a CTA in general) under
given liveness requirements such that the channel content remains bounded. As
future work, we will also study and develop abstraction techniques for efficient
analysis of timed channel systems.
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Abstract. The relationship between two well established formalisms for
temporal reasoning is first investigated, namely between Allen’s interval
algebra (or Allen’s temporal logic, abbreviated ATL) and linear tempo-
ral logic (LTL). A discrete variant of ATL is defined, called Allen linear
temporal logic (ALTL), whose models are ω-sequences of timepoints. It is
shown that any ALTL formula can be linearly translated into an equiv-
alent LTL formula, thus enabling the use of LTL techniques on ALTL
requirements. This translation also implies the NP-completeness of ATL
satisfiability. Then the problem of monitoring ALTL requirements is in-
vestigated, showing that it reduces to checking satisfiability; the similar
problem for unrestricted LTL is known to require exponential space. An
effective monitoring algorithm for ALTL is given, which has been imple-
mented and experimented with in the context of planning applications.

1 Introduction

Allen’s interval algebra, also called Allen’s temporal logic (ATL) in this paper, is
one of the best established formalisms for temporal reasoning [5]. It is frequently
used in AI, especially in planning. Linear temporal logic (LTL) [8] is successfully
applied in program verification, temporal databases, and related domains. De-
spite the widespread use of both ATL and LTL, there is no formal and systematic
investigation of their relationship. This paper makes a step in this direction. To
have a semantic basis for such a relationship, we define a discrete variant of
ATL, called Allen linear temporal logic (ALTL), whose syntax and complexity of
satisfiability are the same as for ATL, but whose models resemble those of LTL.

We show that ALTL can be linearly encoded into a subset of LTL. This en-
coding yields the NP-completeness of the satisfiability problem for an ATL (pro-
posed in [4]) slightly richer than the original one proposed by Allen. On the
practical side, this result allows us to use the plethora of techniques and analy-
sis tools developed for LTL on requirements (or compatibilities) expressed using
ATL. Since ATL is the logic of planning, and since validation and verification
(V&V) of complex plans for systems with decisional autonomy is highly desir-
able, if not crucial, in many applications, this automated translation into LTL
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potentially enables us to use well-understood V&V techniques and tools in a
domain lacking (but in need of) them. Further, it may also support the sugges-
tion made in [2] that LTL can be itself seriously regarded as a suitable formalism
for temporal reasoning in AI, and particularly in planning. There are, how-
ever, complexity aspects that cannot be ignored (some of them pointed in this
paper).

The importance of monitoring in planing cannot be overestimated. For exam-
ple, an autonomous rover whose execution plans have been rigorously verified
may still fail for reasons such as hardware or operating system failures, unex-
pected terrain in an unknown environment, etc. Having monitors to check online
the execution of plans step by step and to trigger recovery code in case of viola-
tions is of crucial importance. It is the challenge of generating efficient monitors
from planning requirements that motivated the work in this paper. We argue
that a blind use of monitoring algorithms for LTL to monitor ALTL formulae
is not feasible even on small ALTL formulae; then we give a special-purpose
monitoring algorithm for ALTL which only needs to call a boolean satisfiability
checker at each step if synchronous monitoring is desired, or at the end of the
monitoring session if asynchronous monitoring is acceptable, or anywhere in be-
tween, for example at specific relevant events, such as synchronization points.
Since checking satisfiability of a formula is a simpler problem than synchronous
monitoring (a synchronous monitor should report violation right away if the for-
mula is not satisfiable), the algorithm proposed in this paper is asymptotically
optimal. This result is particularly interesting because, for unrestricted LTL, it is
known that any monitor (synchronous or not) needs exponential space [10]. The
proposed monitoring algorithm has been implemented and experimented with
in the context of planning for autonomous rovers.

Preliminaries. We assume the reader familiar with Linear Temporal Logic
(LTL) [8]. We here only recall some basics and introduce our notation. LTL is
interpreted in “flows of time”, modeled as strict linear orders (T,<), where T
is a nonempty set of “time points”.The LTL language consists of propositional
symbols (p0, p1, · · ·), boolean operators (¬ and ∧), and temporal operators U
(“until”) and ◦ (“next”), and LTL formulae follow the common syntax ϕ ::=
p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2 | ◦ ϕ. LTL models are triples M = (T,<, v)
such that (T,<) is a strict total order (a flow of time) and v is a map called
valuation associating with each variable p a set v(p) ⊆ T of time points (where
p is supposed to be true). The satisfaction relation M |= ϕ is defined as in [8].
Other important temporal operators, such as ♦(eventually) and � (always), are
expressible using U as ♦ϕ = true U ϕ (ϕ will eventually hold) and �ϕ = ¬♦¬ϕ
(ϕ will always hold). ♦ can also be expressed in terms of �, namely ♦ϕ = ¬�¬ϕ.
In this paper we only need the {�,♦}-fragment of LTL (without ◦ and U). Since
♦ and � can be defined in terms of each other, we take the liberty to call this
fragment LTL� (could have also called it LTL♦). The “satisfiability problem”
for a formula ϕ is concerned with whether there is some model M such that
M |= ϕ. The satisfiability problem of LTL formulae is PSPACE-complete, while
the satisfiability of LTL� is NP-complete [11].



Allen Linear (Interval) Temporal Logic 265

2 Allen (Linear) Temporal Logic - ATL (ALTL)

Allen Temporal Logic (ATL). [1] is specified as a framework to deal with in-
complete relative temporal information, such as “event A is before or overlaps
event B”. Allen takes the interval as the primitive temporal quantity and intro-
duces 13 (mutually exclusive) basic binary relations between any two intervals,
with the following intuitive meaning: Equals(i, j) holds iff i and j consist of the
same time points; Meets(i, j) (or MetBy(j, i)) holds iff j starts immediately af-
ter i; Before(i, j) (or After(j, i)) holds iff i starts and ends before j, but there
is also some proper time elapsed between the end of i and the beginning of j;
Overlaps(i, j) (or OverlappedBy(j, i)) holds iff i starts strictly before j starts, they
have some common time points, and i ends strictly before j ends; Contains(i, j)
(or During(j, i)) holds iff j starts strictly after i starts and terminates strictly be-
fore i terminates; Starts(i, j) (or StartedBy(j, i)) holds iff i and j start together
but j continues (strictly) after i ends; dually, Ends(i, j) (or EndedBy(j, i)) holds
iff i and j terminate together but j starts strictly before i starts. Constraints
among intervals, also called requirements or compatibilities, are given as boolean
combinations of such relations on intervals. In (model-)theoretical works on ATL,
time is assumed to flow continuously, typically not at an enumerable rate (e.g.,
timepoints can be rational or real numbers). Following this model, we formally
define the semantics of these interval relations in Definition 4; then we propose
a time-discrete variant of ATL, in which the time-points are enumerable.

Low Climbing High Climbing−Down Lowaltitude−sv

ALTITUDE

Going(x,tree)At(x) At(tree)location−sv
LOCATION

Not−have−banana Grabbing−banana Have−bananabanana−sv

BANANA

During

Fig. 1. Attributes and compatibilities

ATL is extensively used in AI planing to formalize and reason about concur-
rency and temporal extent. In AI planning, intervals can represent both action
instances and the states of various attributes or components of a system. At-
tributes whose states change over time are called state variables, each being
possibly regarded as a concurrent thread. The history of states of a state vari-
able over a period of time is called a timeline and is typically partitioned into
intervals, where an interval is a set of contiguous timepoints in which the corre-
sponding state variable satisfies some property of interest. A compatibility then
determines necessary correlations among various behaviors of parts of the system
in order for a plan to be legal. One appealing aspect of ATL in this domain is that
compatibilities can be elegantly depicted using an intuitive graphical notation
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(see Figure 1), that allows planning specialists to develop surprisingly large and
complex specifications in a short time.

Example 1. We use McCarthy’s classic monkey/banana planning problem as a
running example. A monkey is at location “x”, the banana is hanging from the
tree. The monkey is at height “Low”, but if it climbs the tree then it will be at
height “High”, same as the banana. Available actions are: “Going” from a place
to another, “Climbing” (up) and “Climbing Down”, and “Grabbing” banana.

Attributes. BANANA has one state variable “Banana-sv” saying if the monkey
has the banana or not. LOCATION has one variable “Location-sv” for the loca-
tion of the monkey. ALTITUDE has one variable “Altitude-sv” for the height.

Compatibilities. Now we can consider some compatibilities for the intervals
corresponding to these attributes, also depicted in Figure 1:

– Have-banana (“Hb”) requires Grabbing-banana (“Gb”) which requires Not-
have-banana (“Nhb”). Grabbing-banana is performed while High and At(tree).

– At(tree) (“@(tree)”) requires going from the location “x” to the tree which re-
quires At(x) (“@(x)”). Going(x,tree) (“G(x, tree)”) is performed while Low.

– High (“H”) requires Climbing (“C”) which requires Low (“L”), and Climb-
ing-Down (“CD”) requires High. Climbing is performed while At(tree).

These compatibilities can be formally specified in ATL as follows:

Meets(Nhb, Gb) ∧Meets(Gb, Hb) ∧During(Gb, @(tree))∧During(Gb, H) ∧
Meets(@(x),G(x, tree))∧Meets(G(x, tree),@(tree))∧During(G(x, tree), L)∧
Meets(L, C)∧Meets(C, H)∧Meets(H,CD)∧Meets(CD, L)∧During(C, @(tree)).

Let us consider the subformula consisting of the first four conjuncts above (first
line), and suppose that an unexpected “flying monkey” wants the banana. It
climbs the tree, but it cannot reach for the banana. Being a flying monkey, it
jumps for the banana, grabs it while gliding when it is still High and At(tree), but
as it glides it leaves the tree location. Supposing that it leaves the tree location
at the same time it changes the status from Grabbing-banana to Have-banana,
one can notice that the third conjunct is violated. Indeed, Gb must hold during
@(tree), meaning that there must be some (non-zero) periods of time in which
the monkey was at the tree location before and after grabbing the banana.

It is often useful to state that some propositions hold all the time or eventually
during an interval. For example, assume one more state predicate, hungry, saying
whether the monkey is hungry or not, and assume that we want to state that
monkeys should grab and have bananas only if they are hungry and do not
already have bananas. This can be done with the following additional conjunct:

Occurs(hungry, Nhb) ∧Holds(hungry, Gb) ∧ Holds(hungry, Hb) �

There are different views on how intervals should be modeled in different time
flows. A common interpretation is that the intervals are ordered pairs of distinct
points in Q or R. For simplicity, it is convenient to use semantics where intervals
are arbitrary convex non-empty subsets of time points of an arbitrary time flow.
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Definition 1. If P is a set of atomic propositions and I is a set of
intervals, then an Allen temporal logic formula over P and I, or
an ATL(P , I)-formula or even just a formula when P and I are under-
stood from context, is any boolean combination of basic formulae of the
form Equals(i, j), Before(i, j), After(i, j), Overlaps(i, j), OverlappedBy(i, j),
Meets(i, j), MetBy(i, j), Contains(i, j), During(i, j), Starts(i, j), StartedBy(i, j),
Ends(i, j), EndedBy(i, j), Holds(p, i), Occurs(p, i), where i, j ∈ I and p ∈
Bool(P).

Bool(P) is the set of boolean propositions over variables in P . Interestingly, the
original formulation of ATL [1] did not include Holds and Occurs; motivated by
practical reasons, they were added later in [4]. To define a formal semantics of
ATL we need to first define an appropriate notion of model.

Definition 2. Let (T,<) be a strict total order. The relation < is tacitly ex-
tended to a strict partial order on subsets of T , namely X < Y iff x < y for
all x ∈ X and y ∈ Y . Also, by abuse of notation, we may write just x instead
{x}; thus, x < Y means that x < y for all y ∈ Y . For x, y ∈ T let (x, y) be the
set {z ∈ T | x < z < y}. A subset C of T is <-convex, or simply convex, iff
(x, y) ⊆ C for any x, y ∈ C.

In R, for example, the convex sets are precisely the intervals. Recall that intervals
in R can be open or closed on any of their ends, and that they may be bound
by −∞ or +∞ at their left or right ends, respectively.

Definition 3. A (P , I)-interval model (or simply an interval model when
P and I are understood) is a structure M = (T,<, v, σ), where (T,<) is a strict
total order (modeling the intended flow of time), v : P → 2T is a valuation
map assigning to each atomic proposition p ∈ P a set of time points v(p) (in
which the proposition is assumed to be true), and σ is a map that associates with
every interval i ∈ I a non-empty convex subset σ(i) of T . We may also refer to
(P , I)-interval models as models of ATL(P , I).

We are now ready to give the formal semantics of ATL.

Definition 4. An interval model M = (T,<, v, σ) satisfies: Equals(i, j) iff
σ(i) = σ(j); Before(i, j) or After(j, i) iff there is some t ∈ T such that σ(i) <
t < σ(j); Overlaps(i, j) or OverlappedBy(j, i) iff σ(i) ∩ σ(j) �= ∅ and there are
some ti ∈ σ(i) and tj ∈ σ(j) such that ti < σ(j) and σ(i) < tj; Meets(i, j)
or MetBy(j, i) iff σ(i) < σ(j) and there is no t ∈ T such that σ(i) < t < σ(j);
Contains(i, j) or During(j, i) iff there are some ti, t

′
i ∈ σ(i) such that ti < σ(j) <

t′i; Starts(i, j) or StartedBy(j, i) iff σ(i) ⊂ σ(j), there is no tj ∈ σ(j) such
that tj < σ(i), but there is some tj ∈ σ(j) such that σ(i) < tj; Ends(i, j) or
EndedBy(j, i) iff σ(i) ⊂ σ(j), there is no tj ∈ σ(j) such that σ(i) < tj, but there
is some tj ∈ σ(j) such that tj < σ(i); Holds(p, i) iff σ(i) ⊆ v(p); and Occurs(p, i)
iff σ(i) ∩ v(p) �= ∅ iff ¬Holds(¬p, i). Satisfaction is defined as usual on boolean
combinations of ATL formulae. We use the notation M |=ATL ϕ to denote the
fact that the interval structure M satisfies the ATL formula ϕ.
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Therefore, Holds(p, i) is satisfied iff p holds at any time point in i, while
Occurs(p, i) is satisfied iff p holds at some time point in i. The propositions p
used in Holds and Occurs may hold at various random timepoints, so they cannot
be replaced by intervals. The NP-completeness of the satisfiability problem for
ATL without Holds [12] gives us immediately the NP-hardness of our ATL with
Holds above. We will show in the next section that it is actually NP-complete.

In many practical applications of interest, time elapses at a discrete and enu-
merable rate. We next define a variant of Allen temporal algebra in which the
support of the interval models are ω-sequences of time points, that is, linear (in-
finite) sequences t1 < t2 < t3 < · · · < tn < · · ·. We write these strict total orders
compactly as t1t2t3 . . . tn . . .. We call the new logic Allen Linear Temporal
Logic (ALTL). Note that ALTL has the same syntax as ATL and its satisfaction
relation is defined like in ATL, but that its models are structures of the form
M = (t1t2 . . . , v, σ), where t1t2 . . . are ω-sequences of time points and σ maps
intervals in I into non-empty convex sets σ(i) of T = {t1, t2, . . .} (with the ex-
pected strict total ordering < defined as tm < tn iff m < n). It is easy to see
that the convex sets of T are either finite sets of the form {tm, tm+1, . . . , tn} for
some 0 < m ≤ n, or infinite sets of the form {tm, tm+1, . . .} for some 0 < m.

3 Linear Translation of ALTL into LTL

We next define an automatic encoding of ALTL into LTL�. Note that the models
of ALTL differ from those of LTL in that they contain a concrete interpretation
for each interval. Therefore, in order to establish a semantic relationship between
the models of the two logics, we need to first add syntactic support for “intervals”
to LTL. A simple way to do this is to add an atomic propositional symbol ∈i to
the syntax of LTL for each interval i ∈ I, with the intuition that a time point
is in the interval i in a model of ALTL if and only if the proposition ∈i holds in
that time point in the corresponding model of LTL. Moreover, we need to also
capture, via corresponding LTL formulae, the fact that intervals are interpreted
into non-empty convex sets in ALTL models.

Definition 5. Let PI be the set of atomic propositions P ∪ {∈i | i ∈ I} and let
ΨI be the set of LTL formulae {ψi | i ∈ I} over propositions in PI, where ψi is
the formula ♦∈i ∧ ¬♦(∈i ∧ ♦(¬∈i ∧ ♦∈i)) for each i ∈ I.

The following establishes the relationship between models of ALTL and of LTL:

Proposition 1. There is a bijection between (P , I)-interval models and models
of LTL(P ∪ {∈i | i ∈ I}) that satisfy ΨI .

Proof. LetM = (T,<, v, σ) be a tuple where (T,<) is an ω-sequence, v is a map
P → 2T , and σ is a map I → 2T ; whatM is missing to be a model of ALTL(P , I)
is the requirements that σ(i) is non-empty and convex for any i ∈ I. Then we
can build a model N = (T,<, u) of LTL(P ∪{∈i | i ∈ I}), where u(p) = v(p) for
all p ∈ P and u(∈i) = σ(i) for all i ∈ I. Conversely, for any model N = (T,<, u)
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of LTL(P ∪ {∈i | i ∈ I}) one can build a tuple M = (T,<, v, σ), where v is
the restriction of u to P and σ(i) is defined as u(∈i) for any i ∈ I. What is
left to prove is that σ(i) is non-empty and convex for any i ∈ I if and only if
N |=LTL ΨI . First, note that, for any i ∈ I, σ(i) �= ∅ is equivalent to N |=LTL ♦∈i.
Second, since σ(i) is convex if and only if there are no time points tm, tn, tk
with 0 < m < n < k such that tm, tk ∈ σ(i) and tn �∈ σ(i), one deduces that
σ(i) is convex if and only if N |=LTL ¬♦(∈i ∧ ♦(¬∈i ∧ ♦∈i)). Therefore, σ(i) is
non-empty and convex for each i ∈ I if and only if N |=LTL ΨI . �

Definition 6. We let [·] define the bijection above, that is, if M is a (P , I)-
interval model then [M] is the corresponding model of LTL(P ∪ {∈i | i ∈ I})
satisfying ΨI, defined as in the proof of Proposition 1.

We are now ready to define the first part of our syntactic encoding of ALTL
formulae into LTL formulae.

Definition 7. Let [·] be the function taking formulae ϕ in ALTL(P , I) into
formulae [ϕ] in LTL(P ∪ {∈i | i ∈ I}) defined inductively as follows: [¬ϕ]
is ¬[ϕ]; [ϕ1 ∧ ϕ2] is [ϕ1] ∧ [ϕ2]; [Equals(i, j)] is �(∈i ⇔ ∈j); [Before(i, j)]
and [After(j, i)] are ♦(∈i ∧ ♦(¬∈i ∧ ¬∈j ∧ ♦∈j)); [Meets(i, j)] and [MetBy(j, i)]
are ♦(∈i ∧ ♦∈j ∧ ¬♦(∈i ∧ ∈j) ∧ ¬♦(¬∈i ∧ ¬∈j ∧ ♦∈j)); [Overlaps(i, j)] and
[OverlappedBy(j, i)] are ♦(∈i ∧¬∈j ∧♦(∈i ∧∈j ∧♦(¬∈i ∧∈j))); [Contains(i, j)]
and [During(j, i)] are ♦(∈i ∧ ¬∈j ∧ ♦(∈i ∧ ∈j ∧ ♦(∈i ∧ ¬∈j))); [Starts(i, j)] and
[StartedBy(j, i)] are �(∈i ⇒ ∈j)∧¬♦(∈j ∧¬∈i∧♦∈i)∧♦(∈j ∧¬∈i); [Ends(i, j)]
and [EndedBy(j, i)] are �(∈i ⇒ ∈j)∧♦(∈j ∧¬∈i)∧¬♦(∈j ∧∈i ∧♦(∈j ∧¬∈i));
[Holds(p, i)] is �(∈i ⇒ p); and [Occurs(p, i)] is [¬Holds(¬p, i)], that is, ♦(∈i∧p).

Example 2. Let us consider again the subformula
Meets(Nhb, Gb) ∧Meets(Gb, Hb) ∧During(Gb,@(tree)) ∧During(Gb, H)

of the formula that characterizes the compatibilities of the monkey/banana prob-
lem (see Example 1), to illustrate how to encode an ALTL formula into an equiv-
alent LTL� one. Its encoding is:

♦(∈Nhb
∧ ♦∈Gb

∧ ¬♦(∈Nhb
∧ ∈Gb

) ∧ ¬♦(¬∈Nhb
∧ ¬∈Gb

∧ ♦∈Gb
))∧

♦(∈Gb
∧ ♦∈Hb

∧ ¬♦(∈Gb
∧ ∈Hb

) ∧ ¬♦(¬∈Gb
∧ ¬∈Hb

∧ ♦∈Hb
))∧

♦(∈@(tree) ∧ ¬∈Gb
∧ ♦(∈@(tree) ∧ ∈Gb

∧ ♦(∈@(tree) ∧ ¬∈Gb
)))∧

♦(∈H ∧ ¬∈Gb
∧ ♦(∈H ∧ ∈Gb

∧ ♦(∈H ∧ ¬∈Gb
))) ∧ (

∧
i∈I ψi),

where I = {Nhb, Hb, H,Gb,@(tree)} and ψi is ♦∈i ∧¬♦(∈i ∧♦(¬∈i ∧♦∈i)). As
expected, the LTL encoding of the entire formula in Example 1 is very large. �

The companion report [9] shows a rewriting implementation of this encoding.

Theorem 1. Given an ALTL(P , I) formula ϕ and a (P , I)-interval model M,
then M |=ALTL ϕ iff [M] |=LTL [ϕ].

Proof. Structural induction on ϕ. If ϕ has the form ¬ϕ1 then M |=ALTL ϕ
is equivalent to saying that it is not the case that M |=ALTL ϕ1, which, by the
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induction hypothesis and Definition 7, is equivalent to saying that [M] |=LTL [ϕ].
The case where ϕ has the form ϕ1 ∧ ϕ2 is similar. What is left to show is that
the property holds when ϕ is any of the interval relations. Let us discuss only
one of them, for example Meets(i, j). Suppose that M = (T,<, v, σ) and recall
that σ(i) is non-empty for any interval i. By Definition 4, M |=ALTL Meets(i, j)
iff σ(i) < σ(j) and there is so t ∈ T such that σ(i) < t < σ(j). By the way [M] is
built and because ψi and ψj ensure the non-emptiness and the convexity of the
trace fragments in which ∈i and ∈j hold, This is equivalent to saying that ∈j

holds strictly after ∈i, i.e., the ♦(∈i∧♦∈j∧¬♦(∈i∧∈j)∧...); part of [Meets(i, j)],
and that there is no period of time following ∈i that appears before ∈j in which
neither ∈i nor ∈j holds, i.e., the ♦(...¬♦(¬∈i ∧¬∈j ∧♦∈j)) part of [Meets(i, j)].
The result can be proved similarly for the other intervals. �

Our goal next is to reduce the satisfiability problem for ALTL to LTL� satisfiabil-
ity, known to be an NP-complete problem [11]. Theorem 1 gives us only half of
the result, namely that if a formula ϕ is satisfiable in ALTL then the formula [ϕ]
is satisfiable in LTL�. To get the other half, one could define a slightly different
translation of ALTL formulae, namely one that would also include the conjunc-
tion of the formulae in ΨI . The problem with that is, however, that I can be
infinite, meaning that the generated LTL formula would be infinite. Fortunately,
only the intervals that explicitly appear in ϕ need to be taken into account, thus
making our transformation finite:

Definition 8. For an ALTL(P , I) formula ϕ, let Iϕ be the finite set of intervals
appearing in ϕ and let 〈ϕ〉 be the formula [ϕ]∧

∧
ΨIϕ in LTL(P ∪{∈i | i ∈ Iϕ}).

Corollary 1. Given a formula ϕ in ALTL(P , I), the following are equivalent:
(1) ϕ is satisfiable in ALTL(P , I); (2) 〈ϕ〉 is satisfiable in LTL(P∪{∈i | i ∈ Iϕ});
and (3) 〈ϕ〉 is satisfiable in LTL(P ∪ {∈i | i ∈ I}).

Proof. Since a model over more atomic propositions can be also regarded as a
model over fewer propositions, it is immediate that 3. implies 2.. By Theorem 1,
any model of ϕ in ALTL(P , I) yields a model of [ϕ] in LTL(P ∪{∈i | i ∈ I}) that
satisfies ΨI . Therefore, 1. implies 3.. To show that 2. implies 1., by Proposition
1 it suffices to show that any model in LTL(P ∪ {∈i | i ∈ Iϕ}) satisfying ΨIϕ

can be extended, by just adding appropriate valuations for the additional atomic
propositions to assure that the satisfaction of ϕ is not affected, to a model in
LTL(P ∪ {∈i | i ∈ I}) satisfying ΦI . This can be done many different ways. One
straightforward model extension is to require that each proposition in {∈i| i ∈
I − Iϕ} holds in precisely one (arbitrary) time point.

Corollary 2. The satisfiability problem for ALTL is NP-complete.

Proof. By Corollary 1, an ALTL formula ϕ is satisfiable iff 〈ϕ〉 is satisfiable as an
LTL formula. Since 〈ϕ〉 can be generated linearly in the size of the ϕ and since
LTL-satisfiability is NP-complete, ALTL-satisfiability is also NP-complete.
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4 Monitoring ALTL

It is known that any monitoring algorithm for LTL-formulae requires space ex-
ponential in the size of the monitored formula [10] in the worst case. Can we
find better monitoring algorithms for ALTL? We first argue empirically that a
blind use of monitoring algorithms for LTL may be unfeasible in large appli-
cations and then propose an ALTL-specific monitoring algorithm which avoids
the exponential-space complexity of monitoring LTL-formulae. More precisely,
we give a monitoring algorithm for ALTL which only requires space (it needs to
store its current state only) that is linear in the size of the input formula and
whose most expensive task is to check the satisfiability of a boolean formula that
is incrementally smaller (in the sense that some of its variables are irreversibly
replaced by true or false) with each event received from the monitored system,
and which initially has precisely the size of the original ALTL formula.

Let us first describe informally the “monitoring problem” for a logic whose
models are (finite or infinite) traces. Given a formula ξ of size n and a “running
system” abstracted by its incrementally emitted events (or abstract states en-
coded by the atomic propositions that “hold” in them) t1, t2, ..., the problem
is to report when a bad prefix is reached, that is, when a finite trace t1t2..tm
is encountered such that there is no infinite trace t1t2...tmtm+1... that satisfies
ξ. We here assume that storing the events is not an option, because their num-
ber can grow arbitrarily large. Indeed, m can be large enough so that even an
algorithm that is linear in the continuously increasing execution trace at each
emitted event (e.g., one that traverses the trace backwards, like the one in [10])
can become easily more impractical than one just exponential in the formula but
constant in the trace (e.g., when one generates an automata monitor from it,
like in [3]). One can (non-trivially) formalize the monitoring problem for a logic
as a decision problem, but this is rather intricate and beyond our scope here.
Here we limit ourselves to the informal problem description above and conclude
that ALTL-monitoring is asymptotically as expensive as ALTL-satisfiability:

(a) in any logic, monitoring is a harder problem than satisfiability;
(b) for any ALTL-formula ξ, we give a monitoring algorithm which is not

more expensive than checking the satisfiability of ξ.

One can readily see that monitoring is harder than satisfiability: a monitor
for ξ reports violation on the empty trace iff ξ is not satisfiable. Since ALTL-
satisfiability is NP-complete (Corollary 2), any monitoring algorithm for ALTL
is expected to be worst-case exponential in practice. However, as in many other
similar situations, this does not necessarily mean that the problem of monitoring
ALTL formulae is not practical. We next briefly discuss an immediate algorithm
based on the translation to LTL, and then give an algorithm specific to ALTL
that avoids the complexity of monitoring LTL and which seems quite efficient in
practice. The next section discusses an experiment where the ALTL formula is
large enough that the LTL-based monitoring algorithms cannot handle it.

The transformation in Section 3 suggests using a general purpose monitoring
algorithm for LTL (e.g., the one in [3]), to monitor the LTL formula obtained
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linearly from the ALTL formula. We have experimented with this technique and
have succeeded to generate, unfortunately huge, LTL monitors only for relatively
small ALTL formulae. For example, for the ALTL formula in Example 2, which is
a subformula of the ALTL formula in Example 1, the generated monitor had more
than 60,000 edges, while the algorithm ran out of memory trying to generate
an LTL monitor for the entire ALTL formula in Example 1; and that is just
a toy example. The reason for our failure to generate monitors following this
approach is the intermediate Büchi automata generator from LTL formulae; the
LTL monitors in [3] are obtained pruning the corresponding Büchi automata
(which can be exponential), by removing portions of them related to liveness –
only the safety fragment of a formula is monitorable. The interested reader is
encouraged to check [9] for more details on this unsuccessful approach.

We next give a monitoring algorithm for ALTL not based on general monitoring
algorithms for LTL. The idea is to regard the ALTL formula ϕ as a boolean
proposition in which the interval relations are regarded as special “dynamic”
variables. For each interval relation we generate a little state machine, which has
two special states, true and false. These state machines are shown in Figure 2.
We also add a top-level conjunct consisting of precisely one special variable for
each interval that appears in ϕ; these latter variables correspond, intuitively, to
the formulae ψi in Definition 5. The monitoring algorithm works as follows: (1)
generate all the state machines in Figure 2 (left-top state is initial); (2) let ξ be
the boolean proposition obtained from ϕ as above; (3) run a boolean satisfiability
checker on ξ and stop with “error” if ξ not satisfiable; (4) otherwise, for the next
event t received from the monitored system, run all the state machines one step
according to t (take that deterministic edge which is satisfied by t); (5) modify
the formula ξ by replacing each variable whose corresponding state machine is
in a state true or false by the corresponding truth value; (6) goto step (3).

Let us briefly discuss the state machines. The ones for ψi ensure that intervals
are contiguous (convex); some intervals can be unbounded. The next seven state
machines correspond to the relations on intervals. Let us discuss the one for
Meets(i, j). One starts with the initial state ��������i, j (neither in i nor in j), and
there it stays as far as one does not enter any of the intervals. If while in this
state the monitored program enters the interval j, that is, if ∈j holds, then the
relation Meets(i, j) is obviously violated (interval i cannot be empty). Otherwise,
if the interval i but not j is entered, then the machine moves to state ��������i, j where
it waits until either i is left and j is entered in which case it returns true, or
otherwise until i is left without entering j or i and j overlap, when it returns
false. The machine for Holds(p, i) checks that p holds during the interval i.

Example 3. Let us consider again the monkey/banana formula in Example 2,
(Meets(Nhb, Gb) ∧Meets(Gb, Hb) ∧During(Gb,@(tree)) ∧During(Gb, H)),

and consider an execution trace which starts with the abstract events t1 = {∈Nb
},

t2 = {∈Nb
,∈@(tree)}, t3 = {∈Gb

,∈@(tree),∈H}, t4 = {∈Hb
,∈H}, ..., where an

abstract event formed of a set of atomic propositions is an event in which all
those, and only those propositions hold. This execution trace corresponds to the
“flying monkey” scenario at the end of Example 1.



Allen Linear (Interval) Temporal Logic 273

ψi Equals(i, j) Before(i, j)

��������i

¬∈i �� ∈i ����������i

∈i��

¬∈i
��

��

����
��

i

¬∈i

��
∈i �� false

	
��
���i, j

¬∈i∧¬∈j �� (∈i ∧¬ ∈j)∨
(¬ ∈i ∧ ∈j)

��

∈i∧∈j

��

false

	
��
���i, j

∈i∧∈j
��

(∈i ∧¬ ∈j )∨
(¬ ∈i ∧ ∈j )
���

�����

¬∈i∧¬∈j

�� true

	
��
���i, j

¬∈i∧¬∈j �� ∈j ��

∈i∧¬∈j

��

false

	
��
���i, j

∈i∧¬∈j
��

∈i∧∈j����

		����

¬∈i∧¬∈j

�� true

Meets(i, j) Overlaps(i, j) Contains(i, j)

	
��
���i, j

¬∈i∧¬∈j��
∈j ��

∈i∧¬∈j

��

false

	
��
���i, j

∈i∧¬∈j

��

(∈i ∧ ∈j)∨
(¬ ∈i ∧¬ ∈j)
���

		���

¬∈i∧∈j

�� true

	
��
���i, j

¬∈i∧¬∈j��
∈j ��

∈i∧¬∈j

��

false

	
��
���i, j

∈i∧¬∈j

��

¬∈i����



�����

∈i∧∈j �� 	
��
���i, j

∈i∧∈j

��

¬∈j

��

¬∈i∧∈j

�� true

	
��
���i, j

¬∈i∧¬∈j��
∈j ��

∈i∧¬∈j

��

false

	
��
���i, j

∈i∧¬∈j

��

¬∈i����



�����

∈i∧∈j �� 	
��
���i, j

∈i∧∈j

��

¬∈i

��

∈i∧¬∈j

�� true

Starts(i, j) Ends(i, j) Holds(p, i)

	
��
���i, j

¬∈i∧¬∈j ��
(∈i ∧¬ ∈j)∨
(¬ ∈i ∧ ∈j)

��

∈i∧∈j

��

false

	
��
���i, j

∈i∧∈j
��

¬∈j



���������
¬∈i∧∈j

�� true

	
��
���i, j

¬∈i∧¬∈j��
∈i ��

¬∈i∧∈j

��

false

	
��
���i, j

¬∈i∧∈j

��

¬∈j����



����

∈i∧∈j �� 	
��
���i, j

∈i∧∈j

��

(∈i ∧¬ ∈j)∨
(¬ ∈i ∧ ∈j)

��

¬∈i∧¬∈j

�� true

��������
i

¬∈i �� ∈i∧¬ρ ��

∈i∧ρ

��

false

��������i

∈i∧ρ
��

∈i∧¬ρ

		���������
¬∈i

�� true

Fig. 2. State machines are run synchronously by the monitor with each event

Let us simulate the execution of the ALTL monitoring algorithm above on this
example. There are nine state machines like in Figure 2 necessary, four corre-
sponding to each of the four interval relations and five corresponding to each
interval appearing in the formula. The boolean formula ξ is just a conjunction
of the corresponding nine variables. All one needs to do is to run the nine state
machines on the execution trace, update the boolean proposition and then check
for satisfiability after each event. After the first three events, the five ψi formulae
will be in some intermediate (not false) states, and the four machines corresond-
ing to the interval relations will be in the states true, (Gb, Hb), (@(tree), Gb),
and (Gb, H), respectively, so the formula is still satisfiable. However, when the
event t4 is processed, the machine corresponding to During(Gb,@(tree)), or to
Contains(@(tree), Gb), transits to false, invalidating the boolean proposition. �

Example 4. Consider now the ALTL formula ¬Before(i, j) and a two-event
trace {∈i}{}. The monitoring algorithm above sets the machine corresponding
to Before(i, j) to state ��������i, j after processing {∈i} and then to state true after
processing {}, causing the monitor to report “error” before any event containing
∈j is seen. Note that {∈i}{} is indeed a bad prefix for ¬Before(i, j) (∈j must hold
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eventually in any interval model of ALTL). Therefore, our monitoring algorithm
for ALTL detects bad prefixes as soon as they appear. �

Note that the state machines corresponding to ψi will intercept any violation of
the convexity of intervals. If any of the convexities of intervals is violated, that
is, if an interval starts, then it is interrupted and then started again, then the
monitoring algorithm above returns “error”, because the observed trace cannot
even be continued into an interval model; one can easily modify the algorithm
to return a different type of error in such situations. Note also that these state
machines for ψi do not have a true state: there is no way to decide by means
of monitoring that ψi holds, because this is a property of an infinite trace;
by monitoring, one can only detect the safety fragment of the inherent ALTL
property “intervals are non-empty and convex”, namely the break of their con-
vexity. Therefore, the formulae ψi can only detect violations of the monitored
formula: their corresponding variables can only be transformed into false, never
into true. If in a particular application there are external factors implying the
well-formedness of intervals, then one can drop the variables (and the machines)
corresponding to ψi (and thus be able to also detect formula validations online).

Theorem 2. The monitoring algorithm for ALTL above is correct.

Proof. Thanks to the machines corresponding to ψi, we can assume the well-
formedness of intervals in the proof. Consider some finite trace τ = t1t2...tm
that is well-formed wrt intervals, i.e., it can be the prefix of some interval model
of ALTL. Let us first prove that for any interval relation, its corresponding state
machine is in state false after processing τ iff τ is a bad prefix of that interval
relation. We only show it for one relation, say Before(i, j); the others are similar.
Note that τ is a bad prefix of Before(i, j) iff τ contains (some event satisfying)
∈j before or at the same time with ∈i. Since the state machine of Before(i, j)
reaches the state false iff ∈j is seen before inj or if ∈j and ∈i are seen together
as part of an event, and since the machines corresponding to ψi ensure the
contiguity of intervals, we can conclude that τ is a bad prefix of Before(i, j) iff
the corresponding machine of Before(i, j) is in state false after processing τ .

Let us next prove that for any interval relation, the corresponding machine is
in state true after processing τ iff τ is a good prefix of that relation, in the sense
that for any infinite trace φ such that τπ is an interval model of ALTL, it is the
case that τπ satisfies that relation. As above, let us just prove it for Before(i, j).
Note that the machine of Before(i, j) can be in state true after processing τ iff
τ contains no event satisfying ∈j and contains some event satisfying ∈i followed
by one which does not satisfy ∈i. This is equivalent to saying that any interval
model of the form τπ (recall that intervals have non-empty interpretations in
interval models) satisfies Before(i, j).

Let us now consider any ALTL formula ϕ and a finite trace τ as above such
that the ξ formula maintained by the algorithm is satisfiable after processing τ .
If ϕ has the form ϕ1 ∧ϕ2 then τ is a bad (good) prefix of ϕ iff it is a bad (good)
prefix of ϕ1 or (and) ϕ2. If ϕ has the form ¬ϕ1 then τ is a bad (good) prefix of
ϕ iff it is a good (bad) prefix of ϕ1. Therefore, in order to test whether τ is a
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bad prefix of ϕ one only needs to know whether it is a bad prefix of ϕ’s interval
relations, that is, if their corresponding state machines are in their corresponding
false or true states after processing τ . The satisfiability checking of ξ after each
event ensures that violations are reported as early as possible. �
If one is not interested in reporting ALTL property violations as early as pos-
sible, then one can run the satisfiability checker less frequently, say once every
100 events, or even just once at the end of the monitoring session, and thus
significantly reduce the runtime overhead. If minimal runtime overhead is highly
desirable, since the formula ξ to check for satisfiability changes incrementally
by irreversibly transforming some of its variables into true or false, to achieve a
minimal runtime overhead one can use an incremental SAT solver.

5 Experiment

Implementation. We have implemented a prototype monitor generation tool,
called ALTL2Monitor. It implements the monitoring algorithm presented in the
previous section using the SAT solver zChaff [7] for satisfiability checking.

Case Study. Our case study is a simplified version of an exploration rover
(Gromit, at Nasa Ames). The mission of the robot is to visit a number of way-
points, into an initially unknown rough environment, while monitoring interest-
ing targets on its path. The robot continuously takes pictures of the terrain in
front of it, performs a stereo correlation to extract a cloud of 3D points, merges
these points in its model of environment and starts this process again. In paral-
lel, it continuously considers its currents position, the next waypoint to visit, the
obstacles in the model of the environment built and produces a trajectory. These
two interdependent cyclic processes are synchronized. Last, a third process in-
terrupts whenever an interesting rock has been detected. The functional layer of
Gromit is implemented using functional modules (for more details see [6]). For
each of them we shall consider the “visible” state variables of interest:

- Rflex is the module interfaced with the low-level speed controller. It has a
state variable for the position of the robot, each interval representing a specific
robot position, and another one for the speed passed to the wheels controller.
- Camera shoots a pair of stereo calibrated images and saves them. It has one
state variable representing the camera status (taking picture, or idle).
- SCorrel produces and stores a stereo correlated image. It has a state variable
representing the Scorrel process (performing stereo correlation, or idle).
- Lane builds a model of the environment by aggregating clouds of 3D points
produced by Scorrel. It services two requests: read in an internal buffer and
fuse the read. Lane has one state variable for the model building process.
- P3D is a rover navigation software. It produces an arc trajectory which is
translated in a speed reference, to try to reach a waypoint. P3D has a variable
for its state (idle or computing the speed) and one for the waypoints to visit.
- Science. This module monitors a particular condition of interest to scientist
(such as detecting a rock with particular features). When such a condition arises
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Fig. 3. Partial Gromit Model: Attributes and compatibilities

while the robot is moving toward a waypoint, it stops and takes a picture of the
rock. It has one state variable for its state (monitoring interesting rock or idle).

Figure 3 shows some temporal relations representing a simplified version of
the actual Gromit Rover.

Results. Due to intellectual property restrictions, we did not have access to the
execution platform of the Gromit Rover. However, the CNRS Laboratory LAAS
(at Toulouse, France) provided1 us with a file formalizing some of the compat-
ibilities as an ATL formula of more than 100 interval relations, as well as with
a set of one hundred traces generated by Gromit Rover execution platform. We
applied our prototype ALTL2Monitor off-line to check these traces; the checking
took negligible time. However, the satisfiability checker was applied only once at
the end of the monitoring session of each trace, because we expected the traces
to be correct, which was indeed the case.

6 Conclusion

We presented Allen linear temporal logic (ALTL), an automated translation of
ALTL into LTL, a monitor synthesis algorithm for ALTL, as well as a real-life
experiment. While LTL can be a suitable logic for AI and planning, we also
believe that ALTL can be a suitable logic for certain program verification efforts.
Its simplicity, neutrality and visual interpretation cannot be ignored. We plan
to apply our ALTL monitoring prototype to the autonomous embedded system
iRobot ATRV of the LAAS Laboratory.
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Abstract. We present a tool for cluster-based LTL model-checking and
reachability analysis. The tool incorporates several novel distributed-
memory algorithms and provides a unique interface to use them. We
describe the basic structure of the tool, discuss the main architecture
decisions made, and briefly explain how the tool can be used.

1 Introduction

A few enumerative verification tools have been developed to support engineers
in their verification needs. Despite significant improvements in model-checking
techniques, their verification capabilities are in the case of real-life industrial
models limited by the amount of data a single state-of-the-art computer is able
to handle efficiently.

In recent years, extensive research has been conducted in parallel and dis-
tributed model-checking with the aim to push forward the frontiers of enumera-
tively verifiable systems [1,3,4,6,8]. Consequently, several distributed verification
prototype tools emerged. The deployment and usage of a distributed tool is sig-
nificantly more demanding compared to the sequential one. It assumes a cluster
with properly installed message passing software and also some programming
skills are required in the case the tool has to be compiled from its source codes.
These are some of the reasons why distributed verification tools are used rarely,
although their verification capabilities are undoubtedly bigger in comparison to
the sequential tools.

The goal of Distributed Verification Environment project (DiVinE) is to pro-
vide an extensible framework to support distributed verification on clusters.
DiVinE offers three means to achieve this goal: First, a library of common
functions (DiVinE Library) on top of which various distributed verification al-
gorithms can be implemented. Second, a collection of state-of-the-art distributed
verification algorithms incorporated into a single software product (DiVinE
Tool) which is as easy to install as most sequential tools. And third, a ready-
to-use cluster for users of sequential tools in case they need to run experiments
using DiVinE Tool without having access to their own cluster. In this paper
we report on DiVinE Tool only.
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2 DiVinE Tool

DiVinE Tool is a parallel, distributed-memory enumerative model-checking
tool for verification of concurrent systems. The tool employs aggregate power
of network-interconnected workstations to verify systems whose verification is
beyond capabilities of sequential tools.

DiVinE modelling language is rich enough to describe systems made of syn-
chronous and asynchronous processes communicating via shared memory and
buffered or unbuffered channels. System properties can be specified either di-
rectly in Linear Temporal Logic (LTL) or alternatively as processes describing
undesired behaviour of systems under consideration (negative claim automata).
Thanks to the DivSPIN project [2], DiVinE Tool is also capable of verifying
models written in ProMeLa.

From the algorithmic point of view, the tool is quite unique. In automata-
based approach to LTL model-checking, the verification problem is reduced to
problem of accepting cycle detection in the graph of Büchi automaton. Two al-
gorithms are typically used for solving the problem: Nested Depth-First Search
algorithm and Tarjan’s algorithm for decomposition of the graph into strongly
connected components. Unfortunately, they both strongly rely on depth-first
search postorder that is known to be difficult to be computed in parallel. There-
fore, new, principally different, parallel algorithms for accepting cycle detection
had to be designed. These are, namely, algorithm for cycle detection using addi-
tional dependency data structure, algorithm based on negative cycles, algorithms
for forward and backward elimination of trivial and non-accepting strongly con-
nected components, algorithm for cycle detection based on breadth-first search,
and algorithm based on propagation of the value of maximal accepting prede-
cessor(see [1] for an overview). Besides these, DiVinE Tool includes also an
algorithm for distributed state space generation and an algorithm that performs
sequential NestedDFS in a distributed-memory setting. More details on algo-
rithms can be found on DiVinE project web pages [5].

DiVinE Tool can be deployed either as a complete software package to be
installed on a separate Linux cluster or as a small Java application to access
a pre-installed clusters. In the first case, basic Linux administrator skills are
required to install the tool, but the user is in the full control of environment
settings under which distributed algorithms are to be executed and can con-
trol the tool from a command line. In the second case, the tool can be used
employing DiVinE pre-installed clusters and accessed remotely via a graphical
user interface. The graphical user interface (GUI) requires properly installed
Java Runtime Environment. Both versions are available on DiVinE project web
page [5] together with a few models determined for initial acquaintance with the
tool.

An important part of the DiVinE project is the maintenance of a public
server together with a limited number of DiVinE dedicated clusters. For security
reasons registered users are allowed to connect to DiVinE public server only. New
users can be registered by following instructions given on DiVinE project web
pages.
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3 Interacting with DiVinE by Using GUI

The description of command line interface is beyond the scope of this paper.
Therefore, we focus on controlling DiVinE Tool with GUI only. GUI is imple-
mented as a client-server application where the server part is responsible for the
control of the tool. This means the server maintains currently verified models,
executes distributed algorithms, monitors cluster load, etc.

The client window is divided into three parts. In the main working area,
models and properties are specified, and outputs of distributed algorithms are
displayed. Another part of the client window has a tree-like structure and is
used to browse currently loaded models including corresponding properties and
verification results. The third part displays messages reporting changes in the
status of running algorithms.

A new verification project is started by pressing the New model button. The
system to be verified can be written directly into the main window or imported
from a local file. Having specified a model of the system the user is expected
to provide properties the system should meet using the button Add property.
Besides distributed state space generation, the tool is capable of verifying full
range of LTL formulae over state-based atomic propositions. Atomic proposi-
tions are specified using the keyword #define, e.g. #define p x>3, the formula
is specified using the keyword #property, e.g. #property FG(p). Property spec-
ification can also be imported from a local file. The pair model-property is called
a task. User can assign several distributed algorithms to be run for a given task.
The number of workstations to be used can be specified for every algorithm as
well. Individual algorithms are initiated with the button Execute.

Each algorithm produces two different types of output that can be accessed
with the client: the standard output and log files. While the standard output is
used to report progress in the computation and final verification results, logs are
used to generate multiple statistics to support the performance analysis. For each
computer participating in the computation, the logged values include the amount
of memory currently allocated by the algorithm, number of sent and received
messages, time spent in user and kernel space, size of queue of unexplored states,
etc. Client displays the last logged values with refresh rate around five seconds,
which allows the user to monitor the status of the computation in almost real
time.

All specified models, properties and verification results are stored on the server
until they are explicitly removed. Therefore, the user can disconnect from the
server, while initiated algorithms are still running, and reconnect later to collect
the verification results. It is also possible to specify and initiate new tasks during
computation of others. Hence, several tasks can be computed in parallel.

4 Conclusion

DiVinE is a tool for enumerative model checking of LTL properties on a cluster
of workstations. We performed numerous experiments that clearly demonstrates
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the tool is capable to handle systems intractable by a single machine. E.g. for
some classical verification problems the results on a cluster with 20 worksta-
tions were: Anderson’s mutual exclusion problem – space required was 10GB
of memory/verification took about 40 minutes, Dining Philosophers – 9GB/20
minutes, Leader Election – 17GB/46 minutes. For more examples see the tool
web page. Another interesting performance characteristic is the scalability. The
figure shows typical behaviour of algorithms with respect to the number of work-
stations involved.
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Abstract. Abstraction-guided simulation is a general framework for automat-
ically harnessing, during simulation, information from abstraction and model
checking. EverLost is our platform for industrial-strength abstraction-guided sim-
ulation. EverLost takes an RTL Verilog design and preimage/abstraction infor-
mation from any BDD-based abstraction/model-checking tool, and automatically
generates code that implements abstraction-guided simulation and directly com-
piles with the design under the widely-used Synopsys VCS simulator. The plat-
form enables flexible exploration of abstraction-guided simulation — different
formal tools and guidance heuristics are easily inserted — while providing the
capacity, speed, and Verilog compatibility of a leading industry-standard tool.

1 Abstraction-Guided Simulation

Automatic formal hardware verification continues to progress, through advances such
as model checking [5,8], symbolic model checking [3], bounded model checking [1,2],
and counterexample-guided abstraction refinement [7], which have greatly expanded
the capacity of automatic verification tools. Conventional simulation, however, remains
the primary workhorse for industrial hardware validation. Simulation provides unparal-
leled capacity for handling design size and complexity, but (or because) it performs no
analysis of the design. Abstraction and model checking, on the other hand, derive con-
siderable information about the structure of the state space of the design, but (therefore)
suffer from capacity limitations.

Abstraction-guided simulation1 is a general framework for automatically harness-
ing, during simulation, information obtained by model checking and abstraction of the
design. Briefly, abstraction-guided simulation consists of the following:

– We assume the goal of verification is to find an execution sequence that reaches a
specified set of states, e.g., error states or a hard-to-reach coverage target.

� Supported by an NSERC Discovery Grant. We would also like to thank Daniel Kroening and
Himanshu Jain for their help with the vcegar tool.

1 The idea of guiding state exploration via abstraction has been independently invented several
times, e.g., as “tracks” [10], “abstraction database” [6], and “distance-guided simulation” [9].
Unlike other work, our emphasis is on working with the capabilities and limits of real, indus-
trial simulation tools. We prefer the nomenclature “abstraction-guided” to “distance-guided”
because the analysis of the abstract model gives not true distances, but only lower bounds on
distances, and the challenge for good guidance heuristics is precisely to handle this inaccuracy.
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– Any conservative abstraction technique is used to create a model small enough for
symbolic model checking. The abstract model preserves existence of any paths to
the error states, but may introduce paths that don’t correspond to any concrete path.

– If formal verification succeeds (either finding no abstract error paths, or success-
fully concretizing an abstract error path), we are done. The interesting case for
simulation is when formal verification fails (and attempts at abstraction refinement
fail to create a tractable model), as can occur typically with large hardware designs.

– The model checker has computed a series of pre-images from the error states in
the abstract model. From these pre-images, we can dump a sequence of BDDs,
representing sets of abstract states whose shortest (abstract) path to an error state
is i abstract states long. Visualize these sets as concentric “rings” around the error
states. A concrete state that abstracts to an abstract state in ring i is at least i clock
cycles away from an error state.

– During directed random simulation, the simulator can consult the abstraction in-
formation for guidance by periodically computing the abstraction of the current
simulation state and querying which ring it is in. Thus, the simulator can benefit
from considerable information computed by model checking the abstract model.

An analogy is to driving with a GPS navigation device: one’s concrete location (GPS
coordinates) goes into the device, which contains an abstract model of the terrain and
provides optimum routing for the abstract model; problems arise when the abstract
model is inaccurate (e.g., due to construction); in those cases, the user wanders semi-
lost until the device computes a usable new route. The name “EverLost” is a play on a
pioneering, widely-deployed in-car GPS navigation system.

Abstraction-guided simulation is a broad and flexible framework, so research is
needed to explore trade-offs. Hence, we have created EverLost, as a flexible, yet
industrial-strength platform for exploring abstraction-guided simulation. The key fea-
tures of EverLost are:

– Direct connection into Synopsys VCS, one of the most widely used Verilog simula-
tors, giving true industrial capacity, simulation speed, and language compatibility.

– Simple interfacing to any BDD-based abstraction/model-checking tool. All we
need are the concrete state variables, the abstraction functions, and the BDD rings.

– Easy exploration of different guidance heuristics. Currently, we have implemented
a simple parameterized stochastic search; this is an active research area.

2 EverLost Architecture

The three major components for using EverLost are the logic simulator, the
abstraction/model-checking engine, and the EverLost tool itself (Fig. 1). For tight inte-
gration and highest performance, we had to target a specific logic simulator, although
the tool could be retargeted easily. We chose Synopsys VCS, one of the most widely
used industrially. For the interface with the abstraction/model-checking engine, we de-
signed for maximum flexibility: all we require are a list of the design’s latches, the
abstraction map, and the BDD pre-images that are a by-product of model checking.

Given the needed inputs, EverLost generates a simulation guidance driver in C, the
abstraction function in C, and a C interface in Verilog, which are passed to VCS along
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with the Verilog files and the BDD pre-images. The user can specify different simulation
guidance heuristics via EverLost options.

The code generated by EverLost is compiled with VCS into a single executable. In-
ternally, the simulator calls the EverLost driver every clock cycle. The EverLost code
can read the current simulation state, possibly save it, and possibly evaluate it using the
abstraction information. The EverLost code can then allow the simulation to continue,
or it can force the simulator to jump to a particular state. In our current guidance heuris-
tic, from a given state, the simulator explores n different traces for k cycles and picks
the best state (i.e., the state that abstracts to the pre-image closest to the target states)
from which to continue; one more parameter controls when to resort to a random walk
to try to get around dead-ends.

3 Sample Results and Performance Overhead

We report some results from two publicly available designs: a USB 1.1 PHY [11] inter-
face, and a full USB 2.0 Function Core [12]. We used VCEGAR [7] with NuSMV [4]
as our formal engine; these tools are state-of-the-art, freely available, and support Ver-
ilog. When the designs were too big, the formal engine did not produce useful abstract
models, so in some experiments, we used only a few sub-modules. VCS and EverLost,
of course, had no capacity problems, including for the full Function Core.

When the formal engine provided enough pre-image rings, EverLost was able to
guide simulation towards a target using up to an order of magnitude fewer simulation
clock cycles than random simulation. For example, while verifying two usb rx phy cov-
erage points, the formal engine generated 27 and 23 pre-images for (1) acknowledging
receiving data and (2) proper synchronization. For (1), over 30 simulation trials, ran-
dom simulation averaged 206K clock cycles and 2.1 seconds CPU time versus 5.3K
clock cycles and 4 seconds for EverLost. For (2), also over 30 trials, random simulation
averaged 1.4M clock cycles and 13 seconds versus 0.5M clock cycles and 1.25 seconds
for EverLost.
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Table 1. Simulation Overhead. The columns show, from left to right: the design, the number of
latches, the length of each random trace, and the CPU times for the simulation when EverLost is
absent, when only the C-Interface calls are added, and when both C-Interface calls and guiding
heuristics are present, and the total overhead ratio

Module Latches Cycles Standard No-Op C-Calls C-Calls+Heuristic Overhead Ratio
usb rx phy 56 5M 96.3s 145.2s 490.0s 5.1

usbf pl 696 250K 38.2s 232.3s 333.7s 8.7
usb 1785 15K 25.5s 379.5s 421.6s 16.5

Simulation overhead has two components: the overhead of calling/returning from the
Verilog test bench to the C interface, and the time required by the heuristic to evaluate
concrete states and choose an action. To measure the overhead, we ran extended ran-
dom simulations on variously sized designs. Table 1 shows the results, averaged over 5
random runs each, with negligible standard deviations. Notice that as the design size in-
creases, the predominant overhead is due to the interface between Verilog and C, rather
than the guidance heuristic.

Future work includes reducing overhead and exploring guidance heuristics.
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Abstract. The state explosion problem is one of the core bottlenecks in the
model checking of concurrent software. We show how to ameliorate the prob-
lem by combining the ability of partial order techniques to reduce the state space
of the concurrent program with the power of symbolic model checking to ex-
plore large state spaces. Our new verification methodology involves translating
the given concurrent program into a circuit-based model which gives us the flex-
ibility to then employ any model checking technique of choice – either SAT or
BDD-based – for verifying a broad range of linear time properties, not just safety.
The reduction in the explored state-space is obtained by statically augmenting the
symbolic encoding of the program by additional constraints. These constraints
restrict the scheduler to choose from a minimal conditional stubborn set of tran-
sitions at each state. Another key contribution of the paper, is a new method for
detecting transactions on-the-fly which takes into account patterns of lock acqui-
sition and yields better reductions than existing methods which rely on a lock-
set based analysis. Moreover unlike existing techniques, identifying on-the-fly
transactions does not require the program to follow a lock discipline in access-
ing shared variables. We have applied our techniques to the Daisy test bench and
shown the existence of several bugs.

1 Introduction

The widespread use of concurrent software in modern day computing systems neces-
sitates the development of effective verification methodologies for multi-threaded pro-
grams. However, subtle interactions between threads makes multi-threaded software
behaviorally complex and hard to analyze necessitating the use of formal methodolo-
gies for their debugging. It is not surprising then that the use of model checking – both
symbolic and explicit state – for the verification of concurrent software has recently
been an active area of research.

Explicit state model checkers, such as Verisoft [God97] rely on exploring an enu-
meration of the states and transitions of the concurrent program at hand. Additional
techniques such as state hashing for compaction of state representations, and partial or-
der methods are typically used to avoid exploring all interleavings of transitions of the
constituent threads. While these techniques are powerful tools for state space reduction,
they still do not fully address the scalability issues that arise due to state explosion when
model checking large-scale concurrent programs.

Symbolic model checkers, on the other hand, avoid an explicit enumeration of the
state space by using symbolic representations of sets of states and transitions. One of

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 286–299, 2006.
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the first successful approaches in this regard was the use of BDDs to succinctly rep-
resent large state spaces for the purpose of model checking [McM93]. More recently,
SAT-based techniques [BCCY99] have become popular both for finding bugs using
SAT-based Bounded Model Checking (BMC) and for generating proofs via SAT-based
Unbounded Model Checking (UMC).

One of the contributions of this paper is that we have proposed a new methodology to
leverage the synergy that results from combining the ability of partial order techniques
to reduce the state space of the system to be explored with the power of symbolic
model checking techniques to explore large state spaces that has many advantages over
existing techniques that attempt to achieve the same goals. Indeed, methods different
from ours that combine partial order reductions with the use of BDDs were given in
[ABH+01, LST03]. However, the use of BDDs requires one to first symbolically encode
the entire state space of the given concurrent program thereby running into the state
explosion problem. Our technique gives us the freedom to use any technique of choice,
either SAT or BDD-based. This is crucial as SAT-based BMC techniques tend to be
much more scalable on larger programs than the ones based on the use of BDDs.

We start by translating a given concurrent program into a circuit-based (finite-state)
model. Building upon the F-Soft framework [ISGG05] for translating sequential pro-
grams with bounded data and bounded recursion into circuits, we first obtain a finite
model for each individual thread wherein each variable of the thread is represented in
terms of a vector of binary-valued latches and a boolean next-state function (or rela-
tion) for each latch. Then using a scheduler, we compose the circuits for the individual
threads into one single circuit for the entire concurrent program. Verification is then
carried out on this circuit. Partial order techniques are incorporated into the framework
by statically augmenting the circuit-based boolean encoding of the given concurrent
program with additional constraints. These constraints restrict the transitions explored
from each global state to a minimal conditional stubborn set of that state.

Another contribution of this paper is that we have proposed a new provably better
method for identifying transactions on-the-fly that is based on analyzing patterns of
lock acquisition as opposed to existing techniques [Sto02, FQ03] which rely on a lock-
set based analysis. Lockset based methods for state space reduction essentially exploit
the ability of locks to enforce mutually exclusive access to regions of code encapsu-
lated between the locking and unlocking operations on the same lock. They rely on the
assumption that the given concurrent program follows a lock discipline in accessing
shared variables, i.e., all accesses to a shared variable sh are protected by the same lock
lsh [Sto02, FQ03]. Then we can cut down on the number of interleavings that need to
be explored by essentially allowing context switches only before the acquire and after
the release operations on lsh and prohibiting them before access to sh. Disallowing
context switches increases the granularity of transitions and cuts down on the number
of possible interleavings resulting in a reduced state space to be explored.

On the other hand, by analyzing concurrent programs for patterns of lock acquisi-
tion rather than for locksets, we can identify not only those transactions which lockset
based method do but also some that they don’t. This makes our new technique prov-
ably better. In fact, the lockset based technique for identifying transactions turns out to
be a special case of the one based on lock acquisition patterns that we propose here.
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Moreover, our technique does not rely on the given concurrent program following a
locking discipline in accessing shared variables. An important advantage of the non-
reliance of our method on lock discipline is that one of the main reasons for the exis-
tence of data races in threads is an unprotected/wrongly protected access to a shared
variable. The requirement of lock discipline precludes the application of these power-
ful reductions to programs where such commonly occurring bugs are present. Thus our
method enables the use of lock-based reductions for a broader class of concurrent pro-
grams, viz., that need not follow lock discipline, to catch a frequently occurring class
of bugs.

Another, important feature of the lock-pattern based transactions is that they can be
transparently incorporated into partial order reduction by improved conditional depen-
dency detection via addition of extra constraints that are incorporated into the transition
relation not a priori but dynamically while unrolling the executions of the threads. We
show that the increased granularity of transitions due to transactions can be captured as
a reduction in the sizes of the conditional stubborn sets of states.

We believe that our decision to build circuit-based models for concurrent programs
gives us many unique advantages. Indeed, in this sense, the work most closely resem-
bling ours are the approaches presented in [RG05, CKS05] that involve translating a C
program directly into a SAT formula for model checking using SAT-based BMC. How-
ever [RG05] does not incorporate partial order reductions and neither technique lever-
ages on-the-fly transactions. Circuit based models make it easy to incorporate static
space reduction techniques like partial order reductions, on-the-fly-transactions as well
as lightweight static analysis techniques like range analysis to reduce model sizes. An-
other advantage of our approach lies in the separation of the model building and ver-
ification phases. Once we have built a circuit for the concurrent program at hand, it
affords us the flexibility to tackle the verification problem using any model checking
technique of choice for a broad range of linear time temporal properties, not just safety.
Unlike [RG05, CKS05], we can employ a suite of model checking tools for a rich class
of linear-time temporal properties, which can be used both for finding bugs and gener-
ating proofs. These include SAT-based BMC and UMC as well as BDD based model
checking. We believe this flexibility is important as software generated circuits are not
as well structured as hardware circuits and hence no one strategy can be expected to
be universally effective. Thus we have presented a new approach for model checking
concurrent programs that combines the power of symbolic techniques with partial order
reduction and on-the-fly transactions while at the same time retaining the flexibility to
employ a broad arsenal of model checking techniques – both SAT and BDD-based – for
checking not just reachability but a richer classes of linear-time temporal properties.

In the rest of the paper, Section 2 introduces the system model while on-the-fly
transactions are defined in section 3. The details for modeling concurrent programs
as circuits are provided in section 4 and the Daisy case study in section 5. Finally, we
conclude with some remarks in section 6 along with a comparison with related work.

2 System Model

We consider concurrent systems comprised of a finite number of processes or threads
where each thread is a deterministic sequential program written in a language such as
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C. Threads interact with each other using communication/synchronization objects like
shared variables, locks and semaphores.

Formally, we define a concurrent program CP as a tuple (T ,V ,R, s0), where T =
{T1, ..., Tn} denotes a finite set of threads, V = {v1, ..., vm} a finite set of shared
variables and synchronization objects with vi taking on values from the set Vi, R the
transition relation and s0 the initial state of CP. Each thread Ti is represented by
the control flow graph of the sequential program it executes, and is denoted by the
pair (Ci, Ri), where Ci denotes the set of control locations of Ti and Ri its transition
relation. A global state s of CP is a tuple (s[1], ..., s[n], v[1], ..., v[m]) ∈ S = C1× ...×
Cn × V1 × ...× Vm, where s[i] represents the current control location of thread Ti and
v[j] the current value of variable vj . The global state transition digram of CP is defined
to be the standard interleaved composition of the transition diagrams of the individual
threads. Thus each global transition of CP results by firing a local transition of the
form (ai, g, u, bi), where ai and bi are control locations of some thread Ti = (Ci, Ri)
with (ai, bi) ∈ Ri; g is a guard which is a Boolean-valued expression on the values
of local variables of Ti and global variables in V ; and u is function that encodes how
the value of each global variable and each local variable of Ti is updated. A transition
t = (ai, g, u, bi) of thread Ti is enabled in state s iff s[i] = ai and guard g evaluates
to true in s. If s[i] = ai but g need not be true in s, then we simply say that t is

scheduled in s. We write s
t−→ s′ to mean that the execution of t leads from state s to

s′. Given a transition t ∈ T , we use proc(t) to denote the process executing t. Finally,
we note that each concurrent program CP with a global state space S defines the global
transition system AG = (S, ∆, s0), where ∆ ⊆ S ×S is the transition relation defined

by (s, s′) ∈ ∆ iff ∃t ∈ T : s t−→ s′; and s0 is the initial state of CP.

3 Lock Synchronization Based Reductions

We start by using some examples to motivate our technique. Consider the concurrent
program CP shown in figure 1. Here x, which is the only variable shared among the
threads, is unprotected at control location 5b and protected by lock lk at all other
locations. Since x is not protected at all locations where it is accessed, it does not satisfy
lock discipline in the sense of [Sto02, FQ03], which will therefore force a context switch
before locations 3a and 3b. Consider, however, a global state s of CP with threads
T1 and T2 at control locations 3a and 1b, respectively. The key observation is that
starting at global state s of CP, 3a does not interfere with 3b and 5b even though
5b is unprotected. This is because for T2 to execute 3b it has to acquire lk currently

1a: a = 0;
2a: lock(lk);
3a: x = 1;
4a: unlock(lk);
5a: a = 4;

1b: z = 5;
2b: lock(lk);
3b: x = 2;
4b: unlock(lk);
5b: x = 6;

(a) (b)

Fig. 1. Threads T1(a) and T2(b) with unprotected access to x
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held by T1. But in order for T1 to release lk, it has to first execute 3a. Thus starting
at s, CP is forced to execute 3a before 3b. As a result no context switch is required
before 3a. However, in the global state s′ with T1 and T2 at control locations 3a and
5b, respectively, the transitions 3a and 5b do interfere with each other thus forcing a
context switch before 3a. The bottom line is that even when shared variables do not
follow locking discipline globally, we can still identify local portions of the state space
where locking discipline is followed. Thus a context driven analysis allows us to define
transactions locally on-the-fly where existing methods [Sto02, FQ03], because of their
reliance on a global analysis, fail to do so.

1a: a = 1;
2a: lock(lk1);
3a: lock(lk2);
4a: y = 1;
5a: unlock(lk2);
6a: x = 0;
7a: unlock(lk1);

1b: b = 0;
2b: lock(lk2);
3b: lock(lk1);
4b: z = 2;
5b: unlock(lk1);
6b: x = 1;
7b: unlock(lk2);

(a) (b)

Fig. 2. Threads T1(a) and T2(b) with unprotected access to x

Taking the above discussion further, we next show that transactions can be identified
even in the absence of lock discipline–local or global. Let CP be the concurrent program
comprised of the two threads T1 and T2 sharing variable x shown in figure 2. Consider a
global state s of CP with threads T1 and T2 in control locations6a and 1b, respectively.
Observe that starting at s, the transitions at control locations 6a and 6b cannot interfere
with each other even though they access the same shared variable x. This is because
in order for thread T2 to reach location 6b from 1b it has to traverse the local path
1b,2b,3b,4b,5b, along which it has to acquire (and release) lock lk1 currently
held by T1. In order for that to happen, T1 must release lk1 for which it must execute
transition 6a. This forces transition 6a to be executed before 6b. Thus no context
switch is required before location 6a. The key observation is that even though disjoint
sets of locks were held at locations 6a and 6b, it was the set of locks that needed to
be acquired by T2 in order to transit from 1b to 6b ( even though some of these locks
were released before reaching 6b) that prevented 6a and 6b from interfering with each
other. A traditional lockset based analysis as given in [Sto02, FQ03] would treat 6a
and 6b as conflicting transitions (as x does not follow locking discipline) and force a
context switch before these locations. Thus a conflict analysis based on lock acquisition
patterns is more refined than one based on locksets. Indeed, a lockset based analysis
is a special case of lock-pattern based analysis since the set of locks held at a location
would have to be acquired and thus would be tracked in the lock acquisition pattern.

Transactions Via Persistent Sets. We now show how to integrate lock-pattern based
on-the-fly transactions with partial order reduction in a transparent fashion by capturing
the increased granularity of transitions due to transactions as a reduction in the sizes
of the conditional stubborn sets of states. This is accomplished by ensuring that if in
a global state s, a thread Ti is in the process of executing a transaction, then in the
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persistent set of s, we include only one transition, viz., the transition of Ti that fires
next along the transaction being executed. This ensures that once the first transition of
a transaction is executed, by a thread Ti then no other process can be scheduled unless
all transitions of the transaction finish firing.

State space reduction using partial order techniques is obtained by exploring from
each state only those transitions that belong to a persistent set of that state instead of
all the enabled transitions. Although there are many ways to compute persistent sets,
the method of computing conditional stubborn sets usually generates those with small
cardinality. In this paper, we use standard terminology from the theory of partial order
reductions and the algorithm for computing conditional stubborn sets from [God96],
which we denote by Algo1. We recall the following definition from [God96].

Might-be-first-to-interfere. Let op and op′ be two operations on the same object O
and s be a reachable state. The relation op �s op′ holds if there exists a sequence

s = s1
t1−→ s2

t2−→ ...
tn−→ sn+1 of transitions in AG such that ∀1 ≤ i < n : ∀op′′ on

O used by ti: op and op′′ are independent in state si, tn uses op′, and op and op′ are
dependent in sn.

For each local transition a
g→ b of a thread, we let used(t) denote the set of opera-

tions on variables and synchronization objects executed during the execution of t. A
conditional stubborn set of state s of AG can then be calculated as follows:

1. Initialize Ts = {t}, where t is some enabled transition in s.
2. For each t = a

g→ b ∈ Ts

(a) If t is disabled in s,
i. if Tj = proc(t) and s[j] �= a, then add to Ts all transitions t′ of Tj of the form

c
g′
→ a, or

ii. choose a condition cj in the guard g of t that evaluates to false in s; then, for
all operations op used by t to evaluate cj , add to Ts all transitions t′ such that
∃op′ ∈ used(t′) : op �s op′.

(b) If t is enabled in s add to Ts all transitions t′ such that
i. proc(t) �= proc(t′) and ∃op ∈ used(t),∃op′ ∈ used(t′) : op �s op′.

3. Repeat step 2 until no more transitions can be added in Ts. Then return all transitions in Ts

that are enabled in s.

Fig. 3. Algo1 for Computing Conditional Stubborn sets

In Algo1 dependencies between transitions, arising out of operations on shared com-
munication objects are captured using the �s relation which captures for each operation
op used by a transition in a state s which other operations might be first to interfere with
op from the current state s. In practice, to avoid exploration of the state space of the
program at hand, static analysis is employed in order to compute a relation, �st

s , which
is an over-approximation of �s. Towards that end, we say that two operations op and
op′ are statically dependent if they access a common shared variable such that at least
one of the accesses is a write operation. Then �st

s , is defined as follows.

Definition. Let op and op′ be two operations on a common shared variable and s a
reachable state of AG. The relation op �st

s op′ holds iff there exist distinct threads Ti
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and Tj such that there exists (1) a transition of Ti scheduled (not necessarily enabled)

at s using op, and (2) a local path x : p0
t1−→ ...

tn−→ pn of Tj such that p0 is the local
state of Tj in s, ∀1 ≤ k < n : ∀op′′ used by tk: op and op′′ are not statically dependent,
tn uses op′, and op and op′ are statically dependent.

To incorporate on-the-fly transactions, we modify the above definition of �st
s to get a

new relation �lp
s ⊆ �st

s by adding (in accordance with our discussion above), the extra
constraint that none of the locks held by Ti in s is acquired (and possibly released)
by Tj along x. Note that since �lp

s is more constrained it enforces fewer dependencies
between operations than �st

s thus resulting in smaller conditional stubborn sets. The
effect is to weed out certain interleavings to get the effect of executing transactions.
Indeed, in the example given in fig 2, in global state s, if op and op′ are the operations
x = 0 and x = 1 at locations 6a and 6b, respectively, then op�st

s op′ but ¬(op�lp
s op′).

Thus, using �lp
s instead of �st

s to compute conditional stubborn sets removes transition
1b from the conditional stubborn set of s thus preventing a context switch before 6a.
Formally, �lp

s is defined as follows.

Definition (might-be-the-first-to-interfere-modulo-lock-acquisition). Let op and op′

be two operations on a common shared variable and s a reachable state of AG. The
relation op �lp

s op′ holds iff there exist distinct threads Ti and Tj such that there exists
(1) a transition of Ti scheduled (not necessarily enabled) at s using op, and (2) a local

path x : p0
t1−→ ...

tn−→ pn of Tj such that ∀1 ≤ k < n : ∀op′′ used by tk: op and op′′

are not statically dependent, tn uses op′, and op and op′ are statically dependent and
no lock held by Ti in s is acquired by Tj along x.

Let Algo2 be the result of replacing �s in Algo1 by �st
s and Algo3 the result of replac-

ing �st
s in line 2.(b).i of Algo2 by �lp

s . Then the following two results state that Algo3
does indeed compute a conditional stubborn set and that, in fact, it computes smaller
conditional stubborn sets than Algo2. Note that although we used a specific relation
�st

s for computing dependencies statically, one can, of course, incorporate on-the-fly-
transactions with any other implementation of �s by merely adding the extra condition
regarding lock acquisition patterns, as above.

Theorem 1. All sets Ts that are computed by Algo3 are conditional stubborn sets of s.

Proof Sketch. Let t = a
g→ b executed by thread Ti belong to Ts. Let w = s1

t1−→
s2

t2−→ ...
tn−→ sn+1 be a sequence of transitions of AG such that t is dependent with tn

in sn. We need to show that at least one of t1,...,tn is in Ts. Without loss of generality,
we may assume that for 1 ≤ i < n, t is independent with ti in si and tn is dependent
with t in sn, else we can pick an appropriate prefix of w.

First assume that t is disabled in s. Since t is disabled in s and sn is the first state
along w in which t is dependent (with tn), we have that t is enabled in sn+1. Since t
is disabled in s, either s[i] �= a, or a condition c in guard g evaluates to false in s. In
the first case, since t is enabled in sn+1, there exists a transition tj fired along w, of
the form d → a labeled with some guard g′. But then executing step 2.(a).i of Algo3,
would cause tj to be included in Ts. In the second case, there exists a transition tj , that
changes the value of c from false to true by changing the output of an operation op used
to evaluate c, i.e., by performing an operation op′ dependent with op in sj . Let tj be the
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first such transition occurring along w. Clearly op′ is statically dependent with op. By
definition of �st

s , we have op �st
s op′, and so tj ∈ Ts by step 2.a.(ii).

Consider now the case when t is enabled in s. From the facts that (i) for 1 ≤ j ≤ n−
1, t is independent with tj in sj , and (ii) t is enabled in s, we have that for 1 ≤ j ≤ n−1,
t is enabled in sj . This implies that thread Ti does not execute any transition along w,
for otherwise since Ti is deterministic, we can conclude that t is the first transition that
Ti executes along w. This which would force Ti out of it current local state thereby
disabling t thus contradicting the above observation. Note that here we assumed that
executing a transition takes a process out of its current local state, i.e., there are no
self loops in a program thread, a reasonable assumption for software programs Now,
since t and tn are dependent in sn, it implies that ∃op ∈ used(t), ∃op′ ∈ used(tn): op
and op′ are dependent in sn and hence are also statically dependent. Let tj be the first
transition along w that uses an operation op′′ dependent op. Note also that there does
not exist a lock l held by Ti at s such that l has to be acquired before tj is executed along
w. For otherwise, l must first be released by Ti thus forcing Ti to execute a transition
contradicting our observation above that Ti does not execute any transition along w.
Thus we have op �lp

s op′′. Hence tj ∈ Ts by step 2.b.(i). This completes the proof. ��
Theorem 2. For all transitions t that are enabled in s, for all persistent sets Algo2(t)
that can be returned by Algo2, there exists a run of Algo3 that returns a persistent set
Algo3(t) ⊆ Algo2(t).

Proof Sketch. From the definition of relation �lp
s , it follows that �lp

s is included in
�st

s . Thus the set Ts returned by Algo3 is always a subset of the one returned by Algo2,
provided the same choices are made in case of nondeterminism. ��

Note that since Algo3 computes smaller persistent sets than existing lockset-based tech-
niques, it is guaranteed to improve the performance of explicit state model checkers.
Even for symbolic model checkers, since the reduction in the number of scheduled
transitions results in a pruning of the state space, it leads to a performance boost which,
however, may not be directly proportional to the decrease in the size of the state space
being explored.

4 Software Modeling for Concurrent C Programs

4.1 Translating Individual Threads into Circuits

In this section we briefly describe how, using the F-Soft machinery, we first obtain a
circuit-based model of each thread, under the assumption of bounded data and bounded
control (recursion) (see [ISGG05] for more details).

We begin with full-fledged C and apply a series of source-to-source transformations
to simplify complex C expressions into smaller but equivalent subsets of C . We flatten
all arrays and structs by replacing them with collections of simple scalar variables,
and build an internal memory representation of the program by assigning to each scalar
variable a unique number representing its memory address. Variables that are adjacent
in C program memory are given consecutive memory addresses in our model; this fa-
cilitates modeling of pointer arithmetic. We model the heap as a finite array, adding a
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simple implementation of malloc() that returns pointers into this array. For handling
pointer accesses, we first perform a points-to analysis to determine the set of variables
that a pointer variable can point to. Then, we convert each indirect memory access,
through a pointer or an array reference, to a direct memory access. For example, if
we determine that pointer p can point to variables a,b,...,z at a given program
location, we rewrite a pointer read *(p+i) as a conditional expression of the form
((p+i)==&a ? a : ((p+i)==&b ? b : ...) ), where &a,&b,... are the
numeric memory addresses we assigned to the variables a,b,..., respectively. Non-
recursive function calls are handled by inlining exactly once, and replacing the function
return by a set of goto-s conditioned upon the unique call site id stored on function
entry. Bounded recursive functions are modeled by introducing a bounded call stack.
While we aim for accurate modeling of all C, practical modeling requires making ap-
proximations. We truncate large arrays: writes to elements above a certain index are
ignored, and reads from these elements yield non-deterministic values. We currently
approximate floating-point values by modeling their integral parts only.

The simplified program consists of scalar variables of simple types (Boolean, enu-
merated, integer). This is compiled using standard techniques into its control flow graph
(CFG). The CFG representation can be viewed as a finite state machine with state vec-
tor (pc,V), where pc denotes an encoding of the basic blocks, and V is a vector of
integer-valued program variables. We then construct symbolic transition relations for
pc, and for each data variable appearing in the program. For pc, the transition relation
reflects the guarded transitions between basic blocks in the CFG. For a data variable, the
transition relation is built from expressions assigned to the variable in various blocks.
Finally, we construct a symbolic representation of these transition relations resembling
a hardware circuit. For the pc variable, we allocate �logN� latches, whereN is the total
number of basic blocks. For each C program variable, we allocate a vector of n latches,
where n is the bit width of the variable. At the end, we obtain a circuit-based model of
each thread of the given concurrent program, where each variable of the thread is rep-
resented in terms of a vector of binary-valued latches and a Boolean next-state function
(or relation) for each latch.

4.2 Building the Circuit for the Concurrent Program

Given the circuit Ci for each individual thread Ti, we now show how to get the circuit
C for the concurrent program CP comprised of these threads. In the case where local
variables with the same name occur in multiple threads, to ensure consistency we prefix
the name of each local variable of thread Ti with thread i. Next, for each thread Ti

we introduce a gate execute i indicating whether Pi has been scheduled to execute
in the next step of CP or not.

For each latch l, let next-statei(l) denote the next state function of l in circuit
Ci. Then in circuit C, the next state value of latch thread i l corresponding to a
local variable of thread Ti, is defined to be next-statei(thread i l) if execute i
is true, and the current value of thread i l, otherwise. If, on the other hand, latch
l corresponds to a shared variable, then next-state(l) is defined to be next-statei(l),
where execute i is true. Note that we need to ensure that execute i is true for
exactly one thread Ti. Towards that end, we implement a scheduler which determines
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in each global state of CP which one of the signals execute i is set to true and thus
determines the semantics of thread composition.

Conditional Stubborn Sets Based Persistent Sets. To incorporate partial order reduc-
tion, we need to ensure that from each global state s, only transitions belonging to a
conditional stubborn set of s are explored. LetR and Ri denote the transitions relations
of CP and Ti, respectively. If CP has n threads, we introduce the n-bit vector cstub
which identifies a conditional stubborn set for each global state s, i.e., in s, cstubi is
true for exactly those threads Ti such that the (unique) transition of Ti enabled at s
belongs to the same minimal conditional stubborn set of s. Then

R(s, s′) =
∨

1≤i≤n

((execute i) ∧ cstubi(s) ∧Ri(s, s′)).

The cstub vector can be computed in the following way:

1. For each shared variable x and thread Ti, we introduce a latch touch-now(Ti, x)
which is true at control location pci of Ti iff Ti accesses x at control location pci.
This can be done via a static analysis of the CFG of Ti by determining at which
control locations x was accessed and taking a disjunction for those values of pci.

2. For each shared variable x and thread Tj , introduce the latch touch-now-later
(Tj , x), which is true at control location pcj of Tj if Tj accesses x at some location
pc′j reachable from pcj . Thus computing touch-now-later(Tj, x) involves deciding
the reachability of pc′j , and since we cannot compute it exactly without explor-
ing the entire state space AG of CP, we over-approximate it by doing a context-
sensitive analysis of the control-flow graph of Tj . We set touch-now-later-pair
(Tj , x) to true in control pcj if for some control pc′j reachable from pcj in the
control flow graph of Tj , x is accessed at pc′j .

3. For distinct threads Ti and Tj , the relation conflicti(j) is then defined as ∨x∈Vsh

(touch-now(Ti, x)(pci) ∧ touch-now-later(Tj , x)(pcj)), where pci and pcj are the
control locations of Ti and Tj , respectively, in the current global state and Vsh is
the set of shared variables of CP.

4. Using a circuit to compute transitive closures, for each i, starting with Ji = {i} we
compute the closure of Ji under the conflict relation defined above.

5. We build a circuit to compute the index min such that the cardinality of Jmin

is the least among the sets J1, ..., Jn. Finally ∀1 ≤ i ≤ n, set cstubi = 1 iff
i ∈ Jmin. Note that in the implementation we need to pick only one set with the
least cardinality.

Cycle Detection. We first identify sticky transitions [KLM+98] for all potential global
cycles. We then force a conflict for the process containing the sticky locations with all
other processes via the encoding below. Let sticky(pc) be a predicate evaluating to true
iff location pc has been marked sticky. Then, for global state s, we define conflicti(j)
= sticky(pci) ∨ (touch-now(Ti, x)(pci) ∧ touch-now-later(Tj, x)(pcj)), where pcm is
the current control location of Tm in s. In other words, if pci is sticky then thread Ti is
said to conflict with all other threads.This implies that either a thread Tk, with smaller
conflict set Jk, would be chosen for the persistent set computation or a full expansion
forced.
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This reduction is sound, since (as was shown in [KLM+98]) any cycle in the global
state space can be projected on to one or more local cycles in the control flow graph
of the individual threads. By forcing a full expansion inside each (potential) local cycle
with the help of sticky transitions, we ensure that there is no global cycle such that a
thread transition is postponed at each state of the cycle. Therefore this encoding allows
the model checker to explore a conservative over-approximation of the representative
(minimal) set of interleavings of the given threads. Although the reduced model re-
mains sound, the number of interleavings considered may decrease dramatically with
the number of annotated sticky transitions.

So far, we have implemented sticky transitions only for special cases in which cy-
cles can occur locally in threads. In fact, as was noted in [FG05], our experience also
has been that acyclic state spaces are very common in software implementations for
the purpose of model checking and cycle detection becomes more critical when one is
using an abstraction (which introduces cycles) refinement framework. However since
(i) we put a lot of effort in modeling programs concretely, (ii) do not use abstraction
refinement, and (iii) introduce sticky transitions to cover common trivial cases, the im-
pact of the existence of cycles is reduced. Nevertheless, we are currently in the process
of extending the implementation of sticky transitions to the general case.

Encoding Lock Pattern Based Reductions. In order to incorporate transactions
on-the-fly, we augment the predicate touch-now-later, to generate the new predicate
touch-now-later-LS that also includes lock acquisition pattern information. For control
locations pci and pc′i, of thread Ti, let paths(pci, pc

′
i) denote the set of paths in the

CFG of Ti starting from pci that may reach pc′i. For each π ∈ paths(pci, pc
′
i) of Ti, let

lockPred(π) be a formula denoting the set of locks acquired (and possibly released)
along π, e.g., lk1 = Ti∧lk2 = Ti. Let touch-now-later-pair(Tj , x)(pcj , pc

′
j) encode all

possible sets of locks that can potentially be acquired along local paths in Ti from pci to
pc′i accessing x, i.e., touch-now-later-pair(Tj , x)(pcj , pc

′
j) = touch-now(Tj, x)(pc′j) ∧

APx(pcj , cp
′
j), where APx(pci, pc

′
i) =

∨
π∈paths(pci,pc′

i)
lockPred(π). Let CLP ( Ti,

s) denote a formula encoding the ownership of locks by Ti in global state s. Then the re-
lation touch-now-LS(Ti, x) is obtained from touch-now-later-pair(Ti, x) by quantifying
out pc′i and conjoining with the CLP (Ti, s), i.e., touch-now-LS(Ti, x) (pci) = (∃pc′i
touch-now-later-pair(Ti, x) (pci, pc

′
i)) ∧ CLP (Ti, s). Thus touch-now-LS(Ti, x) (pci)

is true if there is a location pc′i accessing shared variable x that is reachable from pci

via a local path π in Ti such that no lock held in s is acquired along π. We evaluate
lockPred(π) using a context sensitive static analysis of the CFG of Ti.

5 The Daisy Case Study

We have used our technique to find bugs in the Daisy file system which is a benchmark
for analyzing the efficacy of different methodologies for verifying concurrent programs
[dai]. Daisy is a 1KLOC Java implementation of a toy file system where each file is
allocated a unique inode that stores the file parameters and a unique block which stores
data. An interesting feature of Daisy is that it has fine grained locking in that access
to each file, inode or block is guarded by a dedicated lock. Moreover, the acquire and
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release of each of these locks is guarded by a ‘token’ lock. Thus control locations in
the program might possibly have multiple open locks and furthermore the acquire and
release of a given lock can occur in different procedures.

Currently F-Soft only accepts programs written in C and so we first manually trans-
lated the Daisy code which is written in Java into C. Furthermore, to reduce the model
sizes, we truncated the sizes of the data structures modeling the disk, inodes, blocks,
file names, etc., which were not relevant to the race conditions we checked, resulting
in a sound and complete small-domain reduction. We have shown the existence of the
race conditions described below also noted by other researchers (cf. [dai]). The efficacy
of our techniques can be judged from the fact that our model checking methodology
has been able to detect these race conditions in Daisy in a fully automatic fashion di-
rectly on the source code without any code structuring/abstractions beyond redefining
the constants as discussed above.

1. Daisy maintains an allocation area where for each block in the file system a bit is
assigned 0 or 1 accordingly as the block has been allocated to a file or not. But each disk
operation reads/writes an entire byte. Two threads accessing two different files might
access two different blocks. However since bytes are not guarded by locks in order to
set their allocation bits these two different threads may access the same byte in the
allocation block containing the allocation bit for each of these locks thus setting up a
race condition. Note that the race condition occurs for any pair of blocks with numbers
i and j where floor(i/8) = floor(j/8).

The verification statistics are as follows: We ran our experiments on a machine with
an Intel Pentium4 3.20GHz processor and 2GB RAM. Each run was given a timeout
of 2 days and had a memout of 2GB. Witnesses for the above race condition were
found in two cases, WW1–corresponding to blocks 0 and 1, and WW2–due to blocks 1
and 2. Using purely interleaved scheduling, we failed to find either witness because of a
memout at depth 15. When only partial order reduction was employedWW1 was found
using SAT-based BMC at unroll depth 122 in 36707 sec and 999MB while incorporating
on-the-fly transactions drastically reduced the time and memory usage to 1283sec and
122MB, respectively. The second witness WW2 was found at depth 151. Using partial
order reduction alone took 145176 sec and 1870 MB, while adding transactions reduced
it to 5925 sec and 902 MB.

2. In Daisy reading/writing a particular byte on the disk is broken down into two
operations: a seek operation that mimics the positioning of the head and a read/write
operation that transfers the actual data. Due to this separation between seeking and data
transfer a race condition may occur. For example, reading two disk locations, say n
and m, we must make sure that seek(n) is followed by read(n) without seek(m) or
read(m) scheduled in between. In this case a witness was found at depth 48. Using par-
tial order reduction alone took 2.99 sec and 5.7 MB while adding transactions reduced
it to 2.89 sec and 5.5 MB. For this example also BMC on the completely interleaved
model failed to find a witness because of a memout at depth 20.

The bottom line is that, for deep bugs techniques that leverage the use of on-the-fly
transactions combined with partial order reduction greatly outperform those which use
only partial order reduction – both in terms of time taken and memory used.
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6 Concluding Remarks and Related Work

A comparison of our work with [RG05, CKS05], to which it is most closely related, was
presented in the introduction. Partial order reduction has been used before for symbolic
model checking using BDDs [ABH+01, LST03]. On the other hand, by separating
the modeling and verification phases, our methodology gives us the ability to combine
partial order reductions with any symbolic model checking technique of choice, either
SAT or BDD based. An interesting approach for the verification of concurrent pro-
grams using proof-guided under-approximation-widening methodology was presented
in [GLST05]. Here constraints are added to the BMC model instance so that only a
subset of behaviors of the concurrent system are explored. These constraints are itera-
tively removed during the widening phase as a result of which, in the worst case, one
might end up exploring the entire state space of the concurrent program at hand. In
contrast, we add constraints so that we explore a conditional stubborn set at each global
state thereby yielding considerable state space reduction. Moreover, [GLST05] does not
leverage the use of transactions.

There has also been interesting work ([FQ03, Sto02, SC03, AQR+04, LPQR05]) on
the use of lockset based transactions for verifying software and combining it with partial
order reductions. These techniques first compute the valid set of transactions in each of
the processes and then perform partial order reduction-based state-space exploration. As
noted before, such a two-step combination technique may overlook potential reductions
related to shared variables which do not always follow a locking discipline. The key
reason is that in these approaches a thread-wise global analysis is done to look for
potential dependencies between transitions. In contrast, our approach adds information
to the model while exploring the state space by detecting dependencies on-the-fly via
an analysis of patterns of lock acquisition. Our more refined method generates fewer
dependencies between transitions resulting in a lesser number of context switches. This
gives us better state space reduction than existing lockset based techniques.

To sum up, we have presented a new approach for verifying concurrent programs that
combines the power of symbolic model checking with partial order reduction and on-
the-fly transactions while at the same time retaining the flexibility to employ a variety
of error trace generation/proof techniques – both SAT and BDD-based – for checking
not just safety but a broad class of linear time temporal properties. The use of lock
acquisition patterns rather than locksets to identify transactions on-the-fly is not only a
powerful technique in its own right but can also be used in a synergistic manner with
both explicit state and BDD-based exploration of concurrent programs as also with
dynamic partial order reduction techniques [FG05].
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Abstract. In order to make multithreaded programming manageable, program-
mers often follow a design principle where they break the problem into tasks
which are then solved asynchronously and concurrently on different threads.
This paper investigates the problem of model checking programs that follow
this idiom. We present a programming language SPL that encapsulates this de-
sign pattern. SPL extends simplified form of sequential Java to which we add the
capability of making asynchronous method invocations in addition to the stan-
dard synchronous method calls and the ability to execute asynchronous methods
in threads atomically and concurrently. Our main result shows that the control
state reachability problem for finite SPL programs is decidable. Therefore, such
multithreaded programs can be model checked using the counterexample guided
abstraction-refinement framework.

1 Introduction

Multithreaded programming is often used in software as it leads to reduced latency,
improved response times of interactive applications, and more optimal use of process-
ing power. Multithreaded programming also allows an application to progress even if
one thread is blocked for an I/O operation. However, writing correct programs that use
multiple threads is notoriously difficult, especially in the presence of a shared muta-
ble memory. Since threads can interleave, there can be unintended interference through
concurrent access of shared data and result in software errors due to data race and atom-
icity violations.

Therefore, programmers writing multithreaded code, often adhere to a design idiom
where the computational problem is broken up into tasks which are then assumed to
be finished asynchronously, concurrently, and atomically. Specifically, threads during
their execution may send tasks or events or asynchronous messages to other threads. If
a thread is busy completing a task, the messages sent to it get added to a pool of tasks
associated with the thread. When the thread has completed the current task, it takes out
a task from its pending pool and starts processing it concurrently with other threads.
If the pool is empty the thread waits for a new task or event or message. Even though
these asynchronous tasks are executed concurrently on different threads, an underlying
assumption is that these tasks will be executed atomically. This is often ensured through
various synchronization primitives, such as locks, mutexes, semaphores, etc.

For example, in the Swing/AWT subsystem of Java, a non-GUI thread is not al-
lowed to make any direct changes to the user interface represented by a Swing
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object. Instead such a thread submits the request to the EventQueue by calling
SwingUtilities.invokeLater(runnable). The thread associated with the
Swing event queue handles these requests one by one atomically. This ensures that the
user interface operations are performed in a non-interfering way and the user interface
has a consistent state and look. Another context where this design paradigm is widely
prevalent is multithreaded web servers. When a page request is sent to a web server,
the web server posts the request to a request queue. If there is a free thread in the finite
thread pool of the web server, the free thread removes a request from the request queue
and starts processing the request. The use of threads ensures that multiple requests to
the web-server can be served concurrently. Moreover, synchronization primitives are
used to ensure that the threads do not interfere with each other. Another application
area where this paradigm is used is embedded software which is naturally event-driven.
Finally, multithreaded transaction servers for databases also view transactions as asyn-
chronous requests that are served by the different threads of the server concurrently.
Since requests in this context are transactions, the server ensures that the service of a
transaction satisfies the ACID (atomicity, consistency, isolation, durability) property.

The prevalence of this design idiom has also been observed by Allen Holub [17] in
his book “Taming Java Threads”. In this book, Holub points out that programmers clas-
sify method invocations or messages into two categories: synchronous messages and
asynchronous messages. The handler for synchronous messages doesn’t return until the
processing of the message is complete. On the other hand, asynchronous messages are
processed possibly by a different thread in the background some time after the message
is received. However, the handler for asynchronous messages returns immediately, long
before the message is processed.

In this paper, we investigate the verification of programs written adhering to this
design principle. We introduce a simple programming language, called SPL, that en-
capsulates this design goal. It is a simplified form of sequential Java to which we add
the capability of making asynchronous method invocations in addition to the standard
synchronous method calls and the ability to dynamically create threads. We define its
semantics in terms of concurrently executing threads. We then observe that the require-
ment that asynchronous methods execute atomically, allows us to reason about the pro-
gram using a new semantics wherein the threads service these asynchronous method
invocations serially.

The analysis of SPL programs with respect to the serialized semantics can then pro-
ceed by following the popular methodology of software model checking [29,2,15],
where the program is first automatically abstracted using boolean predicates into one
that has finitely many global states, and the abstracted program is then model checked.
The results of the model checking are then used to either demonstrate a bug/correctness
of the program, or used to refine the abstraction.

The success of the software model checking framework depends upon the model
checking problem for SPL programs with finitely many global states being decidable.
We first observe that the serial semantics ensures that the local stack of at most one
thread is non-empty at any time during the execution; the semantics of such programs
can thus be defined using only one stack. We introduce multi-set pushdown systems
(MPDS) to model such finite SPL programs. MPDSs have finitely many control states,
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one unbounded stack to execute recursive, synchronous methods, and one unbounded
bag to store the asynchronous method invocations. The main restriction that is imposed
on such systems is that messages from the bag be serviced only when the stack is empty,
a consequence of our atomicity requirements. Our main result is that the problem of
control state reachability of MPDSs is decidable, thus demonstrating that SPL programs
can be analyzed in the counterexample guided abstraction-refinement framework.

The rest of the paper is organized as follows. Next, we discuss closely related work
and place our results in context. Section 2 introduces notation, definitions and classical
results used in proving our results. The simple parallel language (SPL) for multithreaded
programming is presented along with its semantics in Section 3. We investigate the
verification problem in Section 4 and conclude by giving a lower bound. Due to lack of
space, we defer some of the proofs to [31].

Related Work. Model-checking algorithms and tools [29,2,15] for single-threaded
programs with procedures based on predicate abstraction have been developed. These
model checkers use the fact that the reachable configurations of pushdown systems
are regular [1,13]. Ramalingam [28] showed that verification of concurrent boolean
programs is undecidable. As a consequence, approximate analysis techniques that over-
approximate [4] and under-approximate [26,3] the reachable states have been consid-
ered, as have semi-decision procedures [25]. Note that the algorithm in [25] can be
shown to terminate if the whole execution of a thread is assumed to be a transaction.
Other techniques [7,16,8] try verifying each thread compositionally, by automatically
abstracting the environment. Finally, the KISS checker [27] for concurrent programs
simulates the executions of a concurrent program by the executions of a sequential pro-
gram, where the various threads of the concurrent program are scheduled by the single
stack of the sequential program. It is worth mentioning [27] first proposed the use of a
single stack to model executions of multithreaded software. Though complete, the KISS
checker is not sound.

There has also been considerable effort in characterizing concurrent systems with
finitely many global states for which the reachability analysis is unknown to be decid-
able. Starting from the work of Caucal [6] and Moller [22], where purely sequential
and purely parallel processes were considered, hierarchies of systems have been de-
fined. Mayr [21] gave many decidability and undecidability results based on a unified
framework. Among the models that allow both recursion and dynamic thread creation,
most disallow any form of synchronization between the threads [11,30,20,23]. More
recently, the model of constrained dynamic pushdown networks (CDPN) [5] was intro-
duced which allowed for thread creation and limited forms of synchronization. CDPNs
have a more sophisticated means to synchronize, but they limit synchronization only be-
tween a parent thread and its descendants. Our model of MPDS, allows dynamic thread
creation and limits context switches to happen only when asynchronous methods have
finished execution. Thus, MPDSs and CDPNs are incomparable and apply to different
multi-threaded programs.

2 Preliminaries

Multi-sets and Strings. Given a finite set Σ, the collection of all finite multi-sets with
elements in Σ will be denoted by Mω[Σ]. We say a ∈M if a is an element of multi-set
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M . For multi-sets M and M ′, M∪M ′ is the multi-set union of M and M ′, and M \M ′

the multi-set difference between M and M ′. We use ∅ to denote the empty multi-set.
Recall that Σ∗ is the collection of all finite strings over the alphabet Σ, with ε being
the empty string. Given two finite strings w and w′, we will denote their concatenation
by ww′. For a string w, M(w) will denote the multi-set formed from the symbols of w.
For example, if w = aaba, then M(w) = {a, a, a, b}. Finally, for L ⊆ Σ∗, M(L) =
{M(w) | w ∈ L}.
Well-quasi-orderings. Recall that a quasi-ordering≤ over a set X , is a binary relation
that is reflexive and transitive. Given a quasi-ordering≤, an upward closed set U ⊆ X
is a set such that if x ∈ U and x ≤ y then y ∈ U . For a set S ⊆ X , the smallest upward
closed set containing S will be denoted by CL(S), i.e., CL(S) = {x | ∃y ∈ S. y ≤ x}.
For a set S, the minimal elements in S is MIN(S) = {x | ∀y ∈ S. y �≤ x}.

A quasi-ordering ≤ over X is said to be a well-quasi-ordering (wqo) if for any
infinite sequence x1, x2, x3, . . . of elements in X , there exist indices i, j such that
i < j and xi ≤ xj . We now recall some well-known observations about well-quasi-
orderings [18,12].

Proposition 1. For a wqo ≤ and any set S ⊆ X , MIN(S) is finite.

Proposition 2. For a wqo ≤, any infinite increasing sequence U0 ⊆ U1 ⊆ U2 ⊆ · · ·
of upward closed sets eventually stabilizes, i.e., there is a k ∈ N such that for all i ≥ k
Ui = Uk.

Pushdown Systems. A pushdown system (PDS) is P = (Q,Γ, δ, q0, γ0), where Q is
a finite set of states, Γ is a finite set of stack alphabets, q0 ∈ Q is the initial state,
γ0 ∈ Γ is the initial stack configuration, and δ ⊆ (Q× Γ )× (Q× Γ ∗) is the transition
relation. The execution of a PDS can be described in terms of a transition system over
configurations, which are (q, w) ∈ Q× Γ ∗. We say (q1, w1γ) −→ (q2, w1w2) if there
is a transition ((q1, γ), (q2, w2)) ∈ δ. We say a configuration (q, w) is reachable iff
(q0, γ0) −→∗ (q, w), where −→∗ is the reflexive, transitive closure of −→, and that a
control state q is reachable iff (q, w) is reachable for some w ∈ Γ ∗. It is well-known
that the problem of control state reachability is decidable (see [13,1]); this is the content
of the next theorem.

Theorem 1. Given a PDS P , checking if a control state q is reachable is decidable in
O(n3) time, where n is the size of the PDS P .

3 Programming Language

We describe a simple parallel language SPL, which captures the essential concepts of
multithreaded programs with asynchronous atomic methods. The SPL language is a
simplified form of the sequential Java language. Similar to Java, the SPL language sup-
ports objects. In addition to definition of classes, we allow the definition of a special
type called thread. Instances of a class is called an object and instances of a thread is
called a thread object. A thread of control is associated with every thread object. The
objects in SPL behave similarly as in Java. A method invocation of an object is syn-
chronous and its execution is carried out using a stack. However, for thread objects we



304 K. Sen and M. Viswanathan

introduce a new semantics for method invocation. Specifically, we assume that an invo-
cation of a method of a thread object is asynchronous and atomic. If a thread of control
invokes a method of a thread object, then the method call returns immediately and the
call is added as a message to a global message bag. If the thread of control associated
with the callee object is not busy processing a message, then it takes out a message
(i.e., a call to one of its methods) targeted to it from the global bag and starts executing
it atomically and concurrently with other threads. Note that in an execution of a SPL

program, several threads can execute concurrently. The atomicity condition requires
that for every possible interleaved execution of a SPL program, there exists an equiva-
lent execution with the same overall behavior where the methods of the thread objects
are executed serially, that is, the execution of a thread object method is not interleaved
with actions of other threads. This particular restriction ensures that the execution of a
method of a thread object is not interfered by other threads through shared objects.

P ::= defn∗ (new T ).md(c∗)
defn ::= class C {field∗ meth1∗} | thread T {field∗ meth2∗}
field ::= type fd

meth1 ::= (type | void) md(arg∗){local∗ stmt∗}
meth2 ::= void md(arg∗){local∗ stmt∗}

stmt ::= l : S;
S ::= x = e | x.fd = y | x.md(y∗) | if x goto l′ | return x
e ::= new type | null | this | c | x | x.fd | x.md(y∗) | f(x∗)

arg ::= type x
local ::= type y
type ::= C | T | primitive types such as int, float, boolean, etc.

l ::= label
x, y ::= variable name

C ::= class name
T ::= thread name
fd ::= a field name

md ::= a method name
f ::= pre-defined functions such as + , -, *, /, etc.
c ::= constants such as 1, 2, true, etc.

Fig. 1. SPL Syntax

3.1 Syntax of SPL

The formal syntax of SPL is given in Figure 1. A program in SPL consists of a sequence
of definitions of classes and threads followed by an asynchronous method invocation
of a newly created thread object. Observe that the execution of a statement can access at
most one shared memory location. This allows us to treat the execution of a statement as
an atomic operation. Branching and looping constructs are imitated using the statement
if x goto l, where l is the label of a statement in the method that contains the if statement.
We assume that a program in SPL is properly typed.
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3.2 Semantics of SPL

In the semantics of SPL, we assume that actions of multiple threads can interleave in any
way; however, we impose the restriction that the execution of an asynchronous method
must be atomic. We call this semantics the concurrent semantics of SPL.

The concurrent semantics of SPL is given by augmenting more rules to the standard
semantics of Java. Instantaneous snapshot of the execution of a SPL program is called
a configuration. Formally, a configuration C is a 3-tuple (q, S,M), where

– q is the global state containing the value of every object and thread object currently
in use in the program and the program counter of each thread associated with every
thread object.

– S is a map from a thread object to an execution stack. The stack for each thread
is used in the usual way to execute an asynchronous method sequentially. Note
that the invocation of an object method is always synchronous and the method is
executed by the caller thread by creating a new stack frame in its stack.

– M is a multi-set or bag of messages. Whenever, a thread invokes a method of
a thread object, the target thread object, the method name, and the values of the
arguments passed to the method are encoded into a message and placed in the bag.
We use M ∪ e to represent the multi-set obtained by adding the element e to the
multi-set M .

Let C be set of all configurations. We define a transition relation C �s
t C′ (see Figure 2)

for the concurrent semantics. Such a relation represents the transition from the config-
uration C to C′ due to the execution of the statement s by the thread t. Henceforth, if
t is a thread object, then we will also use t to denote the thread of control associated
with the thread t. The transition relations are described abstractly using a number of
functions described, informally, below:

– THREADS(q) returns the set of thread objects that are created in the execution.
– GETNEXTSTATEMENT(q, t) returns the next statement to be executed by the thread

t. The function uses the value of the program counter found in q for the thread t
to determine the next statement. If the thread t is not executing any asynchronous
method, then the function returns⊥.

– EXECUTENEXTSTATEMENT(q, S(t), t) executes the next statement of the thread t
following the standard sequential Java semantics and returns a pair containing the
updated global state q′ and the updated map S′ in which the stack S′(t) has possibly
been modified. The program counter of the thread t is also updated appropriately
in the global state q′.

– SETNEXTSTATEMENT(q, S(t), t, t.md(v∗)), where v denotes a value, creates a
stack frame in the stack S(t) to prepare for the invocation of the method md and
sets the program counter of t in q to the first statement of the method md of t. The
updated global state q′ and the map S′ is returned by the function.

– SKIPNEXTSTATEMENT(q, t) updates the program counter in q of the thread t, such
that the thread t skips the execution of the next statement.

– [[x]]S(t) returns the value of the local variable x, which is obtained from the topmost
stack frame of the stack S(t).
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[JAVA SEMANTICS]

∃t ∈ THREADS(q).(s = GETNEXTSTATEMENT(q, t)
∧ s �= ⊥ ∧ ¬(s = x.md(y∗) ∧ [[x]]S(t) ∈ THREADS(q)))
∧ (q′, S′) = EXECUTENEXTSTATEMENT(q, S(t), t)

(q, S, M) �s
t (q′, S′, M)

[CONSUME MESSAGE]

∃t ∈ THREADS(q).(GETNEXTSTATEMENT(q, t) = ⊥
∧ (q′, S′) = SETNEXTSTATEMENT(q, S(t), t, t.md(v∗)))

(q, S, M ∪ {t.md(v∗)}) �⊥
t (q′, S′, M)

[SEND MESSAGE]

∃t ∈ THREADS(q).(s = GETNEXTSTATEMENT(q, t)
∧ (s = x.md(y∗) ∧ [[x]]S(t) ∈ THREADS(q)))

(q, S, M) �s
t (SKIPNEXTSTATEMENT(q, t), S, M ∪ {[[x]]S(t).md([[y]]∗S(t))})

Fig. 2. Concurrent Semantics

The initial configuration of a SPL program defn∗ (new T ).md(c∗), given by C0 =
(q0, S0,M0), where q0 contains the thread object, say t, created by the new T expres-
sion, S0 maps t to an empty stack, and M0 contains the only message t.md(c∗). The
program counter of t in q0 is undefined. Thus the CONSUME MESSAGE is the only rule
applicable to the initial configuration.

Atomicity Requirement. The concurrent semantics of SPL allows arbitrary interleav-
ing of multiple threads. However, we want to impose the restriction on possible inter-
leavings so that the execution of each asynchronous method is atomic. We next describe
this atomicity requirement.

We abstractly represent a finite execution of the form C0 �s1
t1 C1 �s2

t2
C2 · · ·Cn−1 �sn

tn
Cn of a SPL program following the concurrent semantics

by the sequence τ =�s1
t1 �s2

t2 · · · �sn
tn

Cn. We use MSET(τ) to represent
the multi-set {(t1, s1), (t2, s2), . . . , (tn, sn)}. We restrict the set of executions that
can be exhibited by a SPL program following the concurrent semantics by im-
posing the atomicity requirement on asynchronous method executions as follows.
If a finite execution τ =�s1

t1 �s2
t2 · · · �sn

tn
(q, S,M) be such that ∀t ∈

THREADS(q).(GETNEXTSTATEMENT(q, t) = ⊥), then τ is said to be a valid exe-
cution of the program following the concurrent semantics iff the following holds. There

exists a finite execution τ ′ =�s′
1

t′
1
�s′

2
t′
2
· · · �s′

n

t′
n

(q′, S′,M ′) of the program following
the concurrent semantics such that
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1. (q, S,M) = (q′, S′,M ′),
2. MSET(τ) = MSET(τ ′),
3. if for any two elements (t, s) and (t, s′) in the MSET(τ), �s

t appears before �s′
t

in the sequence τ , then �s
t also appears before �s′

t in the sequence τ ′, and
4. in the sequence τ ′, all transitions after a �⊥

t and before any �⊥
t′′ are of the form

�s
t′ such that t = t′ and s �= ⊥.

The above requirement ensures that the execution of an asynchronous method by a
thread is atomic. In general, it has been shown that such atomicity requirements for
multithreaded programs can be guaranteed statically by using a type system for atom-
icity [14] or dynamically through rollback [32]. We assume that the language SPL is
augmented with an atomicity type system or implemented in a way such that an execu-
tion of a program in the language following the concurrent semantics is always valid.

Serialized Semantics. To effectively reason about the behavior of a SPL, we introduce
the serialized semantics of SPL and show that for the reasoning purpose we can only
consider the serialized semantics of SPL.

Similar to the concurrent semantics, in the serialized semantics, we assume that there
is global state q, a global message bag or a multi-set of messages M , and a map S from
thread objects to stacks. Then the following happens in a loop. If there is a message
(i.e., an asynchronous method call along with values for its arguments) for a thread in
the bag, then the thread removes the message from the bag and executes the method in
the message. No other thread is allowed to interleave their executions till the execution
of the method terminates. During the execution of the method, the executing thread can
call asynchronous methods of any thread object. Those calls along with the values for
their arguments are placed in the bag as messages. Note that a non-deterministic choice
is associated with the picking of a message from the bag.

We define a transition relation C −→s
t C′ for the serialized semantics. The rules

for transition in the serialized semantics is same as that in the concurrent semantics
except for the rule [CONSUME MESSAGE] (see Figure 3). In the serialized semantics,
the rule is applicable if none of the threads is executing an asynchronous method and
there is a message in the bag. In the concurrent semantics, the rule is applicable if
there exists a thread, which is not executing an asynchronous method, and there is a
message for the thread in the bag. Note that the atomicity requirement trivially holds in
the case of serialized semantics. We represent a finite execution of the form C0 −→s1

t1
C1 −→s2

t2 C2 · · ·Cn−1 −→sn
tn

Cn following the serialized semantics by the sequence
−→s1

t1−→
s2
t2 · · · −→

sn
tn

Cn.

[CONSUME MESSAGE]

∀t ∈ THREADS(q).(GETNEXTSTATEMENT(q, t) = ⊥)
∧ (q′, S′) = SETNEXTSTATEMENT(q, S(t′), t′, t′.md(v∗))

(q, S, M ∪ {t′.md(v∗)}) −→⊥
t′ (q′, S′, M)

Fig. 3. Serialized Semantics
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Given that a program in SPL always exhibits valid executions following the con-
current semantics, the next result shows that any execution of the program following
the concurrent semantics is equivalent to an execution of the program following the
serialized semantics.

Proposition 3. For any program execution �s1
t1 �s2

t2 · · · �sn
tn

(q, S,M) where
∀t ∈ THREADS(q).GETNEXTSTATEMENT(q, t) = ⊥, there is a serialized execution

−→s′
1

t′
1
−→s′

2
t′
2
· · · −→s′

n

t′
n

(q′, S′,M ′) such that (q, S,M) = (q′, S′,M ′).

The above result allows us to treat any valid execution of a program in SPL following
the concurrent semantics in terms of an equivalent execution following the serialized
semantics. Reasoning about a serialized execution is easier because in such an execution
we have to consider a sequence of method invocations by different threads, where the
execution of each method can be reasoned sequentially. In fact, in the next section we
show that reachability of finite programs in SPL is decidable. It is worth mentioning that
the reachability of a program in SPL following the concurrent semantics is not decidable
if we do not impose the atomicity restriction.

4 Verifying SPL Programs

In this section we consider the problem of verifying SPL programs. Recall that for
SPL programs restricted to valid concurrent executions, we observed (in Section 3.2)
that reasoning about serialized executions is sufficient when answering questions about
global state reachability. Further, during a serialized execution of a SPL program, at
any point only one thread executes an asynchronous method up to completion without
interleaving with any other thread. This implies that the stack of at most one thread is
non-empty at any point in a serialized execution. As a result, we can define the (serial-
ized) semantics using only one stack which is re-used by every active thread.

The verification of serialized SPL programs can proceed by following the familiar
methodology of abstracting SPL programs, model checking, checking the validity of
a counterexample, and then refining the abstraction if the counterexample if found to
be invalid. Using standard predicate abstraction techniques, an SPL program over ar-
bitrary data types can be abstracted into an SPL program all of whose variables are
boolean. The steps of checking counterexamples and refining, again can be performed
using well-known algorithms. In this section, we therefore focus our attention on model
checking finite SPL programs. We first define the formal model of multi-set pushdown
systems (MPDS) that have finitely many global states, one stack to execute recursive,
synchronous method calls, and one message bag to store pending asynchronous method
calls. Such MPDSs define the (serialized) semantics of finite SPL programs. We then
show that the control state reachability problem for MPDSs is decidable. Finally, we
conclude this section by showing that the control state reachability problem has a lower
bound of EXPSPACE.

4.1 Multi-set Pushdown Systems

We present the formal definition and semantics of multi-set pushdown systems.
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Definition 1. A multi-set pushdown system (MPDS) is a tuple A = (Q,Γ,∆, q0, γ0),
where Q is a finite set of global states, Γ is a finite set of stack and multi-set symbols,
∆ ⊆ (Q×Γ )× (Q×Γ ∗×Γ ) is the transition relation, q0 ∈ Q is the initial state, and
γ0 ∈ Γ is the initial method call.

We let q to range over Q, γ to range over Γ , w to range over Γ ∗, M to range
over Mω[Γ ]. The semantics of an MPDS A is defined in terms of a transition
system as follows. A configuration C of A is a tuple (q, w,M) ∈ Q × Γ ∗ ×
Mω[Γ ]. The initial configuration of A is (q0, ε, {γ0}). The transition relation −→
on configurations is −→1 ∪ −→2, where −→1 and −→2 are defined as follows:
(q, wγ,M) −→1 (q′, ww′,M ∪ {γ′}) if and only if ((q, γ), (q′, w′, γ′)) ∈ ∆; and
(q, ε,M ∪ {γ}) −→2 (q, γ,M). Observe that −→1 corresponds to the transition rules
[JAVA SEMANTICS] and [SEND MESSAGE] and−→2 corresponds to the transition rule
[CONSUME MESSAGE] in Figure 3. Also note that there is no transition from (q, ε, ∅)
for any q ∈ Q; therefore, A halts when it reaches a configuration of the form (q, ε, ∅).
Finally, −→∗,−→∗

1 denote the reflexive, transitive closure of −→ and −→1, respec-
tively.

Definition 2. A configuration (q, w,M) is said to be reachable iff (q0, ε, {γ0}) −→∗

(q, w,M). A control state q is said to be reachable if for some w ∈ Γ ∗ and M ∈
Mω[Γ ], (q, w,M) is reachable.

4.2 Control State Reachability in MPDSs

We are interested in verifying if a certain global state (or set of global states) of a finite
SPL program is reachable. This is the same as checking if a certain control state (or set
of control states) is reachable in the MPDS associated with the SPL program. Let us fix
an MPDSA = (Q,Γ,∆, q0, γ0). Recall that a control state q is reachable if for some w
and M , (q0, ε, {γ0}) −→∗ (q, w,M). That means for some q1, q2, . . . qn, γ1, γ2 . . . γn

and M1,M2, . . .Mn, we have

(q0, ε, {γ0}) −→2 (q0, γ0, ∅) −→∗
1 (q1, ε, M1 ∪ {γ1}) −→2 (q1, γ1, M1) −→∗

1 (q2, ε, M2 ∪ {γ2})
−→2 (q2, γ2, M2) · · · −→∗

1 (qn, ε, Mn ∪ {γn}) −→2 (qn, γn, Mn) −→∗
1 (q, w, M)

Thus, the problem of checking whether a control state q is reachable, conve-
niently breaks up into two parts: for some q′, w, γ,M and M ′, check whether
(q0, ε, {γ0}) −→∗ (q′, ε,M ′ ∪ {γ}) and whether (q′, γ,M ′) −→∗

1 (q, w,M). Fur-
ther observe that (q′, γ, ∅) −→∗

1 (q, w,M) for some w and M iff (q′, γ,M ′) −→∗
1

(q, w,M ′ ∪M) for every M ′. Hence, we can further simplify our tasks as follows. For
some q′ and γ, check whether (q0, ε, {γ0}) −→∗ (q′, ε,M ′ ∪ {γ}) for M ′ and whether
(q′, γ, ∅) −→∗

1 (q, w,M) for some M and w. We will call the first coverability prob-
lem and the second control state reachability without context switches problem. We will
treat these problems one by one and show each to be decidable.

Reachability Without Context Switches. We will first consider the problem of check-
ing if for some w,M , (q′, γ, ∅) −→∗

1 (q, w,M). Observe that since the messages in
the bag do not play a role in the transition −→1, we can ignore the asynchronous
method calls that are generated during a transition in order to decide this problem.
Thus, this problem can be reduced to checking reachability in pushdown systems. More
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formally, consider the pushdown system P = (Q′, Γ ′, δ′, q′0, γ
′
0) where Q′ = Q the

states of the MPDS A, Γ ′ = Γ , q′0 = q′, γ′
0 = γ, and δ′ is defined as follows:

((q1, γ1), (q2, w2)) ∈ δ iff ((q1, γ1), (q2, w2, γ2)) ∈ ∆ (transition relation of A) for
some γ2. The MPDS A and the PDS P are related as follows.

Proposition 4. A configuration (q1, w1) is reachable in P iff (q′, γ, ∅) −→∗
1

(q1, w1,M) for some M .

The proof is straightforward and skipped in the interests of space. Hence based on
Proposition 4 and Theorem 1, we can conclude that the control state reachability prob-
lem, without context switches is decidable in polynomial time for MPDSs.

Coverability. We now study the problem of coverability. Recall that, given a state q′

and a stack symbol γ, we need to decide if for some M ′ ∈ Mω[Γ ], (q0, ε, {γ0}) −→∗

(q′, ε,M ′ ∪ {γ}). We will introduce a new model of regular multi-set systems (RMS),
which are slight generalization of multi-set automata, and show that the coverability
problem can be reduced to a reachability problem on RMS. We will then show that the
reachability problem for RMSs is decidable.

Definition 3. A regular multi-set system (RMS) is a tupleR = (Q,Γ, δ, q0, γ0), where
Q is the set of the states ofR, Γ is the multi-set alphabet, q0 ∈ Q is the initial state, and
δ ⊆ ((Q× Γ )× (Q× L)) is the transition relation with L ⊆ Γ ∗ being a regular lan-
guage. A configuration is the pair (q,M), where q ∈ Q and M ∈Mω[Γ ] and the initial
configuration is (q0, {γ0}). The semantics of a RMS is given by the transition relation
↪→ over configurations. We say (q,M∪{γ}) ↪→ (q′,M ′) iff there is ((q, γ), (q′, L)) ∈ δ
and w ∈ L such that M ′ = (M ∪M(w)).

Regular multi-set systems are a generalization of multi-set automata, where instead of
a transition adding the same multi-set to a bag every time, an RMS transition chooses a
multi-set from among a collection described by a regular language and adds to the bag.

We will consider reachability problems for RMSs. A pair (q, γ) is said to be reach-
able iff there is some M such that (q0, {γ0}) ↪→∗ (q,M ∪ {γ}). We will show that the
coverability problem of MPDS can be reduced to such a reachability problem. But for
that we need to make an important observation about MPDSs.

Proposition 5. For MPDS A, and any states q1, q2 and stack symbol γ1 define
M(q1, q2, γ1) = {M | (q1, γ1, ∅) −→∗

1 (q2, ε,M)}. There is a regular language
L(q1, q2, γ1) such that M(L(q1, q2, γ1)) =M(q1, q2, γ1).

Proof. Consider the following pushdown automaton P = (Q′, Σ, Γ ′, δ, q′0, γ
′
0, F )

where Q′ = Q the states of A, input alphabet Σ = Γ , stack alphabet Γ ′ = Γ , ini-
tial state q′0 = q1, initial stack configuration γ′

0 = γ1, F = {q2}, and the transition
relation δ ⊆ Q × Γ × Σ × Q × Γ ∗ is defined as follows: ((p1, γ

′
1), γ

′
2, (p2, w)) ∈ δ

iff ((p1, γ
′
1), (p2, w, γ

′
2)) ∈ ∆. In other words, P has a transition on input γ′

2 exactly
if the corresponding transition in MPDS A asynchronously calls γ′

2. Let L(P) be the
language accepted by P simultaneously by empty stack and final state. It is easy to see
that M(L(P)) =M(q1, q2, γ1).

We now recall an important observation due to Parikh [24].
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Theorem 2 (Parikh). For an context-free language L1 there is a regular language L2
such that M(L1) = M(L2). Moreover, given a PDA recognizing L1 we can effectively
construct an automaton for L2.

Hence, there is a regular language L(q1, q2, γ1) such that M(L(q1, q2, γ1)) =
M(L(P)) =M(q1, q2, γ1). ��

Lemma 1. Given an MPDS A, there is an RMS R with the same states and multi-set
alphabet such that (q0, ε, {γ0}) −→∗ (q, ε,M ∪ {γ}) for any M in the MPDS iff (q, γ)
is reachable in R.

From Lemma 1 we observe that the coverability problem of MPDS is decidable pro-
vided checking if (q, γ) is reached in an RMS is decidable. We, therefore, focus on the
reachability problem of RMSs. We will show that this problem is decidable by using
properties about well-quasi-orderings (wqo) and performing backward reachability as
in [12].

For the rest of this section let us fix an RMS R = (Q,Γ, δ, q0, γ0). Let us define an
ordering ≤ over the configurations of a RMS as follows: (q,M) ≤ (q′,M ′) iff q = q′

and M ⊆M ′. An immediate consequence of Dickson’s Lemma [9] is the fact that this
ordering is a wqo. For a set of configurationsS, define PRE(S) = {(q,M) |∃(q′,M ′) ∈
S.(q,M) ↪→ (q′,M ′)} to be the set of configurations that can reach some configuration
in S in one step. Finally, let PRE∗(S) =

⋃
i∈N

PREi(S) be the set of all configurations
that can reach some configuration in S in finitely many steps.

Recall that to check if (q, γ) is reachable, we need to see if some configuration in
V = CL({(q, {γ})}) is reachable from the initial configuration of the RMS. Hence, we
will compute PRE∗(V ) and check if (q0, {γ0}) ∈ PRE∗(V ). Observe that in an RMS,
if (q1,M1) ↪→ (q2,M2) then for every M , (q1,M1 ∪ M) ↪→ (q2,M2 ∪ M). Thus,
for an upward closed set U , PRE(U) is also upward closed. This suggests the following
algorithm. Compute progressively the sets Ui, whereU0 = V andUi+1 = PRE(Ui)∪Ui.
The sequence U0, U1, . . . is an increasing sequence of upward closed sets, and so by
Proposition 2 we know that this sequence stabilizes in finitely many iterations.

To prove decidability of the reachability problem, all we need to show is that we can
compute a representation of Ui+1, given a representation of Ui. We can represent an
upward closed set U by its minimal elements MIN(U) which will be finite (by Proposi-
tion 1). Thus, we need to describe how to compute MIN(Ui+1) from MIN(Ui).

Consider any upward closed set U and (q,M) ∈ MIN(U). For a transition tq =
((q′, γ), (q, L)) ∈ δ (whose destination is state q) and w ∈ L define MIN(PREw

tq
(U))

to be (q′, (M \M(w)) ∪ {γ}). In other words, MIN(PREw
tq

(U)) is the least configura-
tion that can make a transition using tq by pushing M(w) elements into the bag and
reach a configuration in U . Let S = {MIN(PREw

tq
(U)) | for every w ∈ L, (q,M) ∈

MIN(U) and transition tq} Our first observation is that S can be represented using reg-
ular languages.

Lemma 2. There are regular languages Lq such that S =
⋃

q∈Q{q} ×M(Lq).

Finally, we show that given an automaton representation of S, we can compute
MIN(PRE(U)). From the definition of S it follows that CL(S) = PRE(U). Thus
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MIN(PRE(U)) = MIN(S). Our next observation is that given an automaton representa-
tion of S, MIN(S) is computable.

Lemma 3. Given finite automata Aq for each Lq such that S =
⋃

q∈Q{q} ×M(Lq),
MIN(S) is computable.

4.3 EXPSPACE Lower Bound

We now show that the control state reachability problem is, in fact, computationally very
difficult; we prove the problem is EXPSPACE-hard. The proof relies on ideas for show-
ing the hardness of the reachability problem of Petri Nets due to Lipton [19]. Therefore,
we first recall definitions needed to state Lipton’s observation, and then sketch how they
can be used to prove the lower bound.

Lipton’s result can be seen as showing a lower bound for halting problem of spe-
cial programs called net programs [10]. A net program is a finite sequence of labeled
commands that manipulate finitely many counter variables. Each statement of a net
program is labeled. The basic commands that constitute a net program are as follows:
incrementing a counter x (� : x = x + 1); decrementing a counter x (� : x = x − 1);
unconditional branching (� : goto �1); nondeterministic branching (� : goto �1 or goto
�2); subroutine call (� : gosub �1); return from subroutine (� : return); and halt (� : halt).
So a net program is a sequence of distinctly labeled commands such that the targets of
goto and gosub statements are correct labels. Lipton’s result applies to well-structured
net programs, which are programs that can be decomposed into a main program that
only calls level 1 subroutines, which in turn only call level 2 subroutines, etc., and the
jump commands in a subroutine only have other commands of the same subroutine as
target. In terms of such programs Lipton’s result can be stated as follows.

Theorem 3 (Lipton [19,10]). Given a well-structured net program P the problem of
checking if some computation ends in the statement halt is EXPSPACE-hard.

We will prove an EXPSPACE lower bound for the control state reachability of MPDSs
by showing that every well-structured net program can be simulated by an MPDS. More
precisely, for any well-structured net program P , there is an MPDS A(P ) such that
some computation of P halts if and only if a special state qhalt is reachable in A(P ).
Unfortunately, due to lack of space, we cannot give all the details of the construction
of A(P ); instead we will only sketch the main ideas. Corresponding to each labeled
statement � : stmt, we will have a control state q�. For each variable x, there will be
a multi-set symbol x; the number of such symbols n the bag will denote the current
value of x. The stack at all times will have only one symbol, which will be popped at
times to remove a message from the multi-set store. We will now sketch the translation
of each of the basic commands. The goto statements just involve a change of control
state without changing either the stack or the multi-set store. Incrementing x involves
making a new asynchronous call to x (i.e., adding x to the multi-set). Decrementing x
is a two step process: first we pop the stack (to get to an empty stack) and reach a new
control state q′. State q′ has the property that if the new method serviced (i.e., removed
from multi-set and put on stack) is anything other than x, then it simply makes the same
asynchronous call again, pops the stack and goes back to q′; on the other hand if the
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new method to be serviced is x, it simply new moves to the control state corresponding
to the next statement. The idea in simulating subroutine calls is to transfer control to the
control state of the subroutine, and then at the same time make an asynchronous call
that stores the return address. On a return, we do something similar to the decrement
step, to only service the message storing the return address; based on the return address
we go to the appropriate new control state. The resulting MPDS has the same order of
control states as the net program, and the stack alphabet is also of the same size as the
net program. Thus, based on all these observations, we have the following theorem.

Theorem 4. The control state reachability problem for MPDSs EXPSPACE-hard.
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Abstract. Atomicity is an important generic specification that assures
that a programmer can pretend blocks occur sequentially in any execu-
tion. We define a notion of atomicity based on causality. We model the
control flow of a program with threads using a Petri net that naturally
abstracts data, and faithfully captures the independence and interaction
between threads. The causality between events in the partially ordered
executions of the Petri net is used to define the notion of causal atomic-
ity. We show that causal atomicity is a robust notion that many correct
programs adopt, and show how we can effectively check causal atomicity
using Petri net tools based on unfoldings, which exploit the concurrency
in the net to yield automatic partial-order reduction in the state-space.

1 Introduction

Programs with multiple threads are a common paradigm in concurrent pro-
gramming. Programming correctly with threads is particularly hard as one has
to consider the various interleavings of threads at run-time. Moreover, bugs that
manifest themselves because of interleavings are harder to detect using testing,
as they can be very infrequent in occurrence. A practical approach to program-
ming threads is to develop techniques that allow the programmer to specify and
verify disciplined interaction between threads.

The lack of race conditions is such a discipline; a race condition occurs when
two threads simultaneously access a global variable, and one of the accesses is
a write. Depending on when the write event gets scheduled, the program could
take very different paths, which is a cause of concern. While the lack of races does
seem to be a natural discipline to adhere to, it has been observed and argued
that it is not a strong enough condition [10].

A stronger1 discipline is to require methods or blocks of code to be atomic.
The general definition of atomicity is: a code block is atomic [10] if for every in-
terleaved execution of the program in which the code block is executed, there is an
equivalent run of the program where the code block is executed sequentially (with-
out interleaving with other threads). Intuitively, since for every interleaved exe-
cution t, there is an equivalent execution t′ where the block occurs sequentially,
� Research supported by ONR grant N00014-02-1-0715.
1 Atomicity is not a strictly stronger notion than race-freedom; see Figure 7 for an

example.
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if the block had a logical error making t incorrect, then t′ would be incorrect
as well, arguing that the error in the block was not because of its interleaving
with other threads. Consequently, a block being atomic greatly simplifies writ-
ing and understanding code: the programmer can pretend that the code block is
executed sequentially, which simplifies its correctness argument. Note that the
problem of checking atomicity of program blocks is obviously undecidable.

Atomicity is a well-argued principle of programming: in the database liter-
ature, it is known as serializability [6,19,2,1,21], and in the software analysis
literature, it has been argued that many errors in threaded code can be traced
back to blocks being non-atomic [10,9,7,23,13,8,22]. There has been extensive
work on detecting atomicity of program blocks: static analysis techniques that
use type-checking to detect transactions [15,10,9,23], where a transaction is a
strong notion that implies atomicity; dynamic analysis that checks atomicity of
tests of the program at run-time [8,22]; and model checking for atomicity where
a monitor that detects non-atomic blocks runs in parallel with the system, which
is then model checked [13,7].

In order to get effective algorithms, atomicity checkers aim for soundness
(i.e. if the tool reports a block to be atomic, then the block should indeed be
atomic), and the generic way to achieve this is to abstract the program in a
sound fashion, as well as define a sound notion of equivalence between abstract
traces. In other words, the equivalence relation between traces of the abstract
model should imply that the concrete traces represented by them are equivalent
as well.

While atomicity checkers in the literature do assure that their analyses are
sound, they do not define precisely the abstraction they use, nor define precisely
the notion of equivalence they assume. For example, static atomicity check-
ing using types are based on transactions (transactions imply atomicity), but
transactions require knowing what kind of “mover” each statement is, which is
achieved using a separate race-checking analysis (which again is not precisely
defined). The algorithm for checking for transactions is then implemented using
types, and again it is not argued whether given the classification of statements
as movers, the type-checking approach is complete or not. All in all, though
every step is sound, and the soundness of the whole algorithm is assured, the
precise abstraction and notion of equivalence used is not clear, making it hard
to evaluate and compare the formalisms.

The main contribution of this paper is a new notion of atomicity for programs
based on causality, and that has precise definitions of the abstraction mechanism
and the notion of equivalence between abstract runs. Given a program P with
multiple threads, we exhibit a clean control model of the program as a Petri
net [18,16]. This modeling is aimed at capturing control and abstracting away
the data values used in the program. Moreover, the Petri net explicitly captures
the independence of execution of threads, and the interaction mechanism of
the threads (using shared variables, locks, etc.). The model for the program is
independent of any notion of atomicity, and captures just the dependence and
independence of control in the threads of the program.
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This model of a Petri net generates, in a standard way, partially-ordered runs
of P that depict possible control interactions between threads [4]; we call these
partially-ordered runs the control traces of P . The partially ordered control
traces depict the set of events that have occurred and also define the causal
relation between these events (such a causal structure is not evident in the linear
runs of P ). Moreover, the Petri net model is such that if one linearization σ of a
partially ordered run Tr is feasible in the original program, then all linearizations
of the Tr are feasible in the concrete program as well and are equivalent to r (in
terms of the final state reached).

Causal atomicity is defined using the causal structure of the control traces
generated by the program. We consider two sequential executions of a program
to be equivalent if and only if they correspond to linearizations of the same
partially-ordered trace of the program. Causal atomicity reduces to a very simple
property on partially ordered traces: a block B of a thread is causally atomic
if there is no control trace of the program where an event of another thread
occurs causally after the beginning of B and causally before another event that
is within the same block B.

Our notion of causal atomicity is simple and yet powerful enough to cap-
ture common interaction disciplines in correct programs. Our notion is certainly
stronger than looking for patterns of transactions [15,10], and can handle pro-
grams that do not explicitly use locks.

Turning to algorithms for checking atomicity, we show how causal atomicity
can be checked using partial-order techniques based on unfoldings of Petri nets.
Our algorithm is sound and complete in checking for causal atomicity of the net.
Given a Petri net model of P with a block marked to be checked for atomicity,
we show how to reduce the problem of checking causal atomicity of P to a cov-
erability problem for an associated colored Petri net Q [14]. The latter problem
is decidable and there are several tools that can efficiently check coverability in
colored Petri nets. In particular, the tools that use unfolding techniques [17,5]
of nets are useful as they exploit the structure of the net to give automatic re-
duction in state-space (akin to partial-order reduction that has been exploited
in model checking concurrent systems).

Finally, we show that causal atomicity is a common paradigm in many pro-
grams by considering several examples. We report on experiments that reduce
checking causal atomicity to coverability, where the latter is solved using the
Pep tool (Programming Environment based on Petri nets) [12]. The experi-
ments show that causal atomicity lends itself to fast partial-order based model
checking.

When there is only one block that is being checked for atomicity, our notion of
atomicity is the same as the notion of serializability studied for database trans-
actions [11,1]. However, when there are multiple blocks, serializability demands
that for every execution, there is one execution where all the atomic blocks are
executed serially, while our notion demands that for every execution and every
block, there is some execution where that block occurs sequentially. We believe
our notion is more appropriate for threaded software. Figure 1 shows an example
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of a trace of a program with four threads and two blocks which intuitively ought
to be declared atomic. For instance, any pre-post condition of the block B (or
B′) that depends only on the variables used in the block holds on all interleaved
runs provided it holds in runs where the block is executed sequentially. Note
a program with such a trace would be declared non-serializable, but declared
causally atomic.

read(z)

read(t)

read(x)

read(y)

write(y)

write(x)

write(t)

write(z)

beginB beginB′

endB′endB

Fig. 1. Serializable but not causally atomic

While we believe the jury is still out
on which of these notions of atomic-
ity is useful and accurate for checking
programs, note that our contributions
hold equally well for serializability: we
can define a notion of serializability
using the causal edges in the Petri net
model and check for it using unfold-
ing algorithms (however, checking se-
rializability seems more complex than
checking causal atomicity).

The paper is structured as follows. Section 2 introduces a simple syntax for
a programming language with threads, and defines Petri nets and the partially
ordered traces they generate. Section 3 defines the modeling of a program as a
Petri net and defines causal atomicity based on the traces generated by this net.
Section 4 gives the generic translation of such a program model into a colored
Petri net, reducing causal atomicity to coverability. Section 5 gives experimental
results that show the efficacy of partial-order model checking tools in detecting
causal atomicity, and Section 6 contains concluding remarks.

2 Preliminaries

2.1 The Language for Programs

We base our formal development on the language SML (Simple Multithreaded
Language). Figure 2 presents the syntax of SML. The number of threads in an
SML program is fixed and preset. There are two kinds of variables: local and
global, respectively identified by the sets LVar and GVar. All variables that
appear at the definition list of the program are global and shared among all
threads. Any other variable that is used in a thread is assumed to be local to
the thread.

We assume that all variables are integers and are initialized to zero. We use
small letters (capital letters) to denote local (global, resp.) variables. Lock is a
global set of locks that the threads can use for synchronization purposes through
acquire and release primitives. The semantics of a program is the obvious one
and we do not define it formally.

begin and end primitives are used to mark the beginning and end of a block
that is intended to be checked for atomicity. The goal of the atomicity checker is
to check whether all such blocks are indeed atomic. Figure 5 shows two examples
of multithreaded programs written in SML.
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P ::= defn thlist (program)
thlist ::= null | stmt || thlist (thread list)
defn ::= int Y | lock l | defn ; defn (variable declaration)
stmt ::= x := e

| while (b) { stmt } | begin stmt end
| if (b) { stmt } else { stmt } | skip
| acquire(l) | release(l) | stmt ; stmt (statement)

e ::= i | x | Y | e + e | e ∗ e | e/e (expression)
b ::= true | false | e op e | b ∨ b | ¬b (boolean expression)

op ∈ {<,≤, >,≥, =, ! =}
x ∈ LVar, Y ∈ GVar, i ∈ Integer, l ∈ Lock

Fig. 2. SML syntax

2.2 Petri Nets and Traces

Definition 1. A Petri net is a triple N = (P, T, F ), where P is a set of places,
T (disjoint from P ) is a set of transitions, and F ⊆ (P × T ) ∪ (T × P ) is the
flow relation.

For a transition t of a (Petri) net, let •t = {p ∈ P |(p, t) ∈ F} denote its set of
pre-conditions and t• = {p ∈ P |(t, p) ∈ F} its set of post-conditions.

A marking of the net is a subset M of positions of P .2 A marked net is a
structure (N, Init), where N is a net and Init is an initial marking. A transition
t is enabled at a marking M if •t ⊆M . The transition relation is defined on the set
of markings: M t−→M ′ if a transition t is enabled at in M and M ′ = (M \•t)∪t•.
Let ∗−→ denote the reflexive and transitive closure of −→. A marking M ′ covers
a marking M if M ⊆M ′.

A firing sequence is a finite or infinite sequence of transitions t1t2 . . . provided
we have a sequence of markings M0M1 . . . such that M0 = Init and for each i,
Mi

ti+1−→Mi+1. We denote the set of firing sequences of (N, Init) as FS (N, Init). A
firing sequence can be viewed as a sequential execution of the Petri net. However,
we are interested in the partially-ordered runs that the Petri net exhibits; we
will define these using Mazurkiewicz traces.

Traces: A trace alphabet is a pair (Σ, I) where Σ is a finite alphabet of actions
and I ⊆ Σ ×Σ is an irreflexive and symmetric relation over Σ called the inde-
pendence relation. The induced relation D = (Σ×Σ)\I (which is symmetric and
reflexive) is called the dependence relation. A Mazurkiewicz trace is a behavior
that describes a partially-ordered execution of events in Σ (when I = ∅, it is
simply a word).

Definition 2. [4] A (Mazurkiewicz) trace over the trace alphabet (Σ, I) is a
Σ-labeled poset t = (E ,�, λ) where E is a finite or a countable set of events, �
2 Petri nets can be more general, but in this paper we restrict to 1-safe Petri nets

where each place gets at most one token.
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is a partial order on E, called the causal order, and λ : E −→ Σ is a labeling
function such that the following hold:

– ∀e ∈ E, ↓ e is finite. Here, ↓ e = {e′ ∈ E | e′ ≤ e}.
So we demand that there are only finitely many events causally before e.

– ∀e, e′ ∈ E , e≺· e′ ⇒ λ(e)Dλ(e′).3 Events that are immediately causally related
must correspond to dependent actions.

– ∀e, e′ ∈ E , λ(e)Dλ(e′) ⇒ (e � e′ ∨ e′ � e). Any two events with dependent
labels must be causally related.

begin

aquire(l)

release(l)

end

l

Y1
Y2

T1 T2

Y := 5

Y := 3

x := Y - 2

Fig. 3. Sample Net Model

T (Σ, I) denotes the set of all traces over
(Σ, I). We identify traces that are iso-
morphic.

A linearization of a trace t = (E ,�
, λ) is a linearization of its events that
respects the partial order; in other words,
it is a word structure (E ,�′, λ) where �′

is a linear order with � ⊆ �′.
Let us define an equivalence on words

over Σ: σ ∼ σ′ if and only if for ev-
ery pair of letters a, b ∈ Σ, with aDb,
σ ↓ {a, b} = σ′ ↓ {a, b}, where ↓ is the
projection operator that drops all sym-
bols not belonging to the second argu-
ment. Then, σ and σ′ are linearizations
of the same trace iff σ ∼ σ′. We denote
the equivalence class that σ belongs to as
[σ].

Let (Σ, I) be a trace alphabet and
∼ be the associated relation. Let us
now formally associate the (unique) trace
that corresponds to a word σ over Σ.

A finite word σa is said to be prime if
for every σ′ ∼ σa, σ′ is of the form σ′′a (i.e. all words equivalent to σa end with
a).

Let σ be a finite or infinite word over Σ. The trace associated with σ, Tr(σ) =
(E ,�, λ) is defined as:

– E = {[σ′] | σ′ is prime , ∃σ′′ ∼ σ, σ′ is a prefix of σ′′},
– [σ] � [σ′] if there exists σ1 ∈ [σ], σ′

1 ∈ [σ′] such that σ1 is a prefix of σ′
1,

– λ([σ′a]) = a for each [σ′a] ∈ E .

It is easy to see that Tr(σ) is a trace, and σ is a linearization of it.

Traces of a Petri Net: Let us now define the set of traces generated by a Petri
net. Given a marked net (N, Init), N = (P, T, F ), we consider the trace alphabet
3 ≺· is the immediate causal relation defined as: e≺· e′ iff e ≺ e′ and there is no event

e′′ such that e ≺ e′′ ≺ e′.
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(Σ, I) where Σ = T , and (t, t′) ∈ I if and only if the neighborhoods of t and t′

are disjoint, i.e. (•t ∪ t•) ∩ (•t′ ∪ t′•) = ∅.
Now the traces generated by the net is is defined as {Tr(σ) | σ ∈ FS (N, Init)}.

Note that a single trace represents several sequential runs, namely all its lin-
earizations.

3 Causal Atomicity

Modeling Programs Using Petri Nets
We model the flow of control in SML programs by Petri nets. This modeling
formally captures the concurrency between threads using the concurrency con-
structs of a Petri net, captures synchronizations between threads (e.g.. locks,
accesses to global variables) using appropriate mechanisms in the net, and for-
malizes the fact that data is abstracted in a sound manner.

Figure 4 illustrates the function N that models statements using nets (in-
ductively, for a fixed number of threads n). N(S) is defined to have a unique
entry place pSin and one or more exit transitions txS1, . . . , tx

S
m. In this natural

way of modeling the control of a program, transitions correspond to program
statements, and places are used to control the flow, and model the interdepen-
dencies and synchronization primitives. Figure 3 illustrates the Petri net model
for the program in Figure 5(a).

begin S end acquire(l) / release(l) while (e) { S } if (e) {S} else {S’}

begin

end

tx

N(S).... .
.

l

tx

l

tx

acquire(l)

release(l)

e = true e = false

tx.... .
.

N(S)

pin

.... .
.

.... .
.

b = true b = false

N(S) N(S′)

reading global variable Y writing global variable Y S:stmt ; S’:stmt skip

tx

pin

x := Y

Ti

Yi

Y1 Yn

tx

pin

Y := x

.... .
.

N(S′).... .
.

N(S)

tx

pin

skip

Fig. 4. Model Construction
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There is a place l associated to each lock l which initially has a token in it.
To acquire a lock, this token has to be available which then is taken and put
back when the lock is released. This ensures that at most one thread can hold
the lock at any time.

For each global variable Y, there are n places Y1, . . . , Yn, one per thread. Every
time the thread Ti reads the variable Y (Y appears in an expression), it takes
the token from the place Yi and puts it back immediately. If Ti wants to write
Y (Y is on the left side of an assignment), it has to take one token from each
place Yj, 1 ≤ j ≤ n and put them all back. This is to ensure causality: two
read operations of the same variable by different threads will be independent (as
their neighborhoods will be disjoint), but a read and a write, or two writes are
declared dependent. If Ni = (Pi, Ti, Fi) is the Petri net model for statement Si

(1 ≤ i ≤ n), then the Petri net model for S1 || · · · || Sn is the net (P1∪· · ·∪Pn, T1∪
· · · ∪ Tn, F1 ∪ · · · ∪ Fn), assuming Ti’s are disjoint. Note the soundness of the
abstraction: if a read and a write of two threads are simultaneously enabled (i.e.
if there is a race condition), then the order on their accesses may be crucial. Since
we are not keeping track of data in any manner, we declare them to be causally
dependent and hence will consider the two runs inequivalent. The dependency
relation defined in the model will lead to the appropriate notion of causality in
the traces of the Petri net.

For a firing sequence σ of the net corresponding to a program, the sequence σ
may not be feasible in the concrete program (because of the abstraction of data
values). However, note that for every feasible sequence of the concrete program,
its control trace is a trace of the net. Moreover, if σ is a firing sequence of the
net which is feasible in the program (say by a concrete run r), then it is easy
to see that for each firing sequence σ′ such that σ′ ∈ [σ], there is a concrete
run r′ corresponding to it in the program that is equivalent to r (in terms of
resulting in the same valuation of concrete variables). This property is key in
ensuring that our entire approach is sound, as we will use trace equivalence as
the equivalence over runs in defining atomicity.

Causal Atomicity
Recall the general notion of atomicity: a block is atomic if for for every sequential
execution in which it is executed, there is another equivalent sequential execution
where the block is executed without being interleaved with other threads. Given
our abstraction using a Petri net, the only reasonable definition of equivalence
of two sequential executions is that they are linearizations of the same control
trace (see argument above).

Let us first illustrate the concept of causal atomicity by a simple example.
Consider the two programs in Figure 5. Although the first thread (on the left)
is the same in both versions, the block within begin and end is atomic in 5(b)
and not atomic in 5(a).

The Petri net model of a program P induces the traces that correspond to the
partially ordered runs of the program, which we call the control traces. Causal
atomicity is defined as a property of these control traces. Figure 6 shows a
control trace of the non-atomic program of Figure 5(a). Here labels of the events



Causal Atomicity 323

T T’

lock l ; int Y; ||
(1) begin (1) x := Y - 2
(2) acquire(l)
(3) Y := 5;
(4) Y := 3
(5) release(l)
(6) end

T T’

lock l ; int Y; ||
(1) begin (1) acquire(l)
(2) acquire(l) (2) x := Y - 2
(3) Y := 5; (3) release(l)
(4) Y := 3
(5) release(l)
(6) end

(a) (b)

Fig. 5. Two Programs

(transitions given by λ) are mentioned instead of the event names themselves
to make the trace more readable. The arrows depict the immediate causality
relation. The trace is a witness for non atomicity since x:=Y-2 is causally after
Y:=5 and causally before Y:=3, and therefore in all linearizations of this trace,
x:=Y-2 has to appear in the middle of the block.

begin acquire(l) release(l) endY := 5 Y := 3

x := Y− 2

Fig. 6. Non-Atomic Trace

A notational remark: when we denote a transition as tTi , we mean that it
belongs to the thread Ti.

Definition 3. A code block B = begin S end of the program P is causally
atomic if and only if the Petri net model of the program P does not induce a
trace Tr = (mathcalE,�, λ) for which the following holds:

∃e1, e2, f ∈ E : e1 � f � e2 where
λ(e1) = tTbegin, λ(e2) = tT2 , λ(f) = tT

′
3 such that

T �= T ′ and � ∃e ∈ E : (λ(e) = tTend ∧ e1 � e � e2)

e1

e2

f

begin

T T ′

...

...

∗

∗

The above definition says that a block declared atomic is not causally atomic if
the block begins, and there are two events, e2 belonging to the same thread (and
e2 occurs before the block finishes) and f belonging to another thread such that
f occurs causally between the beginning of the block and e2. Note that traces
that witness non-atomicity may not even execute the block completely (and we
do not require any termination requirement for blocks).

The following theorem captures the intuition of why the above defines causal
atomicity; it argues that if a trace of the program is not of the kind mentioned
in the definition above, then there is indeed some linearization of events that
executes the atomic block without interleaving. The proof is easy for finite traces,
but more involved for the infinite ones; we skip the proofs.
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Theorem 1. (a) A code block B = begin S end of the program P is causally
atomic if and only if for all finite traces induced by the Petri net model of
P , there is a linearization of the trace where all occurrences of block B occur
sequentially (without interleaving with other threads).

(b) If a code block B = begin S end of thread T in the program P is causally
atomic then for all infinite traces induced by the Petri net model of P , there
is a linearization of a causally downward closed subset of the events of the
trace that contains all events belonging thread T , in which occurrences of
block B occur sequentially.

Note that the above theorems yield soundness of our approach: if a code block B
is causally atomic, then by the above theorem and by the fact that either every
linearization of a trace of the net is feasible in the concrete program or none are,
it follows that the block B is atomic in the concrete program as well.

t = X X = 1

Y = 1

r = Y

T1 T2 T3

begin

end

Fig. 7. Example

The program in Figure 7 distinguishes causal
atomicity from other static notions of atomicity
in the literature. The code block in thread T2 is
causally atomic. However, since there are races
on both global variables X and Y, both statements
X = 1 and Y = 1 are non-mover statements and
this block is not a transaction, and therefore will
not be detected as atomic by the method in [10].
Our notion of causal atomicity is also behavioral
and more geared towards model checking as it depends on the partial-order
executions of the program, not on the static structure of the code.

Commit-atomicity [7] is a dynamic notion of atomicity which is different from
our static notion. The presence of data in commit-atomicity allows a more precise
detection of atomicity according to the general definition of atomicity and there
are examples (e.g. see Bluetooth3 in Section 5) that can be detected atomic by
commit-atomicity, but they fail the causal atomicity check. On the other hand,
the presence of data limits commit-atomicity to finite state space programs,
and impedes scalability (specifically, in terms of number of threads). However,
causal atomicity can deal with infinite data since the data is completely ab-
stracted. Also, the commit-atomicity method requires the the atomic blocks to
be terminating while we do not need such an assumption.

4 Checking Atomicity

In this section, we present how causal atomicity defined on traces can be reduced
to coverability in a colored Petri net.

Colored Petri Nets
Colored Petri nets are subclass of high level Petri nets [14]. We explain how
causal atomicity checks can be done by checking very simple properties on the
colored nets. This does not imply any complications theoretically since the result
in [14] shows that each colored net has an equivalent Petri net, and practically
since most Petri net analysis tools today support high level nets.
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We use a very simplified definition of colored Petri nets. We will not define
them formally, but explain them intuitively. A colored Petri net has, as an un-
derlying structure, a Petri net, but a token at a place can take a color c, which
is drawn from a finite set of colors C. Transitions get enabled when their pre-
conditions get marked, as before; but the transitions can now examine the colors
of tokens and decide the colors of tokens on the post-conditions.

Given a model of a program P as a net N = (P, T, F ) and an initial marking
Init, we define a colored Petri net that has the same underlying net N , but with
colors C = {A,B, Y,R}. The initial marking is the initial marking Init, with all
tokens colored A (achromatic).

The evolution of colors is determined by rules defined below. Note however
that since the colored net has the same underlying net, it inherits the indepen-
dence relation and generates the same traces as the net modeling the program.

Tokens are of one of the colors achromatic (A), blue (B), yellow (Y ), and
red (R), and we use them to monitor executions. The net nondeterministically
chooses an occurrence of a block B of a thread T that is to be checked for
atomicity, and at its begin event, turns the local control place of T to the color
blue. Whenever an event has a local pre-condition marked blue, it taints all its
post-conditions blue; hence the blue color spreads to all conditions causally after
the begin-event of B. When a different thread reads a blue token, it transforms
the token to yellow. Events that read any yellow-colored pre-condition taint their
post-conditions to yellow as well, and hence propagate the yellow color to causal
successors. If the thread T executes a statement of block B (before reaching
the end of the block) and reads a pre-condition labeled yellow, it would detect
violation of causal atomicity, and mark a special place red. If the end of block
B is reached without detecting violation of causal atomicity, the net abruptly
stops, as the occurrence of the block guessed to be non causal atomic was wrong.

Thus the problem of checking atomicity in the Petri net model of a program
reduces to the problem of checking whether in the associated colored net, there
is a reachable marking that covers a special place colored red (R).

Theorem 2. The special place with a red (R) token is coverable in the colored
Petri net constructed from the Petri net model of the program if and only if some
marked block B is not causally atomic.

5 Experiments

We have applied the method in Section 4 to check causal atomicity of several
programs taken from [7]. This section presents a brief description of each program
and the performance of our algorithm.

Dekker’s Mutual Exclusion Algorithm: Dekker’s algorithm is a classic algo-
rithm for mutual exclusion between two threads that uses subtle synchronization.
The mutual exclusion is modeled by means of two boolean variables. We check
whether the critical sections of the threads are atomic, and they do turn out to
be causally atomic.
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Busy-Waiting Acquire Lock: In this example a busy waiting while loop is
used to acquire a lock. There is a forever loop that acquires the mutex using
this method, then a global variable data is updated, and the mutex is released.
The correctness specification requires the updating of the data to be done atom-
ically. We have checked two different versions of this example. In Acquire1 there
is only one line modifying the data, while in Acquire2 there are several lines
manipulating the data. Using our technique, there is negligible difference differ-
ence in the size of the unfolding between the two cases since the partial order
semantics would not interleave the internal statements that modify the data. In
contrast, the model checking algorithm in [7] uses interleavings, and they see a
large increase in the time taken for Acquire2. One can make the block in Ac-
quire1 non-atomic by adding an extra thread that manipulates the data without
acquiring the mutex; nAcquire1 refers to this case.

In Acquire1* and Dekker*, multiple blocks (one per thread) are checked for
causal atomicity. This is in contrast to the rest of the benchmarks where one
block is checked at a time.

Bluetooth Device Driver: We used a simplified version of the Bluetooth
device driver in Windows NT (Bluetooth), similar to the one used in [20,7].
There are two dispatch functions; let us call them Add and Stop. Any process that
wants to use the driver calls Add, and any process that wants to stop the driver
calls Stop. The correctness specification requires these two dispatch functions
to run atomically. The Add function is not causally atomic which can be verified
using only two threads where one calls Add and the other one calls Stop. This
turns out to be a real cause for concern in the code, as interleaving events from
other threads while executing Add does make the program behave unexpectedly;
this was already reported in [20,7]. There is a fixed version of Bluetooth from [3]
(Bluetooth3) which is still not causally atomic despite the fact that it is correct.
However, commit-atomicity [7] can detect this as atomic since it can keep track
of the value of the counter in the program.

Experimental Results
Table 1 shows the result of evaluating the above benchmarks using Pep [12].
Each program is modeled as a colored Petri net as described in Section 4. The
unfolding of the colored net is generated. Then, with a simple query, we check
whether the special place having a red token is coverable. The table reports the
size of the unfolding, the time taken to check for causal atomicity (in seconds),
and whether the atomicity checker detected causal atomicity. We performed
these experiments under Linux on a 1.7GHz Pentium M laptop with 384MB of
memory. The output time is reported with the precision of 10 milliseconds, and
all experiments with 0 reported time were done in less than 10ms.

Note that in the Acquire1 example, the size of the unfolding grows only lin-
early with the number of threads; this reflects the space savings obtained through
unfoldings. In contrast, the model checking algorithm in [7], which reasons using
sequential traces, started to fail at around four threads. Note however that this
isn’t a fair comparison as the notion of atomicity (called commit-atomicity) in
[7] is quite different, more accurate, and harder to check. However, in all the
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Table 1. Programs and Performances

Benchmark Causally #Threads Unfolding Unfolding Time
Atomic? #Places #Events (sec)

Dekker Yes 2 52 24 0
Dekker* Yes 2 795 409 0.01

Acquire1 Yes 4 81 34 0
Acquire1 Yes 30 2135 1022 0.03
Acquire1 Yes 100 21105 10402 3.71
Acquire1 Yes 150 46655 23102 22.31

Acquire1* Yes 4 146 56 0
Acquire1* Yes 30 4202 1200 0.35
Acquire1* Yes 50 10582 2985 5.02
Acquire1* Yes 100 40486 10784 635.56

nAcquire1 No 4 97 43 0
nAcquire1 No 6 171 77 0
nAcquire1 No 8 261 119 0

Acquire2 Yes 4 73 30 0
Acquire2 Yes 6 146 74 0

Bluetooth No 2 235 116 0
Bluetooth3 No 2 223 109 0

examples except Bluetooth3, their notion of atomicity agreed with ours. All
the experiments can be found at: http://peepal.cs.uiuc.edu/~azadeh/
atomicity.

6 Conclusions

We have defined a notion of atomicity based on the causal structure of events
that occur in executions of programs. The causal structure is obtained using a
straightforward data abstraction of the program that captures control interac-
tions between threads using the concurrent model of Petri nets. We have demon-
strated the usefulness of the notion of causal atomicity and shown that it can
be effectively checked using unfolding based algorithms on Petri nets.

This work is part of a bigger project whose aim is to identify sound control
abstractions for concurrent programs that can be used for static analysis (for
example, dataflow analysis). We believe that true concurrent models (such as
Petri nets) and true concurrent behaviors (like traces and event structures) would
prove to be effective for this purpose. This paper demonstrates the efficacy of a
truly concurrent behavior model (traces) in identifying atomicity.

There are several future directions. Our method of checking atomicity is a
global analysis involving all threads simultaneously, while methods based on
types and transactions work locally on each thread independently. Since local
algorithms are likely to scale better, it would be interesting to find the weakest
local property that ensures global causal atomicity. Also, finding compositional
algorithms that derive information from each program locally and combine these
to check for global atomicity would be interesting to study as they would scale
better than global analysis and be more accurate than local analysis. Finally,
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we would also like to study extensions of atomicity defined in the literature (for
example, purity [9]), in the causal setting.
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11. M. Flé and G. Roucairol. On serializability of iterated transactions. In PODC,

pages 194–200, 1982.
12. B. Grahlmann. The PEP tool. In CAV, pages 440–443, 1997.
13. J. Hatcliff, Robby, and M. Dwyer. Verifying atomicity specifications for concurrent

object-oriented software using model-checking. In VMCAI, pages 175–190, 2004.
14. K. Jensen. Coloured Petri nets (2nd ed.): basic concepts, analysis methods and

practical use: volume 1. Springer-Verlag, London, UK, 1996.
15. R. Lipton. Reduction: A method of proving properties of parallel programs. Com-

mun. ACM, 18(12):717–721, 1975.
16. K. Lodaya, M. Mukund, R. Ramanujam, and P. S. Thiagarajan. Models and logics

for true concurrency. Technical Report TCS–90–3, School of Mathematics Internal,
1990.

17. K. McMillan. A technique of state space search based on unfolding. Formal Methods
in System Design, 6(1):45–65, 1995.

18. M. Nielsen, G. Plotkin, and G. Winsker. Peri nets, event structures and domains
— part i. Theoretical Computer Science, 13:85 – 108, 1981.

19. C. Papadimitriou. The theory of database concurrency control. Computer Science
Press, Inc., New York, NY, USA, 1986.

20. S. Qadeer and D. Wu. KISS: keep it simple and sequential. In PLDI, pages 14–24,
2004.

21. A. Silberschatz, H. Korth, and S. Sudarshan. Database Systems Concepts. McGraw-
Hill, 5th edition, 2005.

22. L. Wang and S. Stoller. Run-time analysis for atomicity. Electr. Notes Theor.
Comput. Sci., 89(2), 2003.

23. L. Wang and S. Stoller. Static analysis of atomicity for programs with non-blocking
synchronization. In PPOPP, pages 61–71, 2005.



Languages of Nested Trees�

Rajeev Alur1, Swarat Chaudhuri1, and P. Madhusudan2

1 University of Pennsylvania, USA
2 University of Illinois at Urbana-Champaign, USA

Abstract. We study languages of nested trees—structures obtained by
augmenting trees with sets of nested jump-edges. These graphs can nat-
urally model branching behaviors of pushdown programs, so that the
problem of branching-time software model checking may be phrased as a
membership question for such languages. We define finite-state automata
accepting such languages—these automata can pass states along jump-
edges as well as tree edges. We find that the model-checking problem
for these automata on pushdown systems is EXPTIME-complete, and
that their alternating versions are expressively equivalent to NT-µ, a
recently proposed temporal logic for nested trees that can express a va-
riety of branching-time, “context-free” requirements. We also show that
monadic second order logic (MSO) cannot exploit the structure: MSO on
nested trees is too strong in the sense that it has an undecidable model
checking problem, and seems too weak to capture NT-µ.

1 Introduction

Regular languages of infinite trees, accepted by finite-state tree automata, have
been studied in detail and found many applications in the last thirty years. Such
languages are known to be closed under all interesting operations and enjoy de-
cidable membership and emptiness questions [10]. A cornucopia of other results
are known: parity tree automata are equivalent to monadic second-order logic
(MSO) on trees, their bisimulation-closed subclass is exactly captured by the
modal µ-calculus [13], parity games and their zero-memory determinacy provide
crucial steps that simplify the decidability proof, etc. [9,13,20,8,10]. Moreover,
various decidability results for monadic logics on infinite graphs have been ob-
tained using interpretations on the binary tree [7,10,24].

Our interest in regular tree languages stems from the application of these
results to program verification. In its traditional phrasing, the branching-time
model-checking problem is to determine, given a program P and a regular tree
language S defining the specification, whether the execution tree of P is a mem-
ber of S. Here, S may be given as a tree automaton or a formula in a temporal
logic such as the µ-calculus [14]. In classical model checking, P is a finite state
program modeling, for instance, hardware or network protocols. Recently, in or-
der to analyze software, this problem was generalized to the case when P is a
� This research was partially supported by ARO URI award DAAD19-01-1-0473 and
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pushdown system. Such pushdown models can capture control flow in typical
imperative programming languages with recursive calls, have a decidable model-
checking problem against regular branching specifications, and are central to
interprocedural dataflow analysis [22] and a number of software model-checking
platforms [5,11]. In this paper, we fix them as our program models.

Here, our focus is on specification formalisms. The motivating observation
is that regular tree languages are not expressive enough for many interesting
specifications. For example, the µ-calculus cannot argue about the “matching”
between calls and returns in a program, and, by implication, about pre/post-
conditions, interprocedural dataflow requirements, and many access control
properties involving the stack. While context-free specifications are expressive
enough for these purposes, they are not closed under intersection or complement
and have an undecidable model-checking problem on pushdown systems.

In this paper, we identify an alternative phrasing of the branching-time
model-checking problem that is decidable but is capable of expressing “context-
free” specifications as above. Inspired by recent work on automata on nested
words [3,4], we model a program unfolding not by a tree, but by a directed
acyclic graph known as a nested tree that is obtained by adding a set of properly
nested jump-edges to a tree (see Fig. 1; the jump-edges are dashed). Based on the
structure of jump-edges, we can classify nodes in a nested tree as calls (sources
of jumps), returns (their targets), and locals (the remaining nodes). In nested
trees generated from programs, calls and returns model call and return sites in
the program, and jump-edges correspond to summary edges. Now we investigate
finite-state automata and logics that define regular languages of such structures.
Then the model-checking problem is to determine if the nested tree generated
by a program belongs to a regular language of nested trees.

We begin our study by considering nondeterministic parity automata on infi-
nite, ordered nested trees (NP-NTAs). An NP-NTA can send states along tree
edges and jump edges, so that its state while reading a node depends on the
states at its parent and the jump-predecessor (if one exists). Since there is an
explicit jump-edge from a call to its matching return in a nested tree, these au-
tomata are naturally capable of matching calls with returns. Pleasantly, they are
also closed under intersection. However, they are not closed under complement,
so that they are unlikely to have an attractive logical characterization. This mo-
tivates us to consider alternating parity automata on nested trees (AP-NTAs).
These automata, more naturally defined on unordered nested trees, are closed
under all Boolean operations (though not under projection). While they have
an undecidable emptiness problem, their model-checking problem is EXPTIME-
complete, matching that for alternating tree automata on pushdown systems.

Our candidate for a canonical temporal logic for nested trees is NT-µ, a fix-
point calculus introduced in our previous work [1] under the name VP-µ and
a different but equivalent interpretation. The logic NT-µ is evaluated over sub-
trees of a nested tree summarizing procedural contexts and can reason about
concatenation of such trees. Earlier, we established that it can express a variety
of interesting requirements not expressible by regular tree languages, that its
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fixpoints naturally correspond to interprocedural summary computations, and
that its model-checking problem on pushdown systems is EXPTIME-complete
(and thus no more costly than that of weaker logics such as CTL). In this pa-
per, we demonstrate that it defines a robust class of languages by proving that
it has the same expressive power as AP-NTAs. Our proof1 offers polynomial
translations from AP-NTAs to NT-µ and vice versa, as well as insights about
the connection between runs of AP-NTAs and the notion of summaries in NT-µ.
This result is especially intriguing as the model-checking algorithms for NT-µ
and AP-NTAs are very different in flavor—while the latter reduces to pushdown
games, the former seems to have no connection to the various previously known
results about trees, context-free languages, and pushdown graphs.

Given the appealing trinity of automata, µ-

call returnlocal

Fig. 1. A nested tree

calculus, and MSO for regular tree languages,
we study MSO-logic over nested trees, which
extends standard MSO-logic over trees with a
predicate (x ↪→ y) that can check the existence
of a jump-edge between two nodes. We show
that MSO-logic is strictly more expressive than
NP-NTAs, and that the matching predicate is
too powerful leading to undecidable satisfiabil-
ity and model checking problems. The undecid-
ability proof shows that the difficulty lies with
combining second-order existential quantifica-
tion with the matching predicate. On the other

hand, there seems to be no way to encode sets of summaries in MSO-logic over
nested trees, and we conjecture that NT-µ cannot be translated to MSO-logic.

The paper is organized as follows. Sec. 2 defines nested trees and nested
pushdown trees (nested trees generated by pushdown systems). In Sec. 3, we
define and study NP-NTAs and AP-NTAs. Sec. 4 describes NT-µ and proves its
expressive equivalence with AP-NTAs. In Sec. 5, we introduce MSO-logic over
nested trees, prove it to be undecidable, and show that it cannot be captured by
NT-µ. Sec. 6 has some concluding remarks.

2 Nested Trees

We now define nested trees, which are directed acyclic graphs obtained by aug-
menting a tree with a set of jump-edges representing non-trivial forward jumps.
Jump-edges do not cross, and can capture the nesting of calls and returns in pro-
grams. We also model the intuition that if a call does not return, then neither
does any of the calls pending up to it.

Formally, let T = (S, r,→) be an unordered infinite tree with node set S, root
r and edge relation → ⊆ S×S. Let +−→ denote the transitive (but not reflexive)
closure of the edge relation, and let a path in T from node s1 be a sequence
π = s1s2 . . . sn . . . over S, where n ≥ 2 and si → si+1 for all 1 ≤ i. In this paper,
we only consider trees where all maximal paths are infinite.
1 In the current version, we only offer proof sketches for the more important theorems.

Full proofs are available in a technical report [2].
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An unordered nested tree is a directed acyclic graph (T, ↪→), where ↪→⊆ T ×T
is a set of jump-edges satisfying:

1. if s ↪→ t, then s
+−→ t, and we do not have s→ t;

2. if s ↪→ t and s ↪→ t′, then neither t +−→ t′ nor t′ +−→ t;
3. if s ↪→ t and s′ ↪→ t, then s = s′;
4. if there is a path π such that for nodes s, t, s′, t′ lying on π we have s +−→ s′,

s ↪→ t, and s′ ↪→ t′, then either t +−→ s′ or t′ +−→ t;
5. if s +−→ t

+−→ s′, s ↪→ s′, and t ↪→ t′ for some t′, then there is some t′′ such
that t ↪→ t′′ and t′′ +−→ s′.

We are also interested in ordered, binary nested trees (although, by default,
nested trees are assumed to be unordered). Let T = (S, r,→1,→2) be an ordered
binary tree, where S is a set of nodes, r is the root, and →1,→2⊆ S × S are
the left and right edge relations. Then (T, ↪→) is an ordered, binary nested tree
if ((S, r,→1 ∪→2), ↪→) is an unordered nested tree.

For an alphabet Σ, a Σ-labeled (ordered or unordered) nested tree is a struc-
ture T = (T, ↪→, λ), where (T, ↪→) is a nested tree with node set S, and λ : S → Σ
is a node-labeling function. All nested trees in this paper are Σ-labeled.

A node s in a nested tree such that s ↪→ t (t ↪→ s) for some t is a call (return)
node; the remaining nodes are said to be local. We note that the sets of call,
return and local nodes are disjoint. If s ↪→ t, then we call s the jump-predecessor
of t and t the jump-successor of s. Edges from a call node and to a return node
are known as call and return edges; the remaining edges are local. The fact that
an edge (s, t) exists and is a call, return or local edge is denoted by s

call−→ t,
s

ret−→ t, or s
loc−→ t. For an ordered or unordered nested tree T = (T, ↪→, λ)

with edge set E, the structured tree of T is the node and edge-labeled tree
Struct(T ) = (T, λ, η : E → {call , ret , loc}), where η(s, t) = a iff s

a−→ t.
The bisimulation relation ∼ for nested trees is defined as: two (ordered, un-

ordered) nested trees T1 and T2 are bisimilar (we write T1 ∼ T2) if Struct(T1)
and Struct(T2) are bisimilar by the usual definition of bisimulation on trees.
The bisimulation closure of a set L of nested trees is the set L∼ = {T ′ : T ′ ∼
T for some T ∈ L}. We call L bisimulation-closed if L∼ = L.

A few observations: first, the sets of call, return and local edges define a
partition of the set of tree edges. Second, if s ret−→ s1 and s

ret−→ s2 for distinct s1
and s2, then s1 and s2 have the same jump-predecessor. Third, the jump-edges in
a nested tree are completely captured by the edge labeling in the corresponding
structured tree, so that we can reconstruct a nested tree T from Struct(T ).

Fig. 1 depicts part of a nested tree. The jump-edges are dashed, and call,
return, and local nodes are drawn in different styles.

Nested Pushdown Trees. We are particularly interested in nested trees gener-
ated by pushdown systems (pushdown automata without accepting conditions),
or, equivalently, recursive state machines or Boolean programs.

Consider a pushdown system P with a set of states V , a stack alphabet
B, and initial state v0. Transitions are of the form v −→ v′ (local moves),
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v
push(b)−→ v′ (pushes), and v

pop(b)−→ v′ (pops). We assume that if there is a push-
move (similarly, pop-move) from state v, then there are no local moves or pops
(similarly, pushes) from v. Let κ : V → Σ label states by an alphabet Σ.

A configuration of P is a pair (v, w), where v ∈ V is a state and w ∈ B∗

is the stack; let CP be the set of configurations of P . Let the configuration
c0 = (v0, ε) be the initial configuration. The configuration graph of P has these
configurations as vertices, and an edge relation ��	⊆ CP × CP that is the least
relation satisfying: (1) (v, w) ��	 (v′, w), for w ∈ B∗, if v −→ v′ is a transition in

P , (2) (v, w) ��	 (v′, b.w) if v
push(b)−→ v′, and (3) (v, b.w) ��	 (v′, w) if v

pop(b)−→ v′.
We assume that there is an outgoing edge from every c ∈ CP . The configuration
tree of P is the unordered tree TP = (SP , c0,−→P), where SP ⊆ C∗

P and −→P⊆
SP ⊆ SP are the least node set and edge relation constructed by the rules: (1)
c0 ∈ SP , and (2) if s.c ∈ SP and c ��	 c′ for some s ∈ C∗

P and c, c′ ∈ CP , then we
have s.c.c′ ∈ SP and s.c −→P s.c.c′. Also, let us define a map Stack : SP → B∗

such that if a node is of the form s = s′.(v, w) for s′ ∈ C∗
P , then Stack(s) = w.

The nested pushdown tree generated by P is the structure CTree(P) = (TP ,
↪→⊆ SP × SP , λ : SP → Σ), where λ is such that for any node s = s′.(u,w),
we have λ(s) = κ(u), and the jump-edge relation ↪→ is such that s ↪→ t iff
Stack(s) = Stack(t) and there no node t′ such that s +−→ t′ +−→ t and Stack(t′) =
Stack(s). It is easily verified that CTree(P) is a nested tree. Intuitively, the call
and return nodes model push and pop sites in the branching behavior of the
pushdown system, and the jump-edges model summary edges relating pushes
with matching pops.

While nested trees generated by programs are naturally unordered, we will also
consider the ordered, binary nested pushdown tree CTreeord(P) of P . This tree
may be obtained by ordering the moves of P , lifting this order to the (bounded-
degree) configuration tree of P , encoding this ordered tree by a binary tree, and
adding jump-edges in the natural way. We skip the details.

3 Automata on Nested Trees

In this section, we study finite-state automata operating on nested trees. Recall
that for tree automata, the state while reading a (non-root) tree node depends
on its state at the node’s parent. The state of a nested tree automaton (NTA) at
a node in a nested tree depends on its states at the node’s parent and the node’s
jump-predecessor (if it exists). We define these automata in nondeterministic and
alternating flavors; the natural semantics of these are respectively over ordered
and unordered nested trees.

Formally, a (top-down) nondeterministic parity nested tree automaton (NP-
NTA) over Σ is a structure A = (Q, q0, ∆,Ω) where Q is a finite set of states,
q0 ∈ Q is the initial state,∆ ⊆ Q×Σ×(TT×TT ), where TT = Q∪(Q×Q)∪{⊥},
is a transition relation, and Ω : Q→ {0, 1, . . . , n}, for some n ∈ N, is the parity
accepting condition that assigns a priority to each automaton state.

A run of A on an ordered, binary nested tree T = ((S, r,→1,→2), ↪→, λ) is a
labeling ρ : S → Q of nodes of T by automaton states such that: (1) ρ(r) = q0,
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and (2) if for some s we have ρ(s) = q and λ(s) = σ, and s1 and s2 are the
left and right children of s (set s1 or s2 to ⊥ if the left or right child does not
exist), then for some (q, σ, (τ1, τ2)) ∈ ∆, we have: (a) if si, for i ∈ {1, 2}, is a call
or local node, then τi = ρ(si), (b) if si is a return node, then τi = (ρ(t), ρ(si)),
where t ↪→ si, and (c) if si =⊥, then τi =⊥.

Let πi denote the i-th vertex in a path π in T . A run ρ of A on T is accepting
if for all infinite paths π in T , θ′ = max{θ : Ω(ρ(πi)) = θ for infinitely many i}
is even. An ordered, binary nested tree T is accepted if A has an accepting run
on it. The language L(A) of A is the set of nested trees it accepts.

Fig. 2 illustrates part of a run of an NP-NTA onq0

q1

q1

q2

q2

q2

call
return

local

Fig. 2. A nested tree

a nested tree (assume that the label of every node is
σ and that every node has a left child). Transitions
include (q1, σ, ((q0, q2),⊥)) and (q0, σ, (q1, q2)).

Note that we can define an equivalent semantics
of NP-NTAs by letting the automaton manipulate a
stack rather than consult a node’s jump-predecessor.
In this case, A pushes the current state while taking
a call edge, pops on a return edge, and leaves the
stack unchanged on a local edge. As jump-edges are
nested, the top of the automaton stack at a return
node stores the state at the node’s matching call.

As we shall see, NP-NTAs do not have robust closure properties, so that
defining alternating nested tree automata will be worthwhile. It is more natural
to interpret these automata on unordered nested trees. Also, their semantics are
defined more easily if we let them manipulate stacks of states.

Formally, for a finite set Q, define the set TT (Q) of transition terms whose
members f are of the form f := tt | ff | f ∨ f | f ∧ f | 〈loc〉q | [loc]q | 〈call 〉q |
[call ]q | 〈ret , q′〉q | [ret , q′]q, where q, q′ ∈ Q. An alternating parity nested tree
automaton (AP-NTA) over Σ is a structure A = (Q, q0, ∆,Ω, qf ), where Q is a
finite set of states, q0 ∈ Q is the initial state, ∆ : Q×Σ → TT (Q) is a transition
function, and Ω : Q→ {0, 1, . . . , n} is the parity accepting condition.

We define the semantics of an AP-NTA A = (Q, q0, ∆,Ω) via a parity game.
The acceptance game G(A, T ) of a Σ-labeled nested tree T = (T, ↪→, λ) by A
is played by two players A and E. The vertex set of the game graph is V =
T ×Q×Q∗ × TT , and the set of moves ⇒⊆ V × V is the least set such that:

– for all v ∈ V of the form (s, q, α, f1 ∨ f2) or (s, q, α, f1 ∧ f2) for some v′ ∈
V ∪ {ε}, we have v ⇒ (s, q, α, f1) and v ⇒ (s, q, α, f2);

– for all v ∈ V of the form (s, q, α, 〈loc〉q′)) or (s, q, α, [loc]q′)), and for all s′

such that s loc−→ s′, we have v ⇒ (s′, q′, α, f), where f = ∆(q′, λ(s′));
– for all v ∈ V of the form (s, q, α, 〈call 〉q′) or (s, q, α, [call ]q′), and for all s′

such that s call−→ s′, we have v ⇒ (s′, q′, q.α, f), where f = ∆(q′, λ(s′));
– for all v ∈ V of the form (s, q, q′′.α, 〈ret , q′′〉q′) or (s, q, q′′.α, [ret , q′′]q′), and

for all s′ such that s ret−→ s′, we have v ⇒ (s′, q′, α, f), where f = ∆(q′, λ(s′));
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The vertex set V is partitioned into two sets VE and VA corresponding to the two
players. The set VA comprises vertices of the form (s, q, α, f), where s, q and α are
arbitrary and f has the form tt , [call ]q, [loc]q, [ret , q′]q, or (f1∧f2). The remaining
vertices constitute VE. We also lift the priority map Ω to ΩV : V → {0, 1, . . . , n}
by defining ΩV(s, q, α, f) = Ω(q) for all s, q, α, and f .

The two players A and E play on the graph starting from the initial position
vin = (s0, q0, ε,∆(q0, λ(s0))) by moving a token along edges of the game graph.
Whenever the token is in a position v, the player who owns the vertex must
move the token. Formally, a play of G is a non-empty, finite or infinite sequence
α = v1v2 . . . that is a path in the game graph, where v1 = vin . A finite play is
winning for player A if the last position is a player E vertex from which there
is no move; analogously, we define winning finite plays for player E. An infinite
play α is winning for player E if θ′ = max{θ : ΩV(vi) = θ for infinitely many i}
is even; otherwise A wins the play. A strategy for player E (or A) is a subset of
edges Str ⊆ ⇒ such that all these edges originate in a vertex in VE (or VA)2. A
play is according to a strategy Str if all edges in the play are in Str . A strategy
is winning if all maximal plays according to the strategy are winning.

An AP-NTA A accepts a nested tree T if E has a winning strategy in G(A, T ).
The language L(A) of A is the set of nested trees accepted by A.

We also consider automata that accept by the weaker final-state condition.
For nondeterministic versions of such automata, a nested tree is accepted if a
special final state qf is seen along every path in some run on it. In alternating
versions, all infinite plays are won by A, and if a play reaches a game vertex
(s, qf , α, f) for some s, α, and f , then the game terminates and E is the winner.

Closure Properties. Easy constructions show that AP-NTAs are closed under
union and intersection and that NP-NTAs are closed under union. A product
construction suffices to show that NP-NTAs are also closed under intersection.
Also, AP-NTAs are closed under complement since one can take the dual of the
transition functions and add 1 to each priority, making the odd priorities even
and vice versa. This automaton will accept the complement since parity games
are determined (if a nested tree is not accepted by an AP-NTA, then player
A has a winning strategy in the acceptance game that translates to a winning
strategy for E in the dual game). Hence:

Theorem 1. AP-NTAs are closed under union, intersection, and complement.
NP-NTAs are closed under union and intersection.

Observe that by our definition, languages accepted by AP-NTAs are closed under
bisimulation, while those accepted by NP-NTAs are not in general. To compare
the expressiveness of an AP-NTA and an NP-NTA meaningfully, we need to
consider the language obtained by starting with the language L of the NP-NTA,
stripping the order between tree edges off nested trees in L, and closing it under

2 Strategies are often defined in a more general way that refer to the history of the play.
This definition suffices as parity games always admit zero-memory strategies [10].



336 R. Alur, S. Chaudhuri, and P. Madhusudan

(b)(a)

a1 a2 an $

bm1 bm2 bmn

b21 b22

b11

b1n

b2n

b12

cim ci2 ci1 w1 w2 w3 w4 w5 wn

∗

∗∗
∗
∗

∗ ∗$

$

$

$

$

$

$

ui1 = w1
ui2 = w2w3w4
vi1 = w1w2w3
vi2 = w4w5

call
return
local

Fig. 3. (a) Expressiveness of AP-NTAs and NP-NTAs (b) Gadget for undecidability

bisimulation.3 Formally, for a language L of ordered nested trees, we define
Unord(L) as the bisimulation closure of the set of nested trees ((S, r,→), ↪→, λ)
such that →= →1 ∪→2 for some ((S, r,→1,→2), ↪→, λ) ∈ L.

Now consider ordered nested trees of the form in Fig. 3-a, where Σ = {0, 1, $},
and ai, bij ∈ Σ for all i, j (while the structure in the figure is not binary, it can
be encoded as such; also, the jump-edges, omitted to keep the figure clean, can
be reconstructed). Let Lgap be the language of such structures where for all
i ≤ n, there is some k ≤ m such that an−i+1 = bki. First, we note that Lgap
cannot be recognized by an NP-NTA AN with N states. To see why, take a
structure as above where n = m > N , and for each 1 ≤ i ≤ n, there is a distinct
branch k such that an−i+1 = bki. In any run, AN must enter two branches in
the same state; also, the sequence of states at calls unmatched till these points
are the same. We can replace one of these branches with the other to get an
accepting run on a structure not in Lgap . Note that Unord(Lgap) is recognized
by AP-NTA. Hence:

Theorem 2. There is a language L of ordered, binary nested trees s.t. (1) there
is no NP-NTA accepting L, and (2) there is an AP-NTA accepting Unord(L).

We note that the complement of the language Lgap is accepted by an NP-
NTA A′

N , which guesses the i such that ai cannot be matched along any of
the branches, and sends a state to each branch to check this is true. Hence:

Theorem 3. NP-NTAs are not closed under complementation.

The projection over Σ1 of a language L of (ordered, unordered) nested trees over
Σ1 ×Σ2 is the language obtained by replacing every label (a, b) in every nested
tree T ∈ L by a. For NP-NTAs, closure under projection is easy; an NP-NTA
can guess the second component of each label and mimic the moves. However,
we can show that AP-NTAs are not closed under projection:

Theorem 4. NP-NTAs are closed under projection, but AP-NTAs are not.
3 Alternatively, we could define AP-NTAs on ordered nested trees. Under this defini-

tion as well, AP-NTAs are strictly more powerful than NP-NTAs.
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Decision Problems. The model-checking problem for AP-NTAs on pushdown
systems is the problem of deciding, given an AP-NTA A and a pushdown system
P , whether CTree(P) ∈ L(A). An EXPTIME-hardness result for this problem
follows from the known hardness of the model-checking problem for alternating
tree automata on pushdown systems [23].

We get an EXPTIME procedure for this problem via a reduction to a push-
down parity game. A two-player pushdown parity game is a parity game played
on the configuration graph of a pushdown system. It is known that pushdown
parity games are solvable in EXPTIME [23]. Now, given an AP-NTA A and
P , CTree(P) ∈ L(A) iff player E wins the acceptance game of A. Now recall
that call-edges (or return-edges) in CTree(P) encode push-moves (pops) of P—
however, these edges are also where the stack of states in the semantics of A is
pushed (popped). Thus, the stack of P is “synchronized” with the implicit stack
of A, so that the graph of the acceptance game of CTree(P) by A happens to be
the configuration graph of a pushdown system that is roughly the “synchronized
product” of P and A. Using this, we get:

Theorem 5. The model-checking problem for AP-NTAs on pushdown systems
is EXPTIME-complete.

While model-checking for alternating NTAs is decidable, emptiness is not4. This
is proved by a reduction from the Post’s Correspondence Problem (PCP) [12].
Consider a tuple ((u1, . . . , uk), (v1, . . . , vk)), where the ui’s and vi’s are finite
words over an alphabet A; the PCP is to determine if there is a sequence
i1, . . . , im, where ij ≤ k, such that ui1ui2 . . . uim = vi1vi2 . . . vim = w. Now
consider nested trees of the form in Fig. 3-b (again, jump-edges are omitted)
such that the initial call-chain is of length m and is labeled by symbols from the
alphabet {1, . . . , k}, and the symbols wi on the “stem” of local nodes succeeding
this chain form the string w. Now suppose the sequence of input symbols on the
call chain is cim . . . ci1 . There are two kinds of return chains hanging from the
stem—the ones marked with the symbol ∗ (similarly $) are exactly at the points
where w may be possibly factored into ui1 , ui2 , . . . , uim (similarly vi1 , . . . , vim).
Also, the i-th return chain (counting from left) of either type is of length i. Then
such a nested tree is a witness for an instance of PCP being positive. We can,
however, show that there is an alternating NTA accepting by final state that
accepts the set of nested trees bisimilar to such witnesses. In fact, we can show
that there is a nondeterministic final-state NTA that accepts any nested tree not
of the above form (under some ordering of edges). Hence:

Theorem 6. Universality for nondeterministic NTAs and emptiness for alter-
nating NTAs are undecidable problems, even for acceptance by final state.

However, we can prove the emptiness problem of NP-NTAs to be solvable in
EXPTIME by reducing it to that for pushdown tree automata [15].

4 This result was obtained independently by Löding [16].
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4 A Fixpoint Calculus for Nested Trees

Now we study a fixpoint calculus for nested trees, presented in our previous
work [1] under the name VP-µ and a different but equivalent semantics as a
specification language for procedural programs. This logic, which we call NT-µ,
turns out to have the same expressive power as AP-NTAs.

Formally, let AP be a finite set of atomic propositions, Var be a finite set of
variables, and R1, R2, . . . be a countable, ordered set of markers. For p ∈ AP ,
X ∈ Var , and m ≥ 0, formulas ϕ of NT-µ are defined by:

ϕ, ψi := p | ¬p | X | 〈ret〉(Ri) | [ret ](Ri) | ϕ ∨ ϕ | ϕ ∧ ϕ | µX.ϕ | νX.ϕ |
〈call 〉(ϕ){ψ1, ψ2, ..., ψm} | [call ](ϕ){ψ1, ψ2, ..., ψm} | 〈loc〉 ϕ | [loc] ϕ.

The arity of a formula ϕ is the maximum m such that ϕ has a subformula
〈call 〉ϕ′{ψ1, . . . , ψm} or [call ]ϕ′{ψ1, . . . , ψm}. Also, we define the constants tt
and ff in the standard way.

Formulas are evaluated at structures known as summaries. Let T = (T, ↪→, λ)
be an unordered nested tree labeled by Σ = 2AP . A node t of T is said to be
a matching exit of a node s if there is an s′ such that s′ +−→ s and s′ ↪→ t, and
there are no s′′, t′′ such that s′ +−→ s′′ +−→ s

+−→ t′′, and s′′ ↪→ t′′. Intuitively,
a matching exit of s is the first “unmatched” return along some path from s.
The set of matching exits of s is denoted by ME (s). For a non-negative integer
k, a summary s in T is a tuple 〈s, U1, U2, . . . , Uk〉, where s ∈ T , k ≥ 0, and
U1, U2, . . . , Uk ⊆ ME (s). The set of summaries in a structured tree T is denoted
by SummS .

Let the free variables in a formula ϕ be denoted by Free(ϕ). Then ϕ is in-
terpreted in an environment E : Free(ϕ) → 2SummS

that maps variables to sets
of summaries. Some of the clauses that define the truth of a formula ϕ at a
summary s = 〈s, U1, . . . , Uk〉 are:

– s, E |= p iff p ∈ λ(s); s, E |= X iff s ∈ E(X)
– s, E |= ϕ1 ∨ ϕ2 iff s, E |= ϕ1 or s, E |= ϕ2

– s, E |= 〈call〉(ϕ′){ψ1, ψ2, ..., ψm} iff there is a t ∈ S such that s call−→ t, and
also a summary t = 〈t, V1, V2, . . . , Vm〉 satisfying (1) t, E |= ϕ′, and (2) for
all i and all s′ ∈ Vi, 〈s′, U1∩ME (s′), U2∩ME (s′), . . . , Uk∩ME (s′)〉, E |= ψi.

– s, E |= 〈loc〉 ϕ′, iff there is a t ∈ S such that s loc−→ t, and also a summary
t = 〈t, V1, V2, . . . , Vk〉 such that (1) Vi = ME (t) ∩ Ui, and (2) t, E |= ϕ′

– s, E |= 〈ret〉(Ri) iff there is a t ∈ S such that s ret−→ t and t ∈ Ui

– s, E |= µX.ϕ′, iff s ∈ S for all S ⊆ SummS such that: for all t such that
t, E [X .→ S] |= ϕ′, t ∈ S

Here E [X .→ S] is the environment E ′ such that (1) E ′(X) = S, and (2)
E ′(Y ) = E(Y ) for all variables Y �= X .

Consider the unique empty environment E⊥ : ∅ → SummS . A nested tree T
with initial node s0 satisfies a formula ϕ iff 〈s0, ∅, ..., ∅〉, E |= ϕ. The language of
ϕ, denoted by L(ϕ), is the set of nested trees satisfying ϕ.
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Now consider the problem of model-checking NT-µ over nested pushdown
trees, i.e. determining, given a pushdown system P and an NT-µ formula ϕ,
whether CTree(P) satisfies ϕ. We previously gave an EXPTIME procedure for
this problem [1]. Interestingly, this procedure involves a fixpoint computation
over equivalence classes of summaries, mirroring symbolic model-checking algo-
rithms for the µ-calculus, and has no direct connection to pushdown games. We
also established that the satisfiability problem for NT-µ is undecidable.

Relation Between NT-µ and NTAs. We now establish our main theorems,
which show that AP-NTAs are exactly as expressive as NT-µ.

Theorem 7. Given any closed NT-µ formula ϕ, one can construct an AP-NTA
Aϕ such that for any nested tree T , T ∈ L(ϕ) iff T ∈ L(Aϕ). The size of Aϕ is
polynomial in the size of ϕ.

Proof. (Sketch) The AP-NTA Aϕ is over an input alphabet 2AP . For every
subformula ψ of ϕ, Aϕ has a state qψ. The initial state is qϕ.

For any variable X in ϕ, let Ψ(X) be the subformula of form µX.ϕ′ or νX.ϕ′

that binds X (we assume that each variable in ϕ is bound at most once). For
instance, if ϕ = 〈call〉(µX.(p∨X)){q}, then Ψ(X) = µX.(p∨X). For each bound
variable X in ϕ, the state qX is identified with the state qΨ(X).

Let p ∈ AP , and σ ∈ 2AP . The transition relation ∆ of Aϕ is defined induc-
tively over the structure of ϕ:

∆(qp, σ) = tt if p ∈ σ, else ff
∆(qϕ1∧ϕ2 , σ) = ∆(qϕ1 , σ) ∧∆(qϕ2 , σ)
∆(qϕ1∨ϕ2 , σ) = ∆(qϕ1 , σ) ∨∆(qϕ2 , σ)
∆(qµX.ϕ′ , σ) = ∆(qϕ′ , σ)
∆(qνX.ϕ′ , σ) = ∆(qϕ′ , σ)
∆(q〈call〉(ϕ′){ψ1,...,ψk}, σ) = 〈call〉qϕ′

∆(q[call](ϕ′){ψ1,...,ψk}, σ) = [call ]qϕ′

∆(q〈loc〉ϕ′ , σ) = 〈loc〉qϕ′

∆(q[loc]ϕ′ , σ) = [loc]qϕ′

∆(q〈ret〉Ri
, σ) = ∨φ′,ψ1≤j≤k

(〈ret , q〈call〉(φ′){ψ1,...,ψk}〉qψi ∨ 〈ret , q[call ](φ′){ψ1,...,ψk}〉qψi)

∆(q[ret]Ri
, σ) = ∨φ′,ψ1≤j≤k

([ret , q〈call〉φ′{ψ1,...,ψk}]qψi ∨ [ret , q[call ]φ′{ψ1,...,ψk}]qψi)

The proof is similar in spirit to a known translation from the µ-calculus to
alternating tree automata [9]. The main difference, of course, is in the call and
ret clauses. At a call in a nested tree, the state of Aϕ contains information about
the return conditions that ϕ asserts. When a matching return (jump-successor)
is reached, Aϕ consults this state and checks that the return assertions hold.

The priority of states of the form qµX.ϕ and qνX.ϕ are respectively odd and
even, and roughly equal to the alternation depth of ϕ. The priority for all other
states is 0. The correctness proof for parity acceptance is along the lines of [9].

Theorem 8. Given any AP-NTA A, one can construct an NT-µ formula ϕA
such that for any nested tree T , T ∈ L(ϕA) iff T ∈ L(A). The size of ϕA is
polynomial in the size of ϕ.
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Proof. (Sketch) We skip the full proof and establish the above for alternating
nested tree automata A accepting by a final state qf . We write the formula ϕA
using a set of equations rather than in the standard form. Translation from this
equational form to the standard form is as for the modal µ-calculus [10].

Let Q = {q1, . . . , qn} and TT respectively be the sets of states and transition
conditions of A. For each q ∈ Q, we have a marker Rq; for each pair of states
q, q′ ∈ Q, we have a variable Xq,q′ . Intuitively, a summary 〈s, Uq1 , . . . , Uqn〉 is
collected in Xq,q′ iff A has a way to start at node s at state q, and end up at a
return s′ ∈ Uqj in state qj , having checked that q′ was the state of the automaton
in the current play at the jump-predecessor of s′. Now for each pair of states
q, q′ ∈ Q, we define a map Fq,q′ : TT → Φ, where Φ is the set of NT-µ formulas:

Fq,q′(tt) = tt Fq,q′(ff ) = ff
Fq,q′(f1 ∧ f2) = Fq,q′(f1) ∧ Fq,q′ (f2)
Fq,q′(f1 ∨ f2) = Fq,q′(f1) ∨ Fq,q′ (f2)
Fq,q′(〈call 〉q′′) = 〈call 〉(Xq′′,q){Xq1,q′ , . . . , Xqn,q′}
Fq,q′([call ]q′′) = [call ](Xq′′,q){Xq1,q′ , . . . , Xqn,q′}
Fq,q′(〈loc〉q′′) = 〈loc〉Xq′′,q′ Fq,q′([loc]q′′) = [loc]Xq′′,q′

Fq,q′(〈ret , q〉q′′) = 〈ret〉(Rq′′ ) Fq,q′([ret , q]q′′) = [ret ]Rq′′

Then the formula ϕA is the formula corresponding to Xq0,γ0 when taking the
least fixpoint of the following equations:

Xq,q′ =
{

tt if q = qf∨
σ⊆AP ((∧p∈σp) ∧ (∧p/∈σ¬p) ∧ Fq′,q(∆(q, σ) ∨∆r(q, σ))) otherwise.

5 Monadic Second-Order Logic on Nested Trees

We now study monadic second-order (MSO) logic interpreted on ordered nested
trees. Formulas in MSO-logic are built over a set of first-order variables (x, y . . .)
and a set of second-order variables (X,Y, . . .), ranging over nodes and sets of
nodes in a nested tree T . For each σ ∈ Σ, the signature of MSO-logic has a
unary predicate Qσ, where Qσ(s) is true at a node s iff s is labeled by σ; we
also have a binary equality predicate x = y. There are also left and right edge
predicates x→1 y and x→2 y, and a jump-edge predicate x ↪→ y.

The syntax of MSO-logic is: ϕ := Qσ(x) | ¬ϕ | ϕ ∨ ϕ | x = y | x→1 y | x→1
y | x ↪→ y | ∃x.ϕ | ∃X.ϕ | X(x). The semantics is the natural one on ordered
nested trees. The language L(ϕ) of ϕ is the set of nested trees that satisfy it; ϕ is
said to be bisimulation-closed if L(ϕ) is bisimulation-closed. The model-checking
problem is: given ϕ and a pushdown system P , does CTreeord(P) satisfy ϕ?

While MSO-logic over trees is decidable, MSO-logic over nested tree structures
is not. To see why, note that the gadget S used to prove Theorem 6 (Fig. 3-b)
may be embedded in the ordered nested pushdown tree T of a simple pushdown
system. Using existential set quantification, MSO-logic can select S from T , so
that there is a ϕ that holds on T iff gadgets as above exist. Hence:
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Theorem 9. The model-checking problem for (even the bisimulation-closed
fragment of) MSO-logic on nested pushdown trees is undecidable.

The satisfiability problem for MSO on nested trees is also undecidable. Further:

Theorem 10. There is a bisimulation-closed MSO-logic formula ϕ such that
there is no AP-NTA A satisfying L(A) = Unord(L(ϕ)).

It is natural to ask if MSO-logic is more expressive than nested tree automata.
It indeed turns out that runs of any NP-NTA A can be encoded by an MSO-
logic formula ϕA. The latter uses existential quantification over sets to “guess”
a global labeling of the nodes of a nested tree by states of A, and uses the
predicates −→ and ↪→ to check the consistency of this guess. We can show that:

Theorem 11. For every NP-NTA A, there is an MSO-logic formula ϕA such
that L(A) = L(ϕ).

However, a “jump-edge” predicate seems too weak to capture the interplay of
recursion and Boolean closure in AP-NTAs; higher-order quantification seems
necessary. We conjecture that there is a language L recognized by an AP-NTA
such that there is no MSO formula ϕ that recognizes Lord , where Unord(Lord) =
L, making MSO neither less nor more expressive than AP-NTAs.

6 Conclusions

This paper introduces nested trees, a class of graphs that naturally abstract
branching behaviors of structured programs. Different ways to define languages
over nested trees are explored. Of these, alternating automata and the logic NT-
µ are found to have attractive closure and decidability properties. The central
result, the equivalence of NT-µ and AP-NTAs, is the analog of the the well-
known expressive equivalence between the µ-calculus and alternating parity tree
automata. On the other hand, nondeterministic automata and MSO-logic turn
out to be less robust here than in the classical setting.

It is interesting to contrast the benefits of modeling programs by nested struc-
tures rather than word or tree structures for linear-time and branching-time
model-checking. In the linear-time case, model checking corresponds to language
inclusion, and the frontier of checkable specifications expands from regular word
languages to nested word languages [3,4]. In the branching-time case, model
checking corresponds to membership, and the answer to this question changes
from regular tree languages to languages of nested trees. This is because in the
world of nested tree languages, alternation adds to the power of acceptors, and
interacts with the ability to “jump” to create a new decidability frontier.

Open theoretical questions include establishing that MSO-logic on nested trees
cannot capture the third-order fixpoints of NT-µ. Also, we believe that nested
trees are conceptually fundamental and merit further study. Applications beyond
program verification are possible: nested word structures are already known to
have connections with XML query languages, since XML documents have a
natural matching tag structure that can be modeled by jump-edges.
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Abstract. In this paper, we reduce pushdown system (PDS) model checking to a
graph-theoretic problem, and apply a fast graph algorithm to improve the running
time for model checking. Several other PDS questions and techniques can be
carried out in the new setting, including witness tracing and incremental analysis,
each of which benefits from the fast graph-based algorithm.

1 Introduction

Pushdown systems (PDSs) have served as an important formalism for program analysis
and verification because of their ability to concisely capture interprocedural control flow
in a program. Various tools [6,18,12,10,4] use pushdown systems as an abstract model
of a program and use reachability analysis on these models to verify program properties.
Using PDSs provides an infinite-state abstraction for the control state of the program.
Some of these tools [6,18,4], however, can only verify properties that have a finite-
state data abstraction. Other tools [10,12] are based on the more generalized setting of
weighted pushdown systems (WPDSs) [16] and are capable of verifying infinite-state
data abstractions as well.

At the heart of all these tools is a PDS reachability-analysis algorithm that uses a
chaotic-iteration strategy to explore all reachable states [2,7,17]. Even though there
has been work to address the worst-case running time of this algorithm [5], to our
knowledge, no one has addressed the issue of giving direction to the chaotic-iteration
scheme to improve the running time of the algorithm in practice. In this paper, we try to
improve the worst-case running time, as well as the running-time observed in practice.
To provide a common setting to discuss most PDS model checkers, we use WPDSs to
describe our improvements to PDS reachability.

An interprocedural control flow graph (ICFG) is a set of graphs, one per procedure,
connected via special call and return edges [14]. A WPDS with a given initial query
can also be decomposed into a set of graphs whose structure is similar. (When the un-
derlying PDS is obtained by the standard encoding of an ICFG as a PDS for use in
program analysis, these decompositions coincide.) Next, we use a fast graph algorithm,
namely the Tarjan path-expression algorithm [19] to represent each graph as a regular
expression. WPDS reachability can then be reduced to solving a set of regular equa-
tions. When the underlying PDS is obtained from a structured (reducible) control flow
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graph, the regular expressions can be found and solved very efficiently. Even when the
control flow is not structured, the regular expressions provide a fast iteration strategy
that improves over the standard chaotic-iteration strategy.

Our work is inspired by previous work on dataflow analysis of single-procedure pro-
grams [20]. There it was shown that a certain class of dataflow analysis problems can
take advantage of the fact that a (single-procedure) CFG can be represented using a
regular expression. We generalize this observation to multiple-procedure programs, as
well as to WPDSs. The contributions of this paper can be summarized as follows:

– We present a new reachability algorithm for WPDSs that improves on previously
known algorithms for PDS reachability. The algorithm is asymptotically faster
when the PDS is regular (decomposes into a single graph), and offers substantial
improvement in the general case as well.

– The algorithm is completely demand-driven, and computes only that information
needed for answering a particular user query. It has an implicit slicing stage where
it disregards parts of the program not needed for answering the user query.

– We show that several other PDS analysis questions and techniques, including wit-
ness tracing and incremental analysis, carry over to the new approach.

The rest of the paper is organized as follows: §2 provides background on PDSs and
WPDSs. §3 presents the previously known algorithm and our new algorithm for solving
reachability queries on WPDSs. In §4, we describe algorithms for witness tracing and
incremental analysis. §5 presents experimental results. §6 describes related work.

2 PDS Model Checking

Definition 1. A pushdown system is a triple P = (P, Γ,∆) where P is the set of
states or control locations, Γ is the set of stack symbols, and ∆ ⊆ P × Γ × P × Γ ∗

is the set of pushdown rules. A configuration of P is a pair 〈p, u〉 where p ∈ P and
u ∈ Γ ∗. A rule r ∈ ∆ is written as 〈p, γ〉 ↪→ 〈p′, u〉 where p, p′ ∈ P , γ ∈ Γ and
u ∈ Γ ∗. These rules define a transition relation⇒ on configurations of P as follows: If
r = 〈p, γ〉 ↪→ 〈p′, u〉 then 〈p, γu′〉 ⇒ 〈p′, uu′〉 for all u′ ∈ Γ ∗. The reflexive transitive
closure of⇒ is denoted by⇒∗.

Without loss of generality, we restrict PDS rules to have at most two stack symbols
on the right-hand side. The standard approach for modeling program control flow is as
follows: Let (N , E) be an ICFG where each call node is split into two nodes: one has an
interprocedural edge going to the entry node of the procedure being called; the second
has an incoming edge from the exit node of the procedure.N is the set of nodes in this
graph and E is the set of control-flow edges. Fig. 1(a) shows an example of an ICFG,
Fig. 1(b) shows the pushdown system that models it. The PDS has a single state p, one
stack symbol for each node in N , and one rule for each edge in E . We use rules with
one stack symbol on the right-hand side to model intraprocedural edges, rules with two
stack symbols on the right-hand side (push rules) for call edges, and rules with no stack
symbols on the right-hand side (pop rules) for return edges. It is easy to see that a valid
path in the program corresponds to a path in the pushdown system’s transition system,
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emain

p = NULL

loc1 = false

flag = false

call foo

ret. foo

exitmain

n1

n2

n3

n4

n5

efoo

i = 100

loc2 = true

if(!flag)

if(i > 0)

i = i – 1

*p = i

loc2 = false

exitfoo

t f

t f

n6

n7

n8

n9

n10

n11

n12

(1) 〈p, n1〉 ↪→ 〈p, n2〉
(2) 〈p, n2〉 ↪→ 〈p, n3〉
(3) 〈p, n3〉 ↪→ 〈p, n6 n4〉
(4) 〈p, n4〉 ↪→ 〈p, n5〉
(5) 〈p, n5〉 ↪→ 〈p, ε〉
(6) 〈p, n6〉 ↪→ 〈p, n7〉
(7) 〈p, n7〉 ↪→ 〈p, n8〉
(8) 〈p, n8〉 ↪→ 〈p, n9〉
(9) 〈p, n8〉 ↪→ 〈p, n12〉
(10) 〈p, n9〉 ↪→ 〈p, n10〉
(11) 〈p, n9〉 ↪→ 〈p, n11〉
(12) 〈p, n10〉 ↪→ 〈p, n9〉
(13) 〈p, n11〉 ↪→ 〈p, n12〉
(14) 〈p, n12〉 ↪→ 〈p, ε〉

(a) (b)

Fig. 1. (a) An ICFG. The e and exit nodes represent entry and exit points of procedures, re-
spectively. flag is a global variable, loc1 and loc2 are local variables of main and foo,
respectively. Dashed edges represent interprocedural control flow. (b) A pushdown system that
models the control flow of the graph shown in (a).

and vice versa. Thus, PDSs can encode ordinary control flow graphs, but they also
provide a convenient mechanism for modeling certain kinds of non-local control flow,
such as setjmp/longjmp in C. At a setjmp, we push a special symbol on the stack, and
at a longjmp with the same environment variable (identified using some preprocessing)
we pop the stack until that symbol is reached. The longjmp value can be passed using
the state of the PDS.

Because the number of configurations of a pushdown system is unbounded, it is
useful to use finite automata to describe certain infinite sets of configurations.

Definition 2. If P = (P, Γ,∆) is a pushdown system, then a P-automaton is a finite
automaton (Q,Γ,→, P, F ) where Q ⊇ P is a finite set of states, →⊆ Q × Γ × Q is
the transition relation, P is the set of initial states, and F is the set of final states of
the automaton. We say that a configuration 〈p, u〉 is accepted by a P-automaton if the
automaton can accept u when it is started in the state p (written as p u−→∗ q, where
q ∈ F ). A set of configurations is called regular if some P-automaton accepts it.

A weighted pushdown system is obtained by supplementing a pushdown system with
a weight domain that is a bounded idempotent semiring [16,3]. Such semirings are
powerful enough to encode finite-state data abstractions such as the one required for
Boolean program verification, as well as infinite-state data abstractions, such as copy-
constant propagation and affine-relation analysis [12].

Definition 3. A bounded idempotent semiring is a quintuple (D,⊕,⊗, 0, 1), where
D is a set whose elements are called weights, 0 and 1 are elements of D, and ⊕ (the
combine operation) and⊗ (the extend operation) are binary operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕ is
idempotent. (D,⊗) is a monoid with the neutral element 1.

2. ⊗ distributes over⊕, i.e., for all a, b, c ∈ D we have
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c) .
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3. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a⊗ 0 = 0 = 0⊗ a.
4. In the partial order � defined by ∀a, b ∈ D, a � b iff a ⊕ b = a, there are no

infinite descending chains.

Definition 4. A weighted pushdown system is a triple W = (P ,S, f) where P =
(P, Γ,∆) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idempotent semiring
and f : ∆→ D is a map that assigns a weight to each pushdown rule.

Let σ ∈ ∆∗ be a sequence of rules. Using f , we can associate a value to σ, i.e., if
σ = [r1, . . . , rk], then we define v(σ) def= f(r1) ⊗ . . . ⊗ f(rk). Moreover, for any two
configurations c and c′ of P , we use path(c, c′) to denote the set of all rule sequences
[r1, . . . , rk] that transform c into c′. Reachability problems on pushdown systems are
generalized to weighted pushdown systems as follows.

Definition 5. Let W = (P ,S, f) be a weighted pushdown system, where P = (P, Γ,
∆), and let C ⊆ P ×Γ ∗ be a regular set of configurations. The generalized pushdown
predecessor (GPP) problem is to find for each c ∈ P × Γ ∗:

δ(c) def=
⊕
{ v(σ) | σ ∈ path(c, c′), c′ ∈ C }

The generalized pushdown successor (GPS) problem is to find for each c ∈ P ×Γ ∗:
δ(c) def=

⊕
{ v(σ) | σ ∈ path(c′, c), c′ ∈ C }

To illustrate the above definitions, let us encode Boolean programs as a WPDS. Con-
sider the program shown in Fig. 1. It has one global variable flag. We ignore local vari-
ables for now, and details regarding their treatment can be found in [11]. Let G be the
set of all valuations of global variables. In our case, G = {0, 1} because we only have
one global variable. Each ICFG edge can be associated with a transformer, which is a
binary relation on G, and describes the effect of executing that edge on the global vari-
ables, e.g., the edge (n2, n3) will be associated with the relation {(0, 0), (1, 0)} because
flag is set to 0 (or false). Therefore, we use the weight domain (2G×G,∪, ◦, ∅, id),
and for a PDS rule, we associate it with the transformer of the corresponding ICFG
edge. Assertion checking in the program can be performed by seeing if a configuration
c (or a set of configurations) can be reached with non-zero weight, i.e, δ(c) �= 0.

Boolean programs can also be encoded using PDSs by using the states of the PDS
to encode valuations of global variables. However, WPDSs provide a more efficient
representation of Boolean programs because the weights can symbolically encode trans-
formers, for example, by using BDDs [17]. Moreover, WPDSs are strictly more power-
ful than PDSs because they can be used with infinite-width abstract domains to perform
copy-constant propagation and affine relation analysis [12]. More details on the uses of
PDSs for model checking, and their encoding as WPDSs can be found in [11].

3 Solving Reachability Problems

In this section, we review the existing algorithm for solving generalized reachability
problems on WPDSs [16], which is based on chaotic iteration, and present our new
algorithm, which uses Tarjan’s path-expression algorithm [19]. We limit our discussion
to GPP; GPS is similar but slightly more complicated.
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3.1 Solving GPP Using Chaotic Iteration

Let W = (P ,S, f) be a WPDS where P = (P, Γ,∆) is a pushdown system and
S = (D,⊕,⊗, 0, 1) is the weight domain. Let C be a regular set of configurations that
is recognized by P-automatonA = (Q,Γ,→0, P, F ). GPP is solved by saturating this
automaton with new weighted transitions (each transition t has a weight label l(t)), to
create automatonApre∗ , such that δ(c) can be read-off efficiently fromApre∗ : δ(〈p, u〉)
is the combine of weights of all accepting paths for u starting from p, where the weight
of a path is the extend of the weight-labels of the transitions in the path in order. We
present the algorithm for buildingApre∗ based on its abstract grammar problem.

Definition 6. [16] Let (S,�) be a meet semilattice. An abstract grammar over (S,�)
is a collection of context-free grammar productions, where each production θ has the
form X0 → gθ(X1, . . . , Xk). Parentheses, commas, and gθ (where θ is a production)
are terminal symbols. Every production θ is associated with a function gθ : Sk → S.
Thus, every string α of terminal symbols derived in this grammar denotes a composi-
tion of functions, and corresponds to a unique value in S, which we call valG(α). Let
LG(X) denote the strings of terminals derivable from a nonterminal X . The abstract
grammar problem is to compute, for each nonterminal X , the value MODG(X) =

α∈LG(X) valG(α). This value is called the meet-over-all-derivations value for X .

We define abstract grammars over the meet semilattice (D,⊕), where D is the set of
weights as given above. An example is shown in Fig. 2. The non-terminal t3 can derive
the string α = g4(g3(g1)) and val (α) = w4 ⊗ w3 ⊗ w1.

(1) t1 → g1(ε) g1 = w1
(2) t1 → g2(t2) g2 = λx.w2 ⊗ x

(3) t2 → g3(t1) g3 = λx.w3 ⊗ x
(4) t3 → g4(t2) g4 = λx.w4 ⊗ x

Fig. 2. A simple abstract grammar with four productions

Production for each
(1) PopSeq(q,γ,q′) → g1(ε) (q, γ, q′) ∈ →0

g1 = 1
(2) PopSeq(p,γ,p′) → g2(ε) r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆

g2 = f(r)
(3) PopSeq(p,γ,q) → g3(PopSeq(p′,γ′,q)) r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, q ∈ Q

g3 = λx.f(r) ⊗ x
(4) PopSeq(p,γ,q) → g4(PopSeq(p′,γ′,q′),PopSeq(q′,γ′′,q))

g4 = λx.λy.f(r) ⊗ x⊗ y r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆, q, q′ ∈ Q

Fig. 3. An abstract grammar problem for solving GPP

The abstract grammar for solving GPP is shown in Fig. 3. The grammar has one
non-terminal PopSeqt for each possible transition t ∈ Q × Γ × Q of Apre∗ . The pro-
ductions describe how the weights on those transitions are computed. Let l(t) be the
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weight label on transition t. Then we want l(t) = MOD(PopSeqt). The meet-over-
all-derivation value is obtained as follows [16]: Initialize l(t) = 0 for all transitions
t. If PopSeqt → g(PopSeqt1 ,PopSeqt2) is a production of the grammar (with possi-
bly fewer non-terminals on the right-hand side) then update the weight label on t to
l(t)⊕ g(l(t1), l(t2)). The existing algorithm for solving GPP is a worklist-based algo-
rithm that uses chaotic iteration to choose (i) a transition in the worklist and (ii) all
productions that have this transition on the right side, and updates the weight on the
transitions on the left-hand side of the productions as described earlier. If the weight on
a transition changes then it is added to the worklist. Defn. 3(4) guarantees convergence.

Such a chaotic-iteration scheme is not very efficient. Consider the abstract grammar
in Fig. 2. The most efficient way of saturating weights on transitions would be to start
with the first production and then keep alternating between the next two productions
until l(t1) and l(t2) converge before choosing the last production. Any other strategy
would have to choose the last production multiple times. Thus, it is important to identify
such “loops” between transitions and to stay within a loop before exiting it.

3.2 Solving GPP Using Path Expressions

To find a better iteration scheme for GPP, we convert GPP into a hypergraph problem.

Definition 7. A (directed) hypergraph is a generalization of a directed graph in which
generalized edges, called hyperedges, can have multiple sources, i.e., the source of
an edge is an ordered set of vertices. A transition dependence graph (TDG) for a
grammar G is a hypergraph whose vertices are the non-terminals of G. There is a
hyperedge from (t1, · · · , tn) to t if G has a production with t on the left-hand side and
t1 · · · tn are the non-terminals that appear (in order) on the right-hand side.

If we construct the TDG of the grammar shown in Fig. 3 when the underlying PDS is
obtained from an ICFG, and the initial set of configurations is {〈p, ε〉 | p ∈ P} (or
→0= ∅), then the TDG is identical to the ICFG (with edges reversed). Fig. 4 shows an
example. This can be observed from the fact that except for the PDS states in Fig. 3,
the transition dependences are almost identical to the dependences encoded in the push-
down rules, which in turn come from ICFG edges; e.g., the ICFG edge (n1, n2) corre-
sponds to the transition dependence ((t2), t1) in Fig. 4, and the call-return pair (n3, n6)
and (n12, n4) in the ICFG corresponds to the hyperedge ((t4, t6), t3).

For such pushdown systems, constructing TDGs might seem unnecessary but it al-
lows us to choose an initial set of configurations, which defines a region of interest in
the program. Moreover, PDSs can encode much stronger properties than an ICFG, such
as setjmp/longjmp in C programs. However, it is still convenient to think of a TDG as
an ICFG. In the rest of this paper, we illustrate the issues using the TDG of the gram-
mar in Fig. 3. We reduce the meet-over-all-derivation problem on the grammar to a
meet-over-all-paths problem on its TDG.

Intraprocedural Iteration. We first consider TDGs of a special form: consider the
intraprocedural case, i.e., there are no hyperedges in the TDG (and correspondingly no
push rules in the PDS). As an example, assume that the TDG in Fig. 4 has only the part
corresponding to procedure foo() without any hyperedges. In such a TDG, if an edge
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((t1), t) was inserted because of the production t → g(t1) for g = λx.x ⊗ w for some
weight w, then label this edge with w. Next, insert a special node ts into the TDG and
for each production of the form t→ g(ε) with g = w, insert the edge ((ts), t) and label
it with weight w. ts is called a source node. This gives us a graph with weights on each
edge. Define the weight of a path in this graph in the standard (but reversed) way: the
weight of a path is the extend of weights on its constituent edges in the reverse order.
It is easy to see that MOD(t) =

⊕
{v(η) | η ∈ path(ts, t)}, where path(ts, t) is the

set of all paths from ts to t in the TDG and v(η) is the weight of the path η. To solve
for MOD, we could still use chaotic iteration, but instead we will make use of Tarjan’s
path-expression algorithm [19].

Problem 1. Given a directed graph G and a fixed vertex s, the single-source path ex-
pression (SSPE) problem is to compute a regular expression that represents path(s, v)
for all vertices v in the graph. The syntax of regular expressions is as follows: r ::= ∅ |
ε | e | r1 ∪ r2 | r1.r2 | r∗, where e stands for an edge in G.

We can use the SSPE algorithm to compute regular expressions for path(ts, t), which
gives us a compact description of the set of paths we need to consider. Also, the
Kleene-star operator identifies loops in the TDG. Let ⊗c be the reverse of ⊗, i.e.,
w1 ⊗c w2 = w2 ⊗ w1. To compute MOD(t), we take the regular expression for
path(ts, t) and replace each edge e with its weight, ∅ with 0, ε with 1, ∪ with ⊕, . with
⊗c, and solve the expression. The weight w∗ is computed as 1⊕w⊕ (w⊗w)⊕· · · ; be-
cause of the bounded-height property of the semiring, this iteration converges. The two
main advantages of using regular expressions to compute MOD(t) are: First, loops are
identified in the expression, and the evaluation strategy saturates a loop before exiting
it. Second, we can computew∗ faster than normal iteration could. For this, observe that

(1 ⊕ w)n = 1⊕ w ⊕ w2 ⊕ · · · ⊕ wn

where exponentiation is defined using ⊗, i.e., w0 = 1 and wi = w ⊗ w(i−1). Then w∗

can be computed by repeatedly squaring (1 ⊕ w) until it converges. If w∗ = 1 ⊕ w ⊕
· · · ⊕ wn then it can be computed in O(log n) operations. A chaotic-iteration strategy
would take O(n) steps to compute the same value. In other words, having a closed
representation of loops provides an exponential speedup.1

Tarjan’s algorithm uses dominators to construct the regular expressions for SSPE.
This has the effect of computing the weight on the dominators of a node before comput-
ing the weight on the node itself. This avoids unnecessary propagation of partial weights
to the node (which is the case when you exit a loop too early). Given a graph with m
edges (or m grammar productions in our case) and n nodes (or non-terminals), regular
expressions for path(ts, t) can be computed for all nodes t in timeO(m log n) when the
graph is reducible. Evaluating these expressions will take an additionalO(m log n logh)
semiring operations, where h is the height of the semiring.2 Because most high-level

1 This assumes that each semiring operation takes the same amount of time. In the absence of any
assumption on the semiring being used, we aim to decrease the number of semiring operations.
In some cases, e.g., BDD-based weight domains, repeated squaring may not reduce the overall
running time. However, the user can supply a procedure for computing w∗ whenever there is
a more efficient way of computing it than by using simple iteration [13].

2 The combined sizes of the regular expressions are bounded by the running time of the SSPE
algorithm.
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languages are well-structured, their ICFGs are mostly reducible. When the graph is not
reducible, the running time degrades to O((m log n + k) log h) semiring operations,
where k is the sum of the cubes of the sizes of dominator-strong components of the
graph. In the worst case, k can be O(n3). In our experiments, we seldom found irre-
ducibility to be a problem: k/n was a small constant. A pure chaotic-iteration strategy
would take O(m h) semiring operations in the worst case. Comparing these complex-
ities, we can expect the algorithm that uses path expressions to be much faster than
chaotic iteration, and the benefit will be greater as the height of the semiring increases.

(p, n1, p)

(p, n2, p)

(p, n3, p)

(p, n4, p)
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w11
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Fig. 4. TDG for the PDS shown in
Fig. 1. A WPDS is obtained from the
PDS by supplementing rule number i
with weight wi. Let tj stand for the
node (p, nj , p). The thick bold arrows
form a hyperedge. Nodes ts1 and ts2

are source nodes, and the dashed arrow
is a summary edge. These, along with
edge labels, are explained later in §3.2.

Interprocedural Iteration. We now generalize
our algorithm to any TDG. For each hyperedge
((t1, t2), t), delete it from the graph and replace it
with the edge ((t1), t). This new edge is called a
summary edge, and node t2 is called an out-node.
For example, in Fig. 4 we would delete the hy-
peredge ((t4, t6), t3) and replace it with ((t4), t3).
The new edge is called a summary edge because
it crosses a call-site (from a return node to a call
node) and will be used to summarize the effect of
a procedure call. Node t6 is an out-node and will
supply the procedure summary weight. The resul-
tant TDG is a collection of connected graphs, with
each graph roughly corresponding to a procedure.
In Fig. 4, the transitions that correspond to pro-
cedures main and foo get split. Each connected
graph is called an intragraph. For each intragraph,
we introduce a source node as before and add
edges from the source node to all nodes that have
ε-productions. The weight labels are also added
as before. For a summary edge ((t1), t) obtained
from a hyperedge ((t1, t2), t) with associated pro-
duction function g = λx.λy.w ⊗ x ⊗ y, label it
with w ⊗ t2, or t2 ⊗c w.

This gives us a collection of intragraphs with edges labeled with either a weight
or a simple expression with an out-node. To solve for the MOD value, we construct
a set of regular equations, which we call as out-node equations. For an intragraph
G, let tG be its unique source node. Then, for each out-node to in G, construct the
regular expression for all paths in G from tG to to, i.e., for path(tG, to). In this ex-
pression, replace each edge with its corresponding label. If the resulting expression
is r and it contains out-nodes t1 to tn, add the equation to = r(t1, · · · , tn) to the
set of out-node equations. Repeat this for all intragraphs. The resulting set of out-
node equations describe all hyperpaths in the TDG to an out-node from the collec-
tion of all source nodes. The MOD value of the out-nodes is the greatest fix-point of
these equations (with respect to � of Defn. 3(4)). For example, for the TDG shown in
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Fig. 4, assuming that t1 is also an out-node, we would obtain the following out-node
equations.3

t6 = w14.(w9 ⊕ w13.w11.(w12.w10)∗.w8).w7.w6
t1 = w5.w4.(t6.w3).w2.w1

Here we have used . as a shorthand for ⊗c. One way to solve these equations is by
using chaotic iteration: start by initializing each out-node with 0 (the greatest element
in the semiring) and update the values of out-nodes by repeatedly solving the equations
until they converge. We can give direction to this iteration by constructing a dependence
graph of these equation, where an equation to = r(t1, · · · , tn) gives rise to dependences
ti → to, 1 ≤ i ≤ n. We take a strongly connected component (SCC) decomposition of
this graph and solve all equations in one component before moving to equations in next
component (in a topological order). We could also use regular expressions to define an
evaluation order on these equations (details are given in [11]), but we chose a simpler
implementation because SCCs in this dependence graph, which correspond to mutually
recursive procedures, tend to be quite small in practice.

Each regular expression in the out-node equations summarizes all paths in an in-
tragraph and can be quite large. Therefore, we want to avoid evaluating them repeat-
edly while solving the equations. To this end, we incrementally evaluate the regular
expressions: only that part of an expression is reevaluated that contains a modified
out-node. (In the algorithm given in Fig. 5, the entire expression may be traversed,
but reevaluations are performed selectively.) A regular expression is represented us-
ing its abstract-syntax tree, where leaves are weights or out-nodes, and internal nodes
correspond to ⊕, ⊗, or ∗. As a further optimization, all regular expressions share com-
mon subtrees, and are represented as DAGs instead of trees. The incremental algorithm
we use takes care of this sharing and also identifies modified out-nodes in an expres-
sion automatically. At each DAG node we maintain two integers, last change and
last seen, as well as the weight weight of the subdag rooted at the node. We as-
sume that all regular expressions share the same leaves for out-nodes. We keep a global
counter update count that is incremented each time the weight of some out-node
is updated. For a node, the counter last change records the last update count at
which the weight of its subdag changed, and the counter last seen records the up-
date count at which the subdag was reevaluated. The evaluation algorithm is shown in
Fig. 5. When the weight of an out-node is changed, its corresponding leaf node is up-
dated with that weight, update count is incremented, and the out-node’s counters
are set to update count.

Once we solve for the values of the out-nodes, we can change the out-node labels on
summary edges in the intragraphs and replace them with their corresponding weight.
Then the MOD values for other nodes in the TDG can be obtained as in the intraproce-
dural version by considering each intragraph in isolation.

The time required for solving this system of equations depends on reducibility of the
intragraphs. Let SG be the time required to solve SSPE on intragraph G, i.e., SG =
O(m log n+ k) where k is O(n3) in the worst-case, but is ignorable in practice. If the
equations do not have any mutual dependences (corresponding to no recursion) then

3 The equations might be different depending on how the SSPE algorithm was implemented, but
all such equations would have the same solution.
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the running time is
∑

G SG log h, where the sum ranges over all intragraphs, because
each equation has to be solved exactly once. In the presence of recursion, we use the
observation that the weight of each subdag in a regular expression can change at most h
times while the equations are being solved because it can only decrease monotonically.
Because the size of a regular expression obtained from an intragraph G is bounded
by SG, the worst-case time for solving the equations is

∑
G SG h. This bound is very

pessimistic and is actually worse than that of chaotic iteration. Here we did not make
use of the fact that incrementally computing regular expressions is much faster than
reevaluating them. For a regular expression with one modified out-node, we only need
to perform semiring operations for each node from the out-node leaf to the root of the
expression. For a nearly balanced regular expression tree, this path to the root can be
as small as logSG. Empirically, we found that incrementally computing the expression
required many fewer operations than recomputing the expression.

1 procedure evaluate(r)
2 begin
3 if r.last seen == update count then return
4 case r = w, r = to return
5 case r = op(r1,r2)
6 evaluate(r1), evaluate(r2)
7 m = max{r1.last change, r2.last change}
8 if m > r.last seen then
9 w = op(r1.weight, r2.weight)

10 if r.weight �= w then
11 r.last change = m
12 r.weight = w
13 r.last seen = update count
14 end

Fig. 5. Incremental evaluation algorithm for regular expressions. Here op is the prefix version of
⊗, ⊕, or ∗. When op is ∗, r2 can be ignored.

Unlike the chaotic-iteration scheme, where the weights of all TDG nodes are com-
puted, we only need to compute the weights on out-nodes. The weights for the rest of
the nodes can be computed lazily by evaluating their corresponding regular expression
only when needed. For applications that just require the weight for a few TDG nodes,
this gives us additional savings. We also limit the computation of weights of out-nodes
to only those intragraphs that contain a TDG node whose weight is required. This cor-
responds to slicing the out-node equations with respect to the user query, which rules
out computation in procedures that are irrelevant to the query.

Handling Local Variables. WPDSs were recently extended to Extended-WPDSs to
provide a more convenient mechanism for handling local variables [12]. Reachability
problems in EWPDS are also based on abstract grammars similar to the ones for a
WPDS. Thus, we can easily adapt our algorithm to EWPDSs as well. Details are given
in [11]. We use EWPDSs in our experiments.
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4 Solving Other PDS Problems

In this section, we give algorithms for some important PDS problems: witness tracing
and incremental analysis. Our technical report [11] also gives an algorithm for differen-
tial weight propagation. Of these three, only witness tracing and differential propagation
have been discussed before for WPDSs [16].

4.1 Witness Tracing

For program-analysis tools, if a program does not satisfy a property, it is often useful
to provide a justification of why the property was not satisfied. In terms of WPDSs, it
amounts to reporting a set of paths, or rule sequences, that together justify the reported
weight for a configuration. Formally, using the notation of Defn. 5, the witness tracing
problem for GPP is to find, for each configuration c, a set ω(c) ⊆

⋃
c′∈C

path(c, c′)

such that
⊕

σ∈ω(c)
v(σ) = δ(c). This definition of witness tracing does not impose any

restrictions on the size of the reported witness set because any compact representation
of the set suffices for most applications. The algorithm for witness tracing for GPP
[16] requiresO(|Q|2 |Γ | h) memory. Our algorithm only requiresO(|ON | h) memory,
where |ON | is the number of out-nodes, which is expected to be much smaller than |Γ |.

In our new GPP algorithm, we already have a head start because we have regular
expressions that describe all paths in an intragraph. In the intragraphs, we label each
edge with not just a weight, but also the rule that justifies the edge. Push rules will be
associated with summary edges and pop rules with edges that originate from a source
node. Edges from the source node that were inserted because of production (1) in Fig. 3
are not associated with any rule (or with an empty rule sequence). After solving SSPE
on the intragraphs, we can replace each edge with the corresponding rule label. This
gives us, for each out-node, a regular expression in terms of other out-nodes that cap-
tures the set of all rule sequences that can reach that out-node. Next, while solving the
regular equations, we record the weights on out-nodes; i.e., when we solve the equa-
tion to = r(t1, · · · , tn), we record the weights on t1, · · · , tn — say w1, · · · , wn —
whenever the weight on to changes to, say, wo. Then the set of rule sequences to create
transition to with weight wo is given by the expression r (where we replace TDG edges
with their rule labels) by replacing each out-node ti with the regular expression for all
rule sequences used to create ti with weight wi (obtained recursively). This gives a reg-
ular expression for the witness set of each out-node. Witness sets for other transitions
can be obtained by solving SSPE on the intragraphs by replacing out-node labels with
their witness-set expression.

Here we only requireO(|ON | h) space for recording witnesses because we just have
to remember the history of weights on out-nodes. For PDSs obtained from ICFGs and
empty initial automaton, |ON | is the number of procedures in the ICFG, which is very
small compared to |Γ |.

4.2 Incremental Analysis

The first incremental algorithm for verifying finite-state properties on ICFGs was given
by Conway et al. [4]. We can use the methods presented in this paper to generalize their
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algorithm to WPDSs. An incremental approach to model checking has the advantage of
amortizing the verification time across program development or debugging time.

We consider two cases: addition of new rules and deletion of existing ones. In each
case we work at the granularity of intragraphs. When a new rule is added, the fix-point
solution of the out-node equations monotonically decreases and we can reuse all of the
existing computation. We first identify the intragraphs that changed (have more edges)
because of the new rule. Next, we recompute the regular expressions for out-nodes in
those intragraphs and add them to the set of out-node equations.4 Then we solve the
equations as before, but set the initial weights of out-nodes to be their existing value. If
new out-nodes were added, then set their initial value to 0.

Deletion of a rule requires more work. Again, we identify the changed intragraphs
and recompute the out-node equations for them. We call out-nodes in these intragraphs
as modified out-nodes. Next, we look at the dependence graph of the out-node equations
as constructed in §3.2. We perform an SCC decomposition of this graph and topologi-
cally sort the SCCs. Then the weights for all out-nodes that appear before the first SCC
that has a modified out-node need not be changed. We recompute the solution for other
out-nodes in topological order, and stop as soon as the new values agree with previ-
ous values. We start with out-nodes in the first SCC that has a modified out-node and
solve for their weights. If the new weight of an out-node is different from its previously
computed weight, all out-nodes in later SCCs that are dependent on it are marked as
modified. We repeat this procedure until there are no more modified out-nodes.

The advantage of doing incremental analysis in our framework is that very little
information has to be stored between analysis runs: We only need to store weights on
out-nodes.

5 Experiments

We are aware of two implementations of WPDSs: WPDS++ [8] and one used by
nMoped [9]. We call the implementation of our algorithm as FWPDS (F stands for
“fast”). It can be plugged-in as a back-end for each of the WPDS libraries. WPDS++
also supports an optimized iteration strategy where the user can supply a priority-
ordering on stack symbols, which is used by chaotic iteration to choose the transition
with least priority first. We refer to this version as BFS-WPDS++ and supply it with
a breadth-first ordering on the ICFG obtained by treating it as a graph. BFS-WPDS++
almost always performs better than WPDS++.

To measure end-to-end performance, FWPDS only computes the weight on transi-
tions required by the application. We also report the time taken to compute the weight
on all transitions and refer to this as FWPDS-Full. A comparison with FWPDS-Full will
give an indication of “application-independent” improvement provided by our approach
because it computes the same amount of information as the previous WPDS algorithms.
However, we measure speedups using FWPDS running times to show the potential of
using lazy-evaluation in real settings. FWPDS-Full uses a left-associative evaluation or-
der for computing weights of regular expressions. It is also worth noting that repeated

4 There are incremental algorithms for SSPE as well, but we have not used them because solving
SSPE for a single intragraph is usually very fast.
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squaring for computing w∗ did not cause any appreciable difference compared with
using a simple iterative method.

We tested FWPDS on three applications that use WPDSs. In each, we perform GPS
on the WPDS with the entry point of the program as the initial configuration. The first
application performs affine-relation analysis (ARA) on x86 programs [12]. An x86 pro-
gram is translated into a WPDS to find affine relationships between machine registers.
The application only requires affine relationships at certain branch points [1]. Some
of the results are shown in Table 1. Over all the experiments we performed, FWPDS
provided an average speedup of 1.6 times (i.e., reduced running time by 38%) over
BFS-WPDS++.

Table 1. Comparison of ARA results. The last column show the speedup (ratio of running times)
of FWPDS versus BFS-WPDS++. The programs are common Windows executables, and the
experiments were run on 3.2 Ghz P4 machine with 4GB RAM.

Time (s) Speedup
Prog Insts Procs WPDS++ BFS-WPDS++ FWPDS-Full FWPDS
print 75539 697 1.23 1.02 0.77 0.41 2.48
finger 96123 893 11.14 7.94 7.13 4.44 1.79
winhlp32 157634 6491 25.51 19.61 17.32 11.00 1.78
regsvr32 225857 9625 58.70 38.83 37.15 24.65 1.57
cmd 230481 2317 69.19 46.33 52.38 34.87 1.33
notepad 239408 2911 54.08 40.8 41.85 26.50 1.54

The second application, BTRACE, is for debugging [10]. It performs path optimiza-
tion on C programs: given a set of ICFG nodes, called critical nodes, it tries to find a
shortest ICFG path that touches the maximum number of these nodes. The path starts at
the entry point of the program and stops at a given failure point in the program. FWPDS
only computes the weight at the failure point. As shown in Table 2, FWPDS performs
much better than BFS-WPDS++ for this application, and the overall speedup was 4.3
times. Some experimental results on incremental analysis for BTRACE are presented
in [11]: We observed a roughly 10-fold improvement by incrementally computing the
solution after a deleted procedure was reinserted in the program.

Table 2. Comparison of BTRACE results. The last column shows speedup of FWPDS over BFS-
WPDS++. The critical nodes were chosen at random from ICFG nodes and the failure site was set
as the exit point of the program. The programs are common Unix utilities, and the experiments
were run on 2.4 GHz P4 machine with 4GB RAM.

Time (s) Speedup
Prog ICFG nodes Procs BFS-WPDS++ FWPDS-Full FWPDS
make 40667 204 15.1 7.7 5.8 2.58
indent 28155 104 19.6 28.2 15.9 1.24
less 33006 359 22.4 8.6 5.3 4.19
patch 27389 133 70.2 23.2 17.1 4.09
gawk 86617 401 72.7 64.5 45.1 1.61
wget 44575 399 318.4 58.9 27.0 11.77
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Table 3. nMoped results. The last column shows speedup of FWPDS over nMoped. The programs
were provided by S. Schwoon, and are not yet publically available.

Prog nMoped FWPDS-Full FWPDS Speedup
bugs5 13.11 13.03 7.25 1.81
slam-fixed 32.67 19.23 13.3 2.46
slam 6.32 5.21 3.27 1.93
unified-serial 37.10 19.65 12.46 2.98
iscsi1 29.15 27.12 14.08 2.07
iscsi10 178.22 59.63 31.29 5.70

The third application is nMoped [9], which is a model checker for Boolean pro-
grams. It uses a WPDS library for performing reachability queries. Weights are binary
relations on valuations of Boolean variables, and are represented using BDDs. We mea-
sure the performance of FWPDS against this library using a set of programs (and an
error configuration for each program) supplied by S. Schwoon. We compute the set of
all variable valuations that can hold at the error configuration by computing its meet-
over-all-paths weight. As shown in Table 3, FWPDS is 2 to 5 times faster than nMoped.
Our technical report [11] gives some other set of experiments, but they were on much
smaller programs and led to inconclusive results.

nMoped can also be asked to stop as soon as it finds out that the error configuration
is reachable (instead of exploring all paths leading to the error configuration). In that
case, when the error configuration was reachable, nMoped performed much better than
FWPDS, often completing in less than a second. This is expected because the evalua-
tion strategy used by FWPDS is oriented towards finding the complete weight (MOD
value) on a transition. For example, it might be better to avoid saturating a loop com-
pletely and propagate partially computed weights in the hope of finding out if the error
configuration is reachable. However, when the error configuration is unreachable, or
when the abstraction-refinement mode in nMoped is turned on, it explores all paths in
the program and computes the MOD value of all transitions. In such situations, it may
be better to use FWPDS.

6 Related Work

The basic strategy of using a regular expression to describe a set of paths has been used
previously for dataflow analysis [20] of single-procedure programs. The only work that
we are aware of that uses this technique for multi-procedure programs is by Rama-
lingam [15]. However, he used regular expressions for a particular analysis (execution
frequency analysis) and the technique was motivated by the special requirements of ex-
ecution frequency analysis when creating procedure summaries, rather than efficiency.
We have generalized the approach to apply to a much broader set of problems, namely
anything that can be encoded as a WPDS, and showed how various enhancements (in-
cremental recomputation of regular expressions, computing lazily, etc.) contribute to
creating a faster analysis.

There has been a host of previous work on incremental program analysis as well as
on interprocedural automaton-based analysis [4]. The incremental algorithm we have
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presented is similar to the algorithm in [4], but generalizes it to WPDSs and is thus
applicable in domains other than finite-state property verification. A key difference with
their algorithm is that they explore the property automaton on-the-fly as the program is
explored. Our encoding into a WPDS requires the whole automaton before the program
is explored. This difference can be significant when the automaton is large but only a
small part of the automaton needs to be generated.
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Abstract. We show how to find and fix faults in Boolean programs by extending
the program to a game. In the game, the protagonist can select an alternative im-
plementation for an incorrect statement. If the protagonist can do so successfully
using a memoryless strategy that does not depend on the stack contents, we have
found a correction for the Boolean program. We present a symbolic algorithm
that localizes possibly faulty statements and provides corrections.

If the Boolean program is an abstraction of a C program, the repair for the
Boolean program suggests a repair for the original C program. This yields a cor-
rect but incomplete approach to repairing C programs. We have applied this ap-
proach to Boolean programs that are produced as abstractions by SLAM and have
thus successfully patched several faulty Windows device drivers.

1 Introduction

When a software model checker disproves a property, it typically returns a counterex-
ample. A counterexample, however, is just an example of a failure, only a hint to the
root cause of the program’s error. In order to fix the bug we must understand the coun-
terexample, find its root cause, and then implement a fix. In this paper we describe a
method to automatically suggest repairs to source code based on the abstractions com-
puted within a software model checker. With our method the programmer can either
simply implement one of the proposed repairs, or the programmer may find that the
proposed repairs lead to greater understanding of the root cause of the counterexample
returned by the software model checker.

The technical contribution of our work is a method to fix faulty Boolean programs
by computing a memoryless, stackless strategy. We assume that the software model
checker is based on predicate abstraction [11] to Boolean programs [5] (i.e., pushdown
automata), as is done in tools like SLAM [3]. The Boolean program can be converted
into a game between the system (protagonist) and the environment (antagonist). Given
a suspect expression, the system decides how the expression should behave, whereas
the environment resolves nondeterminism. Such a game can be regarded as the push-
down equivalent of a reactive module [1]. A winning strategy for this game is one
that ensures that the specification is adhered to by fixing the proper decisions for the
system. If such a strategy exists, we can fix the Boolean program by implementing
the decisions that the strategy prescribes. We are looking for a repair that changes the
program as little as possible, so that it remains amenable to further modification by the
programmer. The repair should depend only on global variables and the local variables
that are currently in scope, and not on the stack contents. A change that does not satisfy
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these constraints cannot be easily implemented in a Boolean program. Such a repair
corresponds to a memoryless, stackless strategy [2]. Our choice to repair the program
by replacing expressions works relatively well in practice, but is not the only possibility.
Our technical approach is applicable to different fault models as well.

By replacing the Boolean predicates by the expressions they represent, we obtain
a constraint describing a set of repairs for the original C program. Any such repair
leads to a C program that adheres to its specification. The programmer then selects a
repair that does not violate any implicit assumptions. Although a repair for the Boolean
program guarantees the existence of a repair for the C program, the converse does not
hold. The abstract program may contain spurious counterexamples as well as the real
counterexample that corresponds to the bug and it may not be possible to repair all
of these. In order to demonstrate the viability of our approach we have implemented
the proposed method and used it to compute suggested repairs for several Microsoft
Windows device drivers after analysis using SLAM [3].

Related Work. The work described here extends work done in [13, 17] on locating
and correcting faults in finite-state systems.

Alur, La Torre, and Madhusudan [2] give a fixpoint computation algorithm for solv-
ing modular pushdown games that is similar to the algorithm we present in this paper.
They do not apply it to repair and do not show an implementation. They further focus on
complexity analysis for reachability in different settings of visibility: global memory,
local memory and local but persistent memory.

Work by Walukiewicz [18] focuses on computing strategies for more general µ-
calculus properties on pushdown systems. This work is not in the setting of repair and
the strategies that are found are not in general memoryless. Basing a repair on them
would significantly alter the program by adding a second concurrent thread. Bouajjani,
Esparza, and Maler [6] give algorithms for reachability analysis in alternating push-
down systems. Their algorithm is polynomial, but the strategy it produces is an alter-
nating automaton and may depend on the contents of the stack.

There has been considerable work in fault localization. Most of it is of heuristic na-
ture and relies on similarities between incorrect traces of the program and their differ-
ences with similar, correct traces [4, 12, 19]. Unlike our approach, this work requires the
existence of correct executions that are similar to the counterexamples found, but most
importantly, none of this work addresses repair. The approach of [4], for instance, marks
as suspect the statements that appear in different failure traces but not in traces that sat-
isfy the specification, and thus works on the basic block level. There is no guarantee that
the statements found can be used to repair the program or that a possible repair location
is found, even if it exists. Nevertheless, the approach appears to be quite good at finding
faulty statements. It would be interesting to see if it can be used as a preprocessing step
to our algorithm to limit the number of statements that we attempt to repair.

In [8], fault localization is extended to abstract counterexamples. The authors argue
that explanations of abstract counterexamples are more informative than explanations of
concrete counterexamples, because the predicates used capture the important informa-
tion in the program, but not more: it is an automatically generated high-level description
of the program. For instance, the information that x should be greater than y may be
much more informative that the information that x should be 8239 and not 4.
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Demsky and Rinard [9] and Khurshid, Garcı́a, and Suen [14] present work on repair-
ing corrupt data structures without terminating the program. Their work is on recovering
from a failure, not on fixing faults in the system.

2 Boolean Programs

2.1 Syntax and Semantics

Boolean programs [5] are similar to C programs: they have functions and recursion,
global and local variables. The difference is that all variables are of Boolean domain and
no additional storage is available. Boolean programs also support assertions, parallel
assignments, and nondetermism. In the following, we give a short formalization. We
will not give the details of the execution model, but it can easily be defined in terms
of a virtual machine. Note that a Boolean program may have more than one execution,
depending on nondeterminism.

A Boolean program is a tuple (R, main, Vg), where R is a set of routines, main ∈ R
is the initial routine, and Vg is a set of global variables. A routine r ∈ R is a tuple
(Sr, Vr), where Sr = (sr,0, . . . , sr,f ) is a sequence of statements and Vr is a set of
local variables. Statement sr,0 is the initial statement and sr,f is the final statement.

The set of variables visible in r is V ′
r = Vg ∪ Vr. A valuation ξ ⊆ V ′

r is the subset of
the visible variables that is set to 1, and the set of valuations in routine r is Xr = 2V ′

r .
We will not define the statements in detail. For a formalization it suffices to define

two functions: The control flow graph is given by next(ξ, s, s′) meaning that control
may continue at s′ ∈ Sr after executing s ∈ Sr with valuation ξ ∈ Xr. For conditional
statements, s′ depends on ξ. (Because of nondeterminism, a conditional statement may
have multiple successors for one ξ.) In particular, if sr,i is a function call, it is followed
by the statement sr,i+1, not by the first statement of the called routine.

The change of the valuation that results from executing s ∈ Sr is denoted by τs ⊆
Xr×Xr. For instance, if s assigns 1 to variable a, then τ(s) = {(ξ, ξ∪{a}) | ξ ∈ Xr}.
The expression choose[v,w] expresses nondeterminism. It evaluates to 1 if v is
1. Otherwise, it evaluates to 0 if w is 1, and nondeterministically otherwise. Thus, if
statement s is a := choose[v,w] then τs =

{
(ξ, ξ′) | ξ \ {a} = ξ′ \ {a} ∧

(v ∈ ξ → a ∈ ξ′) ∧ ((v /∈ ξ ∧ w ∈ ξ) → a /∈ ξ′)
}

. Since Boolean programs are
usually abstractions of C programs, and the Boolean variables are predicates, not all
valuations are possible. Nondeterminism can be limited to feasible valuations by an
enforce statement. We will not take such statements into account in the formalization,
but they are easily added and are handled by our implementation.

The set of states of a routine is Qr = Sr ×Xr and the set of initial states is Ir =
{sr,0} ×Xr. The set of states of a program is the (disjoint) union of the set of states of
its routines. The initial states of the program are the initial states of main. A state (s, ξ)
is a bad state if s is an assert statement and ξ is a valuation that violates the assertion.

For a call statement s from routine src to routine dst , we use a relation µs : Xsrc ×
Xdst . This mapping handles the assignment of the actual parameters to the formal pa-
rameters. The values of global variables remain unchanged and local variables that
are not formal parameters are assigned nondeterministically. We use the function ρs :



Repair of Boolean Programs with an Application to C 361

Xsrc×Xdst → Xsrc to compute the valuation after the call returns. It copies the values
of the global variables from the called function, copies the values of the local variables
from the values they had before the call, and assigns the value returned by dst .

Example. We give an example of a Boolean program in Fig. 1(a). It was generated
by abstraction of the C program in Fig. 2, using the predicates shown in Fig. 3. We
only have global variables and V ′

main = V ′
f = {p1, p2, p3}, so Xmain = Xf = X =

2{p1,p2,p3}. The first statement in Line 1 is a parallel assignment which simultaneously
assigns values to all variables. Thus, τ1 = {(ξ, {p2, p3}) | ξ ∈ X}. (The subscript to τ
refers to the line number.) Note that f does not have arguments or return results. Thus,
µ2 = µ8 = {(ξ, ξ) | ξ ∈ X} and ρ2(ξmain, ξf) = ρ8(ξmain, ξf) = ξf.

Routine f assigns new values to all of the variables in Line 6 and calls itself until p2
= 0. In Line 3 of the main routine, an assertion checks that p1 = 1. The program does
not fulfill this requirement. ��

2.2 Model Checking of Boolean Programs

We review model checking of Boolean programs [5, 10]. Given a Boolean program
P = (R, main, Vg), we associate with every routine r ∈ R an execution graph Er =
〈Qr, Er〉, where Qr is the set of states of r and Er ⊆ Qr × Qr is a set of edges
(to be defined). Intuitively, an edge represents a step in the execution and elements of
E∗ represent executions. ((The relation E∗ is closely related to the path edges used
in interprocedural dataflow analysis [15].)) We associate with P an execution graph
E = 〈Q,E〉, where Q =

⋃
r∈R Qr, E = Ec ∪

⋃
r∈R Er. The set Ec of call edges is

defined below.
The definitions of the edge relations Er and Ec are mutually recursive. First, we

define an update relation τ ′s on the statements. If s is a statement other than a call, then
τ ′s = τs. Otherwise τ ′s complies with the called routine dst : τ ′s =

{
(ξ1, ξ2) | ∃ξ′1, ξ′2 :

(ξ1, ξ′1) ∈ µs ∧ ((sdst,0, ξ′1), (sdst ,f , ξ′2)) ∈ E∗
dst ∧ ρs(ξ1, ξ′2) = ξ2

}
.

Furthermore, we define the reachable states Rch and the sets of edges Er and Ec as
follows.

Rch =
{
(s, ξ) | ∃ξ0 : ((smain,0, ξ0), (s, ξ)) ∈ E∗},

Er =
{
((s, ξ), (s′, ξ′)) | (s, ξ) ∈ Rch ∧ next(ξ, s, s′) ∧ (ξ, ξ′) ∈ τ ′s

}
, and

Ec =
{
((ssrc , ξ), (sdst,0, ξ′)) | ssrc calls dst ∧ (ssrc, ξ) ∈ Rch ∧ (ξ, ξ′) ∈ µssrc

}
.

Thus, we start with the initial states of the program and add edges from states as they
become reachable. In particular, edges from call statements are added as soon as paths
through the called routine are calculated.

Theorem 1. For q, q′ ∈ Q, we have (q, q′) ∈ E∗ iff there is an execution of the program
that reaches q and subsequently reaches q′.

Example. Fig. 1(b) gives the execution graph of the example. An example of an execu-
tion starts in Line 1 with p1 = p2 = p3 = 0. (We denoted this state by (1, (0, 0, 0)).)
Then it progresses to state (2, (0, 1, 1)) and calls f with the same valuation. Then, the
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decl p1, p2, p3; 000 010 011 100 000 010 011 100
0 main()

• • • • • • • •
1 p1, p2, p3 := 0, 1, 1;

◦ ◦ •
���������

���� ����





◦ ◦ ◦ •
���������

���� ����





◦
2 f ();

•

���������� ◦ ◦ ◦ •
āb���

�������

•
b̄		

				

•
c̄

•
abd̄









3 assert(p1); X X X X 

4 end;

5 f ()
◦ • • ◦ • • • •

6 p1, p2, p3:=
choose[0,(p2|p3|p1)],
p3,
choose[0,(!p2|!p3|p1)];

•

�������� •

�������� • ◦ •

��������

���������������� •

�������� • •



















7 if(p2) \\if(∗sys)
◦ •

��

•

��

◦ •a

��

•b

��

•c

��

•d

��

8 f ();

•

��������

����������� ◦ ◦ ◦ •
ā��

������
āb���

�������
ā�����

�����������

•
b̄��

�����

◦ •
d̄�����

�����������
ad̄���

�������

9 fi
10 end • ◦ ◦ ◦ •

ā

•

b̄

•

c̄

•

d̄

(a) Boolean Program (b) Execution Graph (c) Game Graph

Fig. 1. Boolean program and corresponding execution and game graph. There is one column for
every consistent valuation. The valuation is given as a triplet p1p2p3. Reached states are given
by •, unreachable states by ◦. Control flow goes from the top to the bottom, except for the dotted
lines, which denote call edges.

1 static int x;

2 void main() {
3 x = 3;

4 f ();

5 assert(x == 0);

}
6 void f () {
7 x = x - 1;

8 if (x > 1) {
9 f ();

}
}

Fig. 2. Faulty C program

p1: x == 0
p2: x > 1
p3: x > 2

Fig. 3. Predicates used for abstraction

a: ∗sys(000) = 1 ā: ∗sys(000) = 0
b: ∗sys(010) = 1 b̄: ∗sys(010) = 0
c: ∗sys(011) = 1 c̄: ∗sys(011) = 0
d: ∗sys(100) = 1 d̄: ∗sys(100) = 0

Fig. 4. Abbreviations for the conditions on
the implementation of ∗sys
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valuation nondeterministically becomes 010 or 011. It then recurs and, unless the recur-
sion is infinite, finishes f with valuation 000. It returns to main in that state, showing
that the assertion can be violated. ��

3 Repair of Boolean Programs

Suppose a Boolean program contains executions that violate an assert statement. A
repair is a replacement of an existing statement such that the resulting program can not
reach a bad state. Such a replacement can involve the choose function, and thus be
nondeterministic. In this case, the program does not reach a bad state for any behavior
of the nondeterministic statement.

To find repairs, a proper fault model has to be used. In the following, we assume that
the program contains one fault, viz. an incorrect expression. This is only one possible
fault model. Our algorithm is independent of the used fault model and other models
could be used, including changes to the left hand side of an assignment or insertion
or deletion of statements at arbitrary positions. We can thus adjust our approach to
different areas of application, but this is not in the scope of this paper.

3.1 Building the Game

To compute a correct replacement for an existing expression, we extend the model
checking algorithm to compute games between the environment (the antagonist) and
the system (the protagonist). We extend the set of expressions with the construct ∗sys.
This construct represents an arbitrary function controlled by the system. The environ-
ment controls nondeterminism through the choose function.

We replace a given expression by ∗sys and ask the following question: is there an
implementation for ∗sys such that the bad states are avoided regardless of the choices
of the environment? We do this by negating the question and computing under which
implementations of ∗sys the bad states are reached. If we then replace ∗sys by any other
implementation, the resulting Boolean program satisfies its specification. We allow the
implementation of ∗sys to be an arbitrary expression in terms of the visible variables.
Thus, ∗sys does not introduce extra memory, nor can the result of ∗sys depend on the
content of the stack. Computation of ∗sys corresponds to the computation of a mod-
ular strategy in [2]. In Section 3.5 we show how to attempt repair on all expressions
simultaneously.

3.2 Computing the Strategy

Let P be a Boolean program (R, main, Vg) that contains exactly one occurrence of ∗sys.
In order to compute a proper implementation of ∗sys, we define the game graph of P . In
this graph, we may progress from one state to another under one implementation of ∗sys

and not under another. This holds both for statements in which ∗sys occurs and for call
statements, because the behavior of the called routine may depend on the implementa-
tion of ∗sys.

Suppose that ∗sys occurs in routine r. A set of valuations c ⊆ Xr defines an imple-
mentation of ∗sys: for ξ ∈ Xr we have ∗sys(ξ) = 1 if and only if ξ ∈ c. Let C = 2Xr be
the set of possible implementations.
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We associate with every routine r ∈ R a game graph Gr = 〈Qr, Er〉, where Qr is
the set of states of r and Er ⊆ Qr × C ×Qr is a set of labeled edges (to be defined).
The game graph of P is G = 〈Q,E〉, where Q =

⋃
r∈R Qr, E = Ec ∪

⋃
r∈R Er.

(Ec ⊆ Q × S × Q is defined below.) We define the reflexive transitive closure of a
labeled edge relation E ⊆ Q× C ×Q as E∗ = {(q, c, q′′) | q = q′′ ∨ ∃q′ : (q, c, q′) ∈
E∗ ∧ (q′, c, q′′) ∈ E}.

For game graphs, τ ′s ⊆ Xr ×C ×Xr takes into account the implementation of ∗sys.
If s is a statement that does not include ∗sys and is not a call, we have τ ′s = {(ξ, c, ξ′) |
c ∈ C ∧ (ξ, ξ′) ∈ τs}. We will use an example to show how ∗sys is handled. Given an
implementation c, the statement s = (a := ∗sys), assigns 1 to a in states ξ with ξ ∈ c.
Thus, we have

τ ′s = {(ξ, c, ξ′) | c ∈ C ∧ (ξ ∈ c ∧ ξ′ = ξ ∪ {a}) ∨ (ξ /∈ c ∧ ξ′ = ξ \ {a}).

(If the set of valuations is limited using an enforce statement, we do not include edges
to impossible valuations.) Finally, if s is a call to dst ,

τ ′s = {(ξ1, c, ξ2) | ∃ξ′1, ξ′2 :
(ξ1, ξ′1) ∈ µs, ((sdst,0, ξ′1), c, (sdst,f , ξ

′
2)) ∈ E∗

dst ∧ ρs(ξ1, ξ′2) = ξ2}.

Now we can define

Rc =
{
(s, ξ) | ∃ξ0 : ((smain,0, ξ0), c, (s, ξ)) ∈ E∗},

Er =
{
((s, ξ), c, (s′, ξ′)) | (s, ξ) ∈ Rc ∧ next(ξ, s, s′) ∧ (ξ, c, ξ′) ∈ τ ′s

}
,

Ec =
{
((ssrc , ξ), c, (sdst,0, ξ′)) | ssrc calls dst ∧ (ssrc, ξ) ∈ Rc ∧ (ξ, ξ′) ∈ µssrc

}
.

We have the following lemma.

Lemma 1. For c ∈ C, let P ′
c be the Boolean program in which ∗sys is replaced by the

function described by c. There is an edge (q, c, q′) ∈ E∗ iff P ′
c contains an execution

that reaches q and subsequently reaches q′.

Symbolic Computation. Iterating over all possible implementation of ∗sys is very inef-
ficient: there are 2Xr such implementations. The algorithm can be implemented sym-
bolically using binary decision diagrams (BDDs) [7]. For each valuation ξ ∈ Xr we
introduce a BDD variable xξ that we refer to as a condition: xξ = 1 (0) iff ∗sys(ξ) =
1 (0, resp.). Thus, an assignment to the variables corresponds to an implementation
c ⊆ 2Xr . We construct a BDD for τ ′s for every s and use these BDDs to construct E∗

symbolically. The algorithm is analogous to the explicit one, except that we handle all
possible implementations simultaneously. The number of BDD variables is exponential
in the number of variables in scope, which is the major bottleneck for efficiency. Thus,
our algorithm is doubly exponential in the number of variables and exponential in the
number of nodes in the graph, which matches the lower bound shown in [2].

Example. We attempt to repair the Boolean program by replacing the if statement in
Line 7 by ∗sys. (See Fig. 1(c) for the game graph.) The edges between the states are
labeled with a Boolean function over Xr that represents all implementations for that
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edge. The conditions are given in Fig. 4. For instance, b represents all implementations
such that ∗sys(0, 1, 0) = 1.

Consider state (6, (0, 1, 1)) of routine f. From here, an execution may nondetermin-
istically proceed to (7, (0, 1, 0)) and then to Line 10, provided that ∗sys(0, 1, 0) = 0.
Because the other edges on the path do not restrict the implementation of ∗sys, the pro-
gram can proceed, from state (6, (0, 1, 1)) to (10, (0, 1, 0)) if ∗sys(0, 1, 0) = 0. This
condition propagates to Line 2 of main, which calls f. Thus, in main, the program
proceeds from (2, (0, 1, 1)) to (3, (0, 1, 0)) if ∗sys(0, 1, 0) = 0, and then violates the
assertion. Thus, a successful implementation of ∗sys cannot have ∗sys(0, 1, 0) = 0. ��

3.3 Extracting a Repair

To extract a repair from the game graph, we select all paths (v, c, v′) ∈ E∗
main that

connect an initial state with a bad state. Implementations that allow these paths are
faulty. The set of correct implementations is thus I = C \

⋃
{c | ∃(x, c, y) ∈ E∗ ∧ x ∈

Imain ∧ y ∈ bad}, where bad is the set of bad states.

Theorem 2. If we replace ∗sys with any implementation c ∈ I , the resulting program
contains no execution that leads to a bad state.

If I is given symbolically, each prime implicant of I corresponds to a repair. The
BDD variables VP that appear positively in the implicant denote the conditions un-
der which the implementation must return 1 and the negative variables VN denote
conditions under which the implementation must return 0. Thus, ∗sys must return 1
(0) for implementations ξ such that xξ ∈ VP (xξ ∈ VN , resp.) Identifying vari-
ables with the conditions they denote, the repair can be given as a set of statements
choose[

∨
x∈VP

x,
∨

x∈VN
x], one for each (irredundant) prime implicant.

Example. Consider again Fig. 1(c). There are paths from the initial states to error states
for any implementation that satisfies āb ∨ b̄ ∨ c̄, which can be simplified to ā ∨ b̄ ∨ c̄.
Thus, I = abc. Therefore, the suggested repair is choose(a ∨ b ∨ c, 0), or, in terms of
predicates, choose(¬p1 ∧ (p2 ∨ ¬p3), 0). ��

3.4 Mapping Boolean Repairs to C

Suppose the Boolean program is a conservative abstraction of the C program. A repair
for a Boolean program corresponds to a repair for the C program. If we substitute the
meaning of the predicates in the repair for the Boolean program, we obtain a constraint
for the C program. This constraint requires that in a given line a given predicate be-
comes true in some situations and false in others. Any implementation that satisfies this
constraint is guaranteed satisfy the specification. Note that there may be more than one
implementation that satisfies the constraint. It is up to the programmer to select a good
repair, depending on the intended semantics.

Example. Recall that the Boolean program that we have repaired is an abstraction of the
C program in Fig. 2. The meaning of the predicates p1, p2, and p3 is given in Fig. 3.
The repair that we have found says that the then branch should certainly be taken if
x �= 0 ∧ (x > 1 ∨ x ≤ 2), which is equivalent to x �= 0. Substituting x �= 0 in Line 8
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gives the correct behavior. Note that the suggestion allows us to take the then branch
also in other cases. In particular, we could satisfy it by substituting true in Line 8.
Although this satisfies the specification (the assertion is never violated), it is clearly
undesirable, as it introduces an infinite loop. In general, user interaction is necessary to
select the desired repair from the set of possible repairs given by the algorithm. We have
observed, however, that the suggested repairs are typically quite good. They reduce the
number of statements to be considered to just a few and give good hints on how to
modify the statements. A more realistic example is found in the next section. ��

3.5 Localizing Faults

With the graphs we defined so far, we can localize the fault by successively replacing
every expression in the program by ∗sys and computing the related game graph. Expres-
sions for which a repair is found are potential fault locations. These games differ only in
the implementation of one expression. To avoid redundant computations, we compute
a combined game graph for all possible repairs at one time. To this end, we compute τ ′

for each statement once with the original expression, and a second time for its imple-
mentation with ∗sys. The combined graph is built using labels identifying the different
subgraphs for the repair of each statement. Using symbolic representation, this can be
done quite efficiently.

4 Experimental Results

In order to demonstrate the viability of our approach, we have performed experiments
on Boolean programs constructed by the SLAM-based Static Driver Verifier [3] , using
our implementation based on CUDD [16]. We examined nine bugs in drivers from the
Windows operating system. We used a representative set of drivers that implemented
various functionalities, including storage, input, networking, etc. For this reason we
believe that the results should be repeatable for other drivers and other code of similar
size and complexity. The driver’s code size ranged from 2,000 to 35,000 lines of C code.
(Between 1,700 and 25,000 lines in the Boolean program.)

For verification, a driver is accompanied by a test harness and an automaton. The
harness is the same in every test and contains a routine that nondeterministically calls
functions in the drivers API. The automaton contains code to test if a given property
holds.

Table 1 lists the results of the experiments. This table contains the following informa-
tion: (1) the name of the driver, (2) the number of lines of code of the Boolean program,
(3) the number of expressions examined for repair, (4) the number of repairs in the
Boolean program, (5) the number of repairs in the C-code of the driver (all other repairs
attempt to fix the bug by changing the test harness or the automaton), (6) the overall run
time, (7) number of global variables and the maximum number of local variables, (8)
the results of the approach (discussed below), and (9) the name of the tested property.
Table 2 contains brief and informal descriptions of the properties that we used.

We examined the repairs computed for the Boolean program and checked if they
can be used for the C code of the driver. Examples where the real fault was within the
set of found repairs are marked with 
. For the remaining examples we either found
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Table 1. Results from experiments with Boolean programs produced by SLAM when checking
properties of Windows device drivers

Driver LoC # Expr. # Total # in Driver Time(s) # vars Results Property

1394 diag 7223 273 57 8 1345 2/10 � MarkIrpPending
bulltlp3.1 4751 860 30 3 16482 13/15 X1 IrpProcComplete
daytona 14364 305 2 0 379 2/0 X1 StartIoRecursion
gameenum 4001 217 29 1 577 2/9 � MarkIrpPending
hidgame 3611 335 27 4 7132 9/17 X2 LowerDriverReturn
mousefilter 1755 165 21 3 4035 7/33 � PendCompleteReq
parport 24379 1055 3 1 8334 2/0 � DoubleCompletion
pscr 4842 374 5 0 2797 6/7 X1 IrqlReturn
sfloppy 2216 19 6 4 4 2/0 � AddDevice

Table 2. Informal summary of properties listed in Table 1

Property Summary

AddDevice Checks that a driver’s AddDevice routine calls certain key APIs.
DoubleCompletion Checks that drivers do not complete I/O request packets twice.
IrpProcComplete Ensures that dispatch routines completely process I/O request packets.
IrqlReturn Checks that a driver dispatch routine’s thread priority is the same at function call and exit.
LowerDriverReturn Checks that if a driver calls another driver lower in stack, the dispatch routine will return the

same status as lower driver.
MarkIrpPending Ensures that returns of STATUS PENDING and calls to IoMarkIrpPending are correlated.
PendCompleteReq Checks that drivers do not return STATUS PENDING if IoCompleteRequest has been called

during the execution of the dispatch routine.
StartIoRecursion Checks for potential recursion in a driver’s StartIo routines.

no repairs, or the approach suggested only “cheating” repairs such as avoiding a call
to the erroneous routine or staying in a loop forever. Missing the repair can have two
reasons:X1 marks examples where the fault was a missing call or the wrong order of
calls. These faults do not fit in our fault model and thus cannot be found. X2 marks
examples where the abstraction was too coarse to find a repair.

In the rest of the section, we describe adjustments to our approach that made our
approach feasible for real device drivers and we present a case study of the Windows
parallel port driver.

4.1 Adjustments for Checking Windows Device Drivers

Limiting the Number of Variables Considered for Repair: While the examples contain
up to 40 predicates visible at one time, many of them are temporary local variables
that are uninteresting. Global variables hold information from the test harness, which
give informations about the driver’s environment. By reducing the number of variables
considered for the implementation of ∗sys, we may drastically reduce the size of the
BDD. On the other hand, we can miss results that are not expressible with the limited
set. No incorrect repairs are generated. For five of the examples, this heuristic was
necessary to be able to compute repairs.

Parallel Assignments: Parallel assignments are hard to handle: Repairing all expres-
sions at the same time is very inefficient. Repairing only one is usually infeasible be-
cause the assignments are tightly related and because many valuations of the predicates
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state { bool CompletionAlreadyCalled = 0; }

IoCompleteRequest.entry
{

if (SdvHarnessIrp==$1) {
if (CompletionAlreadyCalled) { error(); }
else { CompletionAlreadyCalled = 1; }

}
}

Fig. 5. Temporal property DoubleCompletion

133 NTSTATUS
134 PptDispatchClose(PDEVICE_OBJECT DevObj,PIRP Irp) {
135 PFDO_EXTENSION fdx = DevObj->DeviceExtension;
136 P5TraceIrpArrival( DevObj, Irp );
137 if( DevTypeFdo == fdx->DevType ) {
138 return PptFdoClose( DevObj, Irp );
139 } else {
140 return PptPdoClose( DevObj, Irp );
141 } }

Fig. 6. Source code from dispatchRedirect.c in
Parallel port device driver

are ruled out using an enforce statement. Therefore, we searched for a new implemen-
tation of one expression, while allowing the other predicates to take arbitrary values in
accordance with the enforce rule. The repairs for 1394 diag and gameenum suggest new
values in parallel assignments which were not possible without this optimization.

Removing Nondeterministic Functions: The abstraction refinement process starts
with a nondeterministic program and adds predicates when unfeasible paths are re-
ported. In some cases, a feasible counterexample is found before any predicates for
some of the functions are discovered. Such functions induce infeasible paths which
make it impossible to repair the Boolean program. In two cases, bulltlp3.1 and hidgame,
we removed calls to such functions from the harness in order to find repairs. In contrast
to the other heuristics, this one can produce repairs which are not valid in the original C
program. Tighter integration of the approach with SLAM would instead trigger further
abstraction in such cases.

4.2 Case Study: Windows Parallel Port Device Driver

We will now describe how we have used our approach to find a repair for a buggy
Windows parallel port device driver. The relevant code is given in Figs. 6, 7, and 8.
The code in Figure 5 describes a temporal property, DoubleCompletion. The driver vi-
olates this property, which ensures that the device driver dispatch routines do not call
the kernel-level API function IoCompleteRequest more than once on the same I/O re-
quest packet. (This example originally appears in [3]) The Windows kernel function Io-
CompleteRequest frees up the space of a request packet, which may then be re-allocated
and passed to another thread in the system. Calling IoCompleteRequest twice with the
same parameter can have disastrous consequences to the system’s stability.

When trying to prove that the device driver does not violate the rule, the test harness
calls the device driver’s dispatch routines nondeterministically, using an I/O request
packet called SdvHarnessIrp. The erroneous execution is as follows. The test harness
calls the parallel port device driver’s close dispatch routine PptDispatchClose (Fig. 6,
Line 134) on the I/O request packet SdvHarnessIrp. The function IoCompleteRequest
will erroneously be called twice on this package. When PptFdoClose (Fig. 7, Line 4)
is called, we enter the conditional statement at Line 14 and call P4CompleteRequest
(Fig. 8, Line 1774). Then, in Line 1782, IoCompleteRequest is called on SdvHarnessIrp
and the function returns to the call site. We then leave the conditional statement via the
goto on Line 18. At Line 60 P4CompleteRequestReleaseRemLock (Fig. 8, Line 1786)
is called, which itself calls P4CompleteRequest and thus makes the second call to Io-
CompleteRequest on SdvHarnessIrp.
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04 NTSTATUS PptFdoClose(
05 IN PDEVICE_OBJECT DeviceObject,
06 IN PIRP Irp
07 ) {
08 PFDO_EXTENSION fdx=DeviceObject->DeviceExtension;
09 NTSTATUS status;
10
11 PAGED_CODE();
12
13 // Verify that device was not SUPRISE_REMOVED.
14 if(fdx->PnpState & PPT_DEVICE_SURPRISE_REMOVED) {
15 // Our device has been SURPRISE removed, but
16 // since this is a CLOSE, SUCCEED anyway
17 status=P4CompleteRequest(Irp,STATUS_SUCCESS,0);
18 goto target_exit;
19 }
...
59 target_exit:
60 DD((PCE)fdx,DDT,"PptFdoClose - ........");
61 return P4CompleteRequestReleaseRemLock(
62 Irp, STATUS_SUCCESS, 0, &fdx->RemoveLock);
63 }

Fig. 7. Source code from fdoClose.c in Parallel
port device driver

1774 NTSTATUS P4CompleteRequest(
1775 IN PIRP Irp,
1776 IN NTSTATUS Status,
1777 IN ULONG_PTR Information
1778 ){
1779 P5TraceIrpCompletion(Irp);
1780 Irp->IoStatus.Status = Status;
1781 Irp->IoStatus.Information = Information;
1782 IoCompleteRequest(Irp,IO_NO_INCREMENT);
1783 return Status;
1784 }
1785
1786 NTSTATUS P4CompleteRequestReleaseRemLock(
1787 IN PIRP Irp,
1788 IN NTSTATUS Status,
1789 IN ULONG_PTR Information,
1790 IN PIO_REMOVE_LOCK RemLock
1791 ) {
1792 P4CompleteRequest(Irp,Status,Information);
1793 PptReleaseRemoveLock(RemLock,Irp);
1794 return Status;
1795 }

Fig. 8. Source code from util.c in Parallel port
device driver

1 void P4CompleteRequest_2() begin
2 if( *sys ) then
3 goto L7;
4 else
5 goto L8;
6 fi
7 L8: SLIC_IoCompleteRequest_entry_51();
8 L7: IoCompleteRequest_1();
9 return ;

10 end

Fig. 9. Boolean routine from abstraction of P4-
CompleteRequest (Fig. 8, line 1775)

if (SdvHarnessIrp==R) {
if (CompletionAlreadyCalled) {}
else {

CompletionAlreadyCalled = 1;
IoCompleteRequest(R);

}
}

Fig. 10. Replacement for the call of Io-
CompleteRequest in P4CompleteRequest

Our algorithm finds three repairs for the Boolean program, including Line 2 of rou-
tine P4CompleteRequest 2, shown in Fig. 9, which is the abstraction of the routine
P4CompleteRequest. The abstraction of the driver contains two predicates: g0: Comple-
tionAlreadyCalled �= 0 and g1: done �= 0. We know the predicate CompletionAlready-
Called from the safety property. Variable done is defined by the SDV harness and is
true iff we are still verifying the property (Irp is still equal to SdvHarnessIrp). The if
statement in Line 2 decides whether or not to call SLIC IoCompleteRequest entry 51
which executed an abstracted version of the rule-checking code in Fig. 5. The original

Fig. 11. Tool for viewing the repairs. On the left, we can choose which repair to examine. The
text fields give details on the repair and the corresponding parts of the Boolean program and C
code.
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routine, IoCompleteRequest 1(), is called in any case. The suggested repair for Line 2
is if(choose[g0&&!g1,0]), which means we may not enter IoCompleteRequest
if we are still checking the property and CompletionAlreadyCalled is 0. A screen shot
of the tool used to examine the repairs is given in Fig.11.

A possible implementation of this result in the driver is to add a new variable
CompletionAlreadyCalled that is initialized to zero (as in the automaton) and a vari-
able SdvHarnessIrp which is initialized to the value of the I/O request packet passed
into the driver dispatch routine. Thus, we repair the driver by replacing the call to Io-
CompleteRequest in P4CompleteRequest by the code given in Fig. 10. Note that the
repair of the Boolean program is memoryless because the automaton that implements
the temporal property is included in the Boolean program. For the C program this is not
the case, and we need to add a variable.

5 Conclusions

Modern software model checkers provide counterexamples when they disprove a prop-
erty. While clearly useful, counterexamples are not what the programmer is eventually
wants: a correct program. In this paper we have presented a method to automatically
suggest repairs in Boolean program. Given a model checker for C that uses Boolean
programs as an abstraction, we can use this method to fix faults in C programs. If a
repair is found for the Boolean program, then there is a repair for the C program. Our
approach often yields useful results, as shown by the application of our algorithm to
buggy Windows device drivers.

Future research includes finding fixes for violations of liveness constraints such as
infinite recursion. It would also be interesting to integrate repair and refinement more
tightly, by adding new predicates when needed for repair. Our approach is inefficient
when there are many Boolean variables in scope at the same time. One way to speed the
algorithm up may be a preprocessing step by a fault localization tool to narrow down the
set of suspect statements. Finally, our fault model may not be ideal. Instead of replacing
existing expressions, we may need to consider other repairs, such as the insertion of
statements. The theory presented here works regardless of the fault model.
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Abstract. We show that termination of a simple class of linear loops
over the integers is decidable. Namely we show that termination of de-
terministic linear loops is decidable over the integers in the homogeneous
case, and over the rationals in the general case. This is done by analyz-
ing the powers of a matrix symbolically using its eigenvalues. Our results
generalize the work of Tiwari [Tiw04], where similar results were derived
for termination over the reals. We also gain some insights into termi-
nation of non-homogeneous integer programs, that are very common in
practice.

1 Introduction

Termination analysis is one of the building blocks of automated verification. For
a generic loop

while (conditions) { commands }
it is well known that the termination problem is undecidable in all but the most
simple cases. Even when all the conditions and updates are given as piecewise
linear functions, the problem of deciding termination of the loop remains unde-
cidable since such programs can naturally simulate counter machines [Tiw04],
and the problem of whether a counter machine terminates on all inputs is unde-
cidable [BBK+01].

In view of the undecidability mentioned above, the efforts on practical termi-
nation analysis of loops have been concentrated on partial decision procedures.
One approach is synthesizing a ranking function. Synthesis of ranking functions
has been studied in [CSS03, BMP05a, BMP05b]. In some cases, one can even
find a complete method for synthesis of linear ranking functions [PR04]. Even
a complete synthesis method, however, can only establish existence of a certain
way of proving termination, and not actually decide the termination problem
itself. It is not hard to construct an example of a program that terminates but
has no linear ranking function.

The termination problem appears to be much harder, and one can expect it to
be decidable only in the simplest cases. In [Tiw04] termination has been shown
to be decidable for loops of the form

while (Bx > b) { x← Ax+ c }
where Bx > b represents a conjunction of linear inequalities over the state vari-
ables x, and x ← Ax + c represents a (deterministic) linear update of each
� Partially supported by an NSERC postgraduate scholarship.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 372–385, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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variable. The variables are interpreted over the reals IR, and there are no con-
straints on the initial conditions. Roughly speaking, [Tiw04] shows that only
the subspace corresponding to eigenvectors of A with positive real eigenvalues is
relevant to the termination problem. In the homogeneous case

while (Bx > 0) { x← Ax }
it is immediate to see that if there is an eigenvector v of A such that Av = λv,
λ > 0 and Bv > 0, then the loop is non-terminating on v. The decision procedure
depends on the fact that the inequality Bx > 0 is strict. More importantly, it
depends on the fact that the variables are interpreted over the reals. As the
following example illustrates, a program may be terminating over the integers,
but not over the reals.

Example 1. Consider the homogeneous loop

while (4x+ y > 0)
{ (

x
y

)
←
(
−2 4

4 0

)(
x
y

) }
The matrix has two eigenvectors, (−1−

√
17, 4) and (−1+

√
17, 4) corresponding

to eigenvalues −1−
√

17 and −1 +
√

17, respectively.
The eigenvector (−1+

√
17, 4) satisfies the loop condition, and corresponds to

a positive eigenvalue. Hence the loop does not terminate over IR. However, the
line (−1 +

√
17, 4)α does not contain any rational points, and the loop outside

this line is always dominated by the eigenvalue −1 −
√

17 < 0 that is bigger in
absolute value than the other eigenvalue. At the limit, the orbit of (x, y) will
alternate between the directions (−1 −

√
17, 4) and (1 +

√
17,−4). Hence the

loop terminates on all integers. �
The example highlights the difference between the integer and the real case. In
general, it is not unusual to have differences between hardness of decidability
of problems over the reals IR and problems over the integers ZZ. One notorious
example is quantifier elimination. Given a quantified formula

Q1x1Q2x2 . . . Qnxn f(x1, . . . , xn),

there is an algorithm to decide its validity over IR [Tar51], but not over ZZ. In
fact, by undecidability of Diophantine equations [Mat93], the formula above is
undecidable even in the case when Qi = ∃ for all i.

It has been conjectured in [Tiw04] that the termination of programs as above
is still decidable when interpreted over the integers. In this paper we prove the
following:

Theorem 1. Let A,Bs, Bw be rational matrices and bs, bw, c be rational vectors.
Then the termination problem of the loop

while (Bsx > bs) ∧ (Bwx ≥ bw) { x← Ax+ c }
is decidable when the variables range over the reals IR or the rationals Q. It is
decidable over the integers ZZ in the homogeneous case when bs, bw, c = 0.

Theorem 1 settles the termination problem over the rationals for a linear loop
with a deterministic update and no initial conditions in the most general form.
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Using Lemma 4 on linear combinations of sums of powers of complex units, we
are able to deal with non-strict inequalities. Over the integers termination in the
non-homogeneous case remains an intriguing open problem. We will return to it
in Section 6.

In practice, the programs are usually specified over integer variables, and it is
encouraging to know that the termination of homogeneous loops as above is still
decidable in this setting. Most of the paper is dedicated to proving Theorem 1.

2 Proof Outline of Theorem 1

The main part of the proof is in deciding termination over Q for homogeneous
programs (i.e. programs for which bs, bw, c = 0). Unlike the termination analysis
over IR [Tiw04], we cannot ignore the vectors corresponding to negative and
complex eigenvalues. As illustrated in the following example, it is possible that
there are no rational points on the non-terminating subspace S+ corresponding
to the positive eigenvalues of A, but there is a rational vector outside S+ very
close to it, and on which the loop is still non-terminating.

Example 2. Consider the loop

while (4x− 5y > 0)
{ (

x
y

)
←
(

2 4
4 0

)(
x
y

) }
The matrix has two eigenvectors, (1+

√
17, 4) and (1−

√
17, 4) corresponding to

eigenvalues 1+
√

17 and 1−
√

17, respectively. The only eigenvector in S+ is v1 =
(1 +

√
17, 4), which satisfies the loop condition, but contains no rational points.

However, the orbit of a rational perturbation q1 of v1 converges to the direction
of v1 at the limit. Hence it is possible to choose q1 that is a nonterminating
rational initial condition, and the loop is non-terminating over Q despite the
fact that there are no rational points in S+. The point q1 = (9, 7) is an example
of a specific such value. Note that

∣∣∣ 97 − 1+
√

17
4

∣∣∣ < 0.005, which means that q1 is
a good rational approximation of v1. �
We will see that the setN of real points for which the program is non-terminating
is a convex cone. Hence it has a dimension and a unique minimal linear space
Smin containing it. The rough outline of the procedure for finding a rational
point in N (i.e. in Qn ∩N) is as follows:

Termination (loop P )
compute Smin

Qmin ← Smin ∩Qn

if Qmin = ∅
return terminating

if dim(Qmin) = dim(Smin)
return non-terminating

else
reduce the loop to a loop P ′ on the subspace Qmin

run Termination(P ′)
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At each iteration, Smin is the current feasible real subspace, and Qmin its
rational subspace. We continuously update both until their dimensions match
or until Qmin becomes empty. If the dimensions match, we know that Qmin is
dense in N , and we can return non-terminating. If Qmin becomes empty, we can
return terminating. At each iteration we reduce the dimension of the loop by at
least 1, hence the algorithm terminates. The crucial step in the computation is
the ability to compute Smin at each step of the iteration.

Running the procedure on Example 1 above, we would obtain that Smin is
the one-dimensional space span{(−1 +

√
17, 4)}, and Qmin = {0}, thus out-

putting terminating. On the other hand, for Example 2 above we would obtain
Smin = IR2, and Qmin = Q2, thus dim(Qmin) = dim(Smin), and we output
non-terminating.

3 Preliminaries

3.1 Linear Algebra

We will see that symbolically powering the matrix A is an essential step in
deciding termination of the loop. If A is similar to some matrix D via A =
P−1DP then

An = (P−1DP )n = (P−1DP )(P−1DP ) . . . (P−1DP ) = P−1DnP.

Hence powering the matrix A is as hard as powering the matrix D. We would
like to make D as simple as possible. It is well known from linear algebra [HK71]
that any A can be transformed into Jordan canonical form:

Lemma 2 (Jordan canonical form). For any matrix A ∈ Cn×n there is a
matrix P , and a matrix D of the form D = Diag(J1, J2, . . . , JN ) with each block
Ji having the form

Ji =



λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
...

. . .
...

0 0 0
. . . 1

0 0 0 . . . λi

 ,

where λi is an eigenvalue of A and A = P−1DP . Moreover, if A is an alge-
braic matrix, then D and P are also algebraic matrices and their entries can be
computed from the entries of A.

Next, we explicitly write the n-th power of the matrix D. The formula can be
proved by induction on n.

Lemma 3. For a matrix D = Diag(J1, . . . , JN ) in Jordan canonical form, its
n-th power is given by Dn = Diag(Jn

1 , J
n
2 , . . . , J

n
N ) , where
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Jn
i =



λn
i nλn−1

i

(
n
2

)
λn−2

i . . .

(
n

Ni − 1

)
λ

n−(Ni−1)
i

0 λn
i nλn−1

i . . .

(
n

Ni − 2

)
λ

n−(Ni−2)
i

...
...

. . .
. . .

...

0 0
. . . λn

i nλn−1
i

0 0 . . . 0 λn
i


,

where Ni is the dimension of the block Ji, and
(
n
k

)
= 0 if n < k.

3.2 A Lemma About Complex Units

Let ζ �= 1 be a complex number on the unit circle, that is, |ζ| = 1. It is easy to
see that the orbit ζ, ζ2, ζ3, . . . will visit the negative half of the complex plane
infinitely often. We need a generalization of this fact to a linear combination of
such ζ’s.

Lemma 4. Let ζ1, ζ2, . . . , ζm ∈ C be a collection of distinct complex numbers
such that |ζi| = 1 and ζi �= 1 for all i. Let α1, α2, . . . , αm be any complex numbers.
Denote

zn = α1ζ
n
1 + α2ζ

n
2 + . . .+ αmζ

n
m.

Then one of the following is true:

1. the real part Re(zn) = 0 for all n; or
2. there is a c < 0 such that Re(zn) < c for infinitely many n’s.

We will be interested in the case when zn ∈ IR are all reals. In this case we have
Re(zn) = zn for all n, and the lemma applies directly to zn.

Proof. Due to space constraints, we will only present a proof idea here. First of
all, we can write

yn = 2Re(zn) = zn + z̄n = α1ζ
n
1 + . . .+ αmζ

n
m + ᾱ1ζ̄

n
1 + . . .+ ᾱmζ̄

n
m ∈ IR.

After collecting together terms where ζi = ζ̄j , we see that the claim for yn is
equivalent to the claim for the zn, but now yn ∈ IR for all n. Hence it suffices to
prove the lemma under the assumption zn ∈ IR. We actually show that if zn is
not syntactically 0, then the second possibility above holds.

The two key claims of the proof are that

1. The cumulative sum of the zn is bounded from above:

∣∣∣∣∣
N∑

n=0

zn

∣∣∣∣∣ ≤ C1, where

C1 > 0 is some explicit constant.

2. The sum of absolute values |zn| is bounded from below:
N+m∑

n=N+1

|zn| > C2 for

each N for some explicit constant C2 > 0.
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Both claims are not too hard to prove, and together they yield the statement of
the lemma: Choose an integer K such that K · C2 > 4C1. Then for any N we
have by the first claim

N+Km∑
n=N+1

zn =
N+Km∑

n=0

zn −
N∑

n=0

zn < 2C1.

On the other hand, by the second claim we have

N+Km∑
n=N+1

|zn| =
K−1∑
i=0

N+mi+m∑
n=N+mi+1

|zn| > K · C2 > 4C1.

These together imply that

N+Km∑
n=N+1, zn<0

zn < −C1.

Hence there is an n ∈ {N + 1, . . . , N +Km} such that zn < −C1/(Km).
Set c = −C1/(Km). We have just seen that there is a zn satisfying zn < c

among any Km consecutive elements. This completes the proof of Lemma 4.

Remark: It is also possible to give a less constructive proof of Lemma 4 using
ergodic theory. �

4 Termination over Q and IR in the Homogeneous Case

In this section we assume that the loop is homogeneous, that is c, bs, bw = 0. Let
N be the set of nonterminating points of the program over IRn. We are interested
in determining whether N and N ∩Qn are empty.

For a point z ∈ IRn we consider the evolution of the loop with initial variables
vector z. We denote the value of the variables after i iterations by z(i) = Aiz.
In particular z(0) = z. z ∈ N if and only if z(i) satisfies the loop conditions
Bsz(i) > 0 and Bwz(i) ≥ 0 for all i ≥ 0.

First, we note that N is a convex cone.

Lemma 5. Assuming N �= ∅, N must be a convex cone. That is, for every
x, y ∈ N and λ > 0, λx ∈ N , and the line segment connecting x to y belongs to
N .

Proof. Since the loop is homogeneous, the execution on x will run for exactly
as long as the execution on λx. In particular if the loop does not terminate on
x, it will not terminate on λx. Suppose that initially z is on the line segment
connecting x with y. Then z(0) = z = αx+ (1− α)y for some α ∈ [0, 1]. On the
n-th iteration we have

z(n) = αx(n) + (1− α)y(n),

is still on the line segment connecting x(n) with y(n), and
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Bsz(n) = αBsx(n) + (1− α)Bsy(n) > 0,
Bwz(n) = αBwx(n) + (1− α)Bwy(n) ≥ 0,

because the loop does not terminate on both x and y. �

N is a convex body in IRn and as such, has a dimension dN , which is the rank
of the smallest subspace containing N . Determining the minimum linear space
Smin = span{N} containing N is central to the construction.

4.1 Finding the Minimum Space Smin ⊃ N

Intuition: N is a convex cone. If we consider N as a subset on Smin, we see that
it has an interior int(N), and for any point x in the interior small perturbations
x + εv of x remain in N if and only if v ∈ Smin. The v’s for which x + εv is in
N span Smin. We first find such an x, we call zmax, and then generate all the
small perturbations that leave zmax in N in order to get a linear basis for Smin.

We are interested in the behavior of the loop with initial condition z(0). In
particular, we would like to know whether z(i) = Aiz(0) always satisfies the loop
conditions. Since we know the Jordan canonical form ofA, we can explicitly write
the while condition after i steps as{

BsA
iz(0) > 0

BwA
iz(0) ≥ 0 ⇔

{
BsP

−1DiPz(0) > 0
BwP

−1DiPz(0) ≥ 0 (1)

where D = PAP−1 = Diag(J1, . . . , JN ) is the Jordan canonical form of A.
Our next goal is to use (1) to write the conditions on z(i) in an explicit form.

Let 0 < λ1 < λ2 < . . . < λr be the absolute values of the eigenvalues of A
sorted in the increasing order. We only consider the nonzero eigenvalues here.
Let {ζij} be complex numbers on the unit circle, |ζij | = 1, and ζij �= 1 such that
the eigenvalues of A are a subset of

{λ1, λ1ζ11, λ1ζ12, . . . , λ1ζ1m1 , λ2, λ2ζ21, λ2ζ22, . . . , λ2ζ2m2 , . . . ,

λr, λrζr1, λrζr2, . . . , λrζrmr}.
The ζij are the arguments of the corresponding eigenvalues. By Lemma 3, sym-
bolically, Di is a linear combination of

{λi
1, λ

i
1ζ

i
11, λ

i
1ζ

i
12, . . . , λ

i
1ζ

i
1m1

, iλi−1
1 , iλi−1

1 ζi−1
11 , iλi−1

1 ζi−1
12 , . . . , iλi

1ζ
i−1
1m1

, . . . ,(
i

n1 − 1

)
λ

i−(n1−1)
1 ,

(
i

n1 − 1

)
λ

i−(n1−1)
1 ζ

i−(n1−1)
11 , . . . ,(

i
n1 − 1

)
λ

i−(n1−1)
1 ζ

i−(n1−1)
1m1

, λi
2, λ

i
2ζ

i
21, λ

i
2ζ

i
22, . . . , λ

i
2ζ

i
2m2

, . . .

λi
r , λ

i
rζ

i
r1, λ

i
rζ

i
r2, . . . , λ

i
rζ

i
rmr

, . . . ,

(
i

nr − 1

)
λi−(nr−1)

r ,(
i

nr − 1

)
λi−(nr−1)

r ζ
i−(nr−1)
r1 , . . . ,

(
i

nr − 1

)
λi−(nr−1)

r ζi−(nr−1)
rmr

}
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Thus we can rewrite (1) as a set of conditions on the initial z(0) of the form

Condk(z(0), i) = λi
1(Ck11 + ζi

11Nk111 + ζi
12Nk112 + . . .+ ζi

1m1
Nk11m1)z(0)+

iλi−1
1 (Ck12 + ζi−1

11 Nk121 + ζi−1
12 Nk122 + . . .+ ζi−1

1m1
Nk12m1 )z(0) + . . .+(

i
n1 − 1

)
λ

i−(n1−1)
1 (Ck1n1 + ζ

i−(n1−1)
11 Nk1n11 + ζ

i−(n1−1)
12 Nk1n12 + . . .+

ζ
i−(n1−1)
1m1

Nk1n1m1)z(0) + . . .+

λi
r(Ckr1 + ζi

r1Nkr11 + ζi
r2Nkr12 + . . .+ ζi

rm1
Nkr1mr )z(0)+

iλi−1
r (Ckr2 + ζi−1

r1 Nkr21 + ζi−1
r2 Nkr22 + . . .+ ζi−1

rmr
Nkr2mr)z(0) + . . .+(

i
nr − 1

)
λi−(nr−1)

r (Ckrnr + ζ
i−(nr−1)
r1 Nkrnr1 + ζ

i−(nr−1)
r2 Nkrnr2 + . . .+

ζi−(nr−1)
rmr

Nkrnrmr)z(0) � 0,

where � ∈ {>,≥}. The coefficients Ckj� and Nkj�t are all algebraic vectors and
can be computed explicitly. Moreover, in our case all the conditions and A are
over the reals, hence every coefficient

∑mj

t=1 Nkj�tζ
i
jt will add up to a real number.

A point z(0) is in N if and only if the conditions Condk(z(0), i) are satisfied for
all k and for all i = 0, 1, 2 . . ..

Using the Jordan canonical form of A, we can split the space IRn into the
subspace S+ corresponding to the positive eigenvalues of A, and the subspace So

corresponding to the other eigenvalues. Each v ∈ IRn decomposes uniquely into
a sum v = v+ + vo such that v+ ∈ S+ and vo ∈ So. If we write Condk(z(0)+, i)
we get all Nkj�t’s equal to zero, since there are no vectors in S+ corresponding
to the complex eigenvalues. Similarly, in Condk(z(0)o, i) we get all Ckj�’s equal
to zero.

Observe that the magnitude of the terms

Ckj� + ζi
j1Nkj�1 + ζi

j2Nkj�2 + . . . ζi
jmj

Nkj�mj

remains bounded by a constant independent of i throughout the iteration. Hence
the magnitude of the components of Condk(z(0)) as i tends to ∞ is primarily

dictated by the
(

i
�− 1

)
λ

i−(�−1)
j terms of the products. These terms have a

clear dominance order as i → ∞. For higher j the terms grow geometrically
faster, because λi

j1
4 λi

j2
for j1 < j2. For the same j, terms with higher � grow

polynomially faster, because
(

i
�1 − 1

)
4
(

i
�2 − 1

)
for �1 < �2 . This yields a

natural lexicographic order ≺ on the pairs of indexes j�:

Ind = {0 ≺ 11 ≺ 12 ≺ . . . ≺ 1n1 ≺ 21 ≺ . . . ≺ 2n2 ≺ . . . ≺ r1 ≺ . . . ≺ rnr}.

The term 0 is the smallest term, it is introduced for completeness in the case of
non-strict inequalities. It does not correspond to any actual index.

Our first step is very similar to [Tiw04]: we solve the problem over the positive
eigenspace S+.
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Lemma 6. For every vector z ∈ S+ the program with initial conditions Aqz is
non-terminating for some integer q ≥ 0 if and only if there is a function

indexz : k .→ indexz(k) ∈ Ind

which maps the condition Condk(z) to the highest ranking nonzero Ck,indexz(k).
All higher ranking coefficients must be zero. In other words, for each k,{

Ck,indz = 0, if ind 5 indexz(k)
Ck,indz > 0, if ind = indexz(k)

In the case that the k-th inequality is strict we must have indexz(k) 5 0.

Proof. First of all note that since z is in S+, only the Ck,ind (and no Nk,ind,t’s)
appear in the expressions for Condk(z, i).

It is obvious that for Aqz to be non-terminating for some q the conditions
Condk(z, i) must be satisfied as i→∞. In particular, the highest ranking coef-
ficient, which dominates the behavior as i goes to infinity must be positive (or
all of them may be 0 in the case of a non-strict inequality). Note that indexz is
a well-defined function for each such z.

Conversely, if the indexz(k) function as in the statement of the lemma exists,
then the dominating term in each Condk(z, i) has a positive coefficient. Hence
the conditions Condk(z, i) are satisfied for sufficiently large i. In particular, there
is a q such that they are satisfied for i ≥ q, making the program non-terminating
on Aqz. �

We denote the set of z’s for which Aqz ∈ N for some q by Ne – “eventually non-
terminating”. Those are the points which might be terminating, but become
non-terminating after finitely many applications of A. Lemma 6 gives a charac-
terization of Ne, and associates a unique function indexz with each z ∈ Ne. We
claim that there is a maximum such function.

Lemma 7. There is a zmax ∈ N ∩ S+ with an index function indexzmax =
indexmax such that for any z ∈ N ∩ S+, for all k,

indexz(k) � indexmax(k).

Proof. First we note that Ne is convex. If z1, z2 ∈ Ne, then there is a q such
that Aqz1, A

qz2 ∈ N . N is convex, hence the line segment I connecting Aqz1 to
Aqz2 is in N . The line segment connecting z1 to z2 is mapped to I by Aq, hence
it is in Ne.

Denote z = (z1 + z2)/2. Then it is easy to see that

indexz = max(indexz1 , indexz2).

Thus, there can be only one maximal index function, which is the maximum
index function for some z′max ∈ Ne∩S+. We can take sufficiently many iterations
of z′max to obtain zmax ∈ N ∩ S+.
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Note that it is easy to compute zmax and indexmax by considering the con-
straint satisfaction problem corresponding to each index function and choosing
the maximum feasible function and a corresponding zmax. In fact, a generic
element y of N ∩ S+ satisfies indexy = indexmax. �

As mentioned in the beginning of the section, the main idea in finding the min-
imal space Smin containing N is that it is spanned by small perturbations of
zmax. The claim is that a small perturbation of zmax is in N as long as we do
not introduce any terms that are more dominant than the currently dominant
ones.

Lemma 8. For a vector v ∈ IRn there is an ε �= 0 such that zmax + εv ∈ N if
and only if for all k{

Ck,indv = 0, for ind 5 indexmax(k)
Nk,ind,tv = 0, for ind 5 indexmax(k), for all t

Proof. The “if” direction. Condk(zmax, i) is dominated by the Ck,indexmax(k)z
term for all i. It will remain positive if we add εv to it for some small ε. By the
condition it will remain dominating, since no non-zero higher order terms are
introduced by adding εv.

The “only if” direction. We first show by contradiction that the first con-
dition must hold. Suppose that there is a v and ε such that

y = zmax + εv ∈ N,

but Ck,indv �= 0 for some k and ind 5 indexmax(k). Decompose y = y+ + yo, so
that y+ ∈ S+ and yo ∈ So. Then Ck,indy = Ck,indy

+. There are two cases:

Case 1: For each k, the highest-ranking non-zero Ck,indy
+ is positive. In this

case y+ ∈ Ne by Lemma 6. By the definition of indexmax we get Ck,indy =
Ck,indy

+ = 0 for all ind 5 indexmax. Hence Ck,indv = (Ck,indy)/ε = 0, contra-
diction.

Case 2: There is a k such that the highest-ranking non-zero Ck,indy = Ck,indy
+

is negative. In this case the dominating term of Condk(y, i) has the coefficient

Ck,indy + ζi
k1Nk,ind,1y + ζi

k2Nk,ind,2y + . . .+ ζi
kmk

Nk,ind,mk
y.

By Lemma 4 the expression will be negative below Ck,indy infinitely often, hence
Condk(y, i) will be violated infinitely often, contradiction.

Now suppose that for some k and ind 5 indexmax(k) the second condition
is violated. We already know that Ck,indy = 0, and the dominating term of
Condk(y, i) has the coefficient

C(i) = ζi
k1Nk,ind,1y + ζi

k2Nk,ind,2y + . . .+ ζi
kmk

Nk,ind,mk
y,

which is not identically 0. By Lemma 4 we know that there is a c < 0 such
that C(i) < c infinitely often. Since this is a dominating term, it will cause
Condk(y, i) to be violated infinitely often, contradiction. �
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Solving the constraint system from Lemma 8 gives us a linear basis for Smin. The
computation is done entirely symbolically over algebraic numbers. Note that we
do not need to know ε from Lemma 8, but merely that such an ε exists. This
solves the termination problem over IR. Our goal now is to tackle the problem
over Q. If Smin = ∅, we can return terminates, otherwise we need to find the
rational subspace of Smin.

4.2 Looking for Rational Points in Smin

If the parameters of the loop are given by rationals, then the spanning vectors
of Smin can be produced as explicit algebraic numbers. Denote by LS the base
vectors for Smin presented as algebraic numbers in some finite degree extension
Q(α) of Q. By viewing Q(α) as a finite-dimensional vector space over Q we can
find the maximum space Qmin of rational vectors spanned by LS . For further
details about computations with algebraic numbers see [Bhu93, Loos83, Yap00].
We illustrate finding the rational subspace with the following simple example.

Example 3. Consider the simple example when Q(α) = Q(
√

2) and LS = {v1 =
(1, 0,

√
2), v2 = (−

√
2, 1, 0)}. We are looking for coefficients β, γ ∈ Q(

√
2) for

which βv1 + γv2 ∈ Q3. By writing β = β1 + β2
√

2, γ = γ1 + γ2
√

2 with
β1, β2, γ1, γ2 ∈ Q we obtain the conditions

β + (−
√

2)γ ∈ Q
γ ∈ Q
(
√

2)β ∈ Q
⇐⇒


β2 − γ1 = 0
γ2 = 0
β1 = 0

Hence we must have γ = β/
√

2 ∈ Q, and the rational subspace of span(LS) is
one dimensional, spanned by

√
2v1 + v2 = (0, 1, 2). �

There are three possible cases. The first one is that dim(Qmin) = dim(Smin).
This means that the rational points are dense in the nonterminating set N ,
and hence there are nonterminating rational points, and we can return non-
terminating.

If dim(Qmin) = 0, then the only potential nonterminating rational point is 0.
It is trivial to check whether 0 is non-terminating in the homogeneous case: we
just need to check whether it satisfies the loop conditions. If it does we return
non-terminating, otherwise return terminating.

The more difficult and interesting case is when 0 < d = dim(Qmin) <
dim(Smin). In this case there are some rational points in Smin, but we can no
longer guarantee that any of them are in N , since they all lie in a proper subspace
of Smin. The only thing we know is that all potential rational non-terminating
points lie in Qmin. Denote by Rmin the space of real vectors spanned by Qmin.
Obviously dim(Rmin) = dim(Qmin). We prove the following.

Lemma 9. Rmin is invariant under A, that is Av ∈ Rmin for any v ∈ Rmin.

Proof. First of all, the non-terminating set N is invariant under A, since if the
loop is nonterminating on x, it is also nonterminating on Ax. N contains a linear
basis for Smin, hence Smin is invariant under A.
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Let q be any rational vector in Qmin. Aq is rational, and Aq ∈ Smin by the
invariance of Smin. Hence by the definition ofQmin (as containing all the rational
vectors in Smin), Aq ∈ Qmin. The rational vectors of Rmin span it, hence Rmin

is invariant under A. �

Rmin is a subspace invariant underA, and it has a rational basis LR={r1, . . . , rd}.
We can translate the action of A on Rmin with respect to LR, to obtain a d× d
rational matrix A′ such that

A : α1r1 + . . .+ αdrd .→ β1r1 + . . .+ βdrd,

where (β1, . . . , βd)T = A′(α1, . . . , αd)T . The conditions Bsx > 0 and Bwx ≥ 0
can also be readily translated into rational conditions over the d-dimensional
coefficient vector (α1, . . . , αd), where x = α1r1 + . . . + αdrd ∈ Rmin. Thus we
obtain a new loop, over d-dimensional vectors

while (B′
sx > 0) ∧ (B′

wx ≥ 0) { x← A′x }
and we need decide termination of the new loop over Q. Note that we have
reduced the dimension of the problem from n to d < n, and thus we will be able
to decide termination over Q in the homogeneous case in at most n iterations.

5 The Integer and the Non-homogeneous Cases

In the case the program is interpreted over the reals or the rationals, the tran-
sition from general termination to the homogeneous case is done exactly as in
[Tiw04] by adding an extra auxiliary variable z. The program
while (Bsx > bs) ∧ (Bwx ≥ bw) { x← Ax+ c }
always terminates if and only if the program
while (Bsx > bsz) ∧ (Bwx ≥ bwz) ∧ (z > 0) { x← Ax+ cz, z ← z }
terminates. This is true both over Q and IR. If the first program does not ter-
minate, then the second does not terminate with the same initial condition and
z = 1. In the opposite direction, we can scale a nonterminating starting point of
the second program so that z = 1, and thus make it a nonterminating starting
point for the first one.

Note that in the homogeneous case we can scale any nonterminating solution,
and hence termination over Q is always equivalent to termination over ZZ. This
is not true in the non-homogeneous case: termination over Q implies termination
over ZZ, but not vice versa. Thus it can only be used as a partial termination
test. The termination problem over ZZ as well as termination of loops with initial
conditions appears to be much harder and will be discussed in next section.

6 Further Directions and Open Problems

We have seen that termination of deterministic loops with no initial conditions
is decidable over Q and over ZZ in the homogeneous case. On the other hand,
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by allowing the linear loop to be general enough one can easily make the termi-
nation problem undecidable. For example, having k different update functions
depending on different conditions

while one of the k conditions is met for 1 ≤ i ≤ k
if Bix > di { x← Aix+ ci }

is enough to make the termination problem undecidable, since this class of loops
is sufficiently rich to allow encoding of counter machines [Tiw04].

This gives rise to natural open questions about termination of programs more
general than the ones considered in this paper, but for which termination is still
decidable. One such class are the programs discussed in [PR04]. They are similar
to the ones described here, but have a nondeterministic inequality as an update:

while (Bsx > bs) ∧ (Bwx ≥ bw) { x ≤ Ax+ c }
In [PR04] a complete linear ranking function generating algorithm is presented,
but it still leaves the more general termination problem open over either IR, Q
or ZZ.

Another natural generalization is introducing initial conditions and the related
problem of termination over ZZ. It appears that to decide termination over ZZ it
is necessary to be able to tell, given a point x0, whether the program terminates
on x0 or not. Solving the termination problem on a given input would require
a much sharper version of Lemma 4. In Lemma 4, we have shown that the
expression zn =

∑m
i=1 αiζ

n
i always eventually falls below zero by at least some

fixed amount c. It is even possible to compute the infimum of the expression
using ergodic theory. However, this still falls short of solving the termination
problem. Consider the following algebraic expression. Here |ζ| = 1, ζ �= 1:

z(i) = Re(ζi + 1− 2−i).

We would like to know whether z(i) ever falls below 0. This depends on how
close the orbit of ζi gets to −1. To answer this question some analysis of the
continued fraction expansion of log ζ seems to be needed.

We summarize the problems:

1. Given a deterministic linear loop P and an input x0, does P terminate on
x0?

2. Given a deterministic linear loop P does it terminate on all integer inputs?
3. How much nondeterminism can be introduced in a linear loop with no initial

conditions before termination becomes undecidable?

7 Conclusion

We have demonstrated a first termination decision procedure that works over
the integers for simple homogeneous loop programs. Most programs in practice
are specified over the integers, yet algorithms usually only work with the larger
domain of real numbers because decision procedures are generally easier there.
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We have gained new insights into termination of more general deterministic
linear loops. We believe that techniques presented in the paper can be generalized
using more refined analysis to obtain at least a good partial termination test over
the integers for loops with initial constraints.
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Abstract. We describe a new program termination analysis designed to
handle imperative programs whose termination depends on the mutation
of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formulæ which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an au-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows device drivers that
could not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.

1 Introduction

Consider the code fragment in Fig. 1, which comes from the source code of a
Windows device driver. Does this loop guarantee termination? It’s supposed to:
failure of this loop to terminate would have catastrophic effects on the stability
and responsiveness of the computer. Why would it be a problem if this loop didn’t
terminate? First of all, the device that this code is managing would cease to
function. Secondly, due to the fact that this code executes at kernel-level priority,
non-termination would cause it to starve other threads running on the system.
Note that we cannot simply kill the thread, as it can be holding kernel locks and
modifying kernel-level data-structures—forcibly killing the thread would leave
the operating system in an inconsistent state. Furthermore, if the loop hangs,
the machine might not actually crash.1 Instead, the thread will likely just hang
until the user resets the machine. This means that the bug cannot be diagnosed
using post-crash analysis tools.

This example highlights the importance of termination in systems level code:
in order to improve the responsiveness and stability of the operating system it
is vital that we can automatically check the termination of loops like this one.
In this case, in order to prove the termination of the loop, we need to show the
following conditions:

1. DeviceExtension->ReadQueue.Flink is a pointer to a circular list of ele-
ments (via the Flink field).

1 Although hanging kernel-threads can trigger other bugs within the operating system.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 386–400, 2006.
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for (entry = DeviceExtension->ReadQueue.Flink;

entry != &DeviceExtension->ReadQueue;

entry = entry->Flink) {

irp = (IRP *)((CHAR *)(entry)-(ULONG *)(&((IRP *)0)->Tail.Overlay.ListEntry));

stack = IoGetCurrentIrpStackLocation (irp);

if (stack->FileObject == FileObject) {

RemoveEntryList(entry);

if (IoSetCancelRoutine (irp, NULL)) {

return irp;

} else {

InitializeListHead (&irp->Tail.Overlay.ListEntry);

}

}

}

Fig. 1. Code from a Windows device driver which contains a termination bug found
by the analysis described in this paper. The bug has catastrophic effects on the respon-
siveness of the computer when it occurs.

2. During the execution of this loop, entry is always getting closer to taking
the value of &DeviceExtension->ReadQueue.

3. The loop will terminate when entry is finally assigned the value equaling
&DeviceExtension->ReadQueue.

4. The assignments to other parts of the heap occurring during the loop’s ex-
ecution (e.g., the side-effects from executing InitializeListHead) do not
affect conditions 1, 2, and 3.

Unfortunately, there is a termination bug in Fig. 1: in some cases this loop may
violate condition 4.

To date, automatically checking the termination of loops like this one has been
beyond any known tool. This is because the termination argument is based on
the semantics of imperative heap-mutation during the loop’s execution. Today’s
termination analysis tools (that is: tools that both find and check termination
arguments automatically) simply do not support an analysis at this level of
depth; instead they only support arguments involving the values of arithmetic
variables. Examples of such tools include Terminator [5] and PolyRank [2].

In this paper, we present a new termination prover which supports loops of
this sort. In cases where loops have termination bugs the prover is able to pro-
vide information which can be used to automatically find a counterexample. The
prover implements an abstract analysis, based on formulæ expressed in separa-
tion logic, which keeps track of the relative differences between heap objects while
abstracting away the exact details. This analysis produces a finite collection of
depth relations such that the program is well-founded if each individual relation
is. The correctness of the termination argument relies on a result of Podelski
& Rybalchenko [12]. The candidate depth relations constructed are checked for
well-foundedness with the use of projection and the RankFinder tool [11].

Separation logic [14] is used as the basis of our analysis because it lets us sym-
bolically carry around just enough information to prove that loops are making
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Mutant (P, I, �) {
Y := Sonar∗

P [{I}]
if � ∈ Y return “Loop may crash”, with �
foreach y ∈ Y such that pc(y) = � {

s := Seed(y)
Z := Sonar+

P [{s}]
foreach z ∈ Z such that pc(z) = � {

if ¬WF(z) return “Loop may diverge”, with (y, z)
}

}
return “Loop �-terminates”

}
Fig. 2. Mutant algorithm

progress while abstracting enough information such that the tool produces a com-
pact over-approximation of the reachable states. Furthermore, separation logic
mitigates the need for a global alias check when size information is changed: the
alteration of the size of one piece of the heap does not affect any others that are
held in different components of a separating conjunction. These characteristics
are what make the new termination proof method powerful, yet still tractable.

This paper begins with a description of the algorithm, followed by the details
of the separation logic analysis, and then experimental results. Our experiments
include loops extracted from Windows device drivers that could not be handled
using Terminator [5] due to its overly-coarse model of heaps [13].

2 Termination Via Separation Analysis and Rank
Synthesis

Our termination checking algorithm, Mutant, is displayed in Fig. 2. The input
is a program P , an abstract initial state expressed as a separation logic formula I,
and a program location �. The algorithm is designed to prove that the program
P cannot visit location � infinitely-often during its execution when started in
states satisfying I. We call this condition �-termination. If we wish to prove that
P terminates, we can prove �-termination for each program location. We can also
optimize by focusing only on a subset of the locations (i.e., a set of cutpoints [9]).

Mutant first calls an analysis engine, Sonar (defined in Section 3), to cal-
culate the finite set of reachable abstract states Y . For a program P , SonarP is
the binary transition relation on abstract states, and Sonar∗

P denotes its reflex-
ive transitive closure. Sonar∗

P [{I}] denotes the post-image under the pre-state
I. During this analysis Sonar also proves that P cannot commit any of a basic
set of safety violations, such as an access to a deallocated heap object. If Sonar
returns ', then it cannot guarantee that P is safe from this class of errors—and
our method cannot prove termination.

Next, for each reachable symbolic state y at program location �, the algorithm
constructs a new state with additional history variables that symbolically record
a snapshot of the depths of pieces of y’s heap. We call this step seeding, and use
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the notation Seed(y) to represent the output of this operation. If s = Seed(y)
then, when symbolically executing instructions starting from s, we can see how
the effects of these operations relate to the original values from y.

Mutant then calls Sonar again to compute the states reachable from
Seed(y) in at least one step and which are at the same program location (i.e.,
pc(y) = pc(z) = �). Each of the pairs (y, z) in the abstract semantics determines
an over-approximation of transitions in the concrete semantics of the program,
and together they over-approximate all transitions in the concrete semantics.

The Sonar analysis uses heap predicates together with certain auxiliary vari-
ables that describe heap depths. For example lsk(a, b) describes a linked list of
length k running from a to b. Seeding maps this formula to ks=k ∧ lsk(a, b),
where ks is a symbolic constant used to record the initial value of k. Running
Sonar starting from this state can change k but not ks. So, if the final state is
ks>k ∧ lsk(a, b) then this indicates that the linked list has decreased in length
(as can happen, e.g., by removing an element from the list).

Because we seed y before running Sonar again to obtain z, the single abstract
state z will actually contain information, in the form of an assertion, which relates
initial (seeded) values of heap-depth variables to their final values (for this run
of Sonar). In the above example it is just ks>k. The WF(z) procedure extracts
this information from z and treats it as a binary relation Ti, which relates the
relative differences between the depths of pieces of heaps referenced by z. WF(z)
then calls the RankFinder tool [11] to determine if this relation is well-founded.
Note that the well-foundedness of each z is checked independently of the others.

In essence, Mutant constructs a finite set T1, . . . , Tn of binary relations,
whose union over-approximates changes to the auxiliary variables that track
heap depths. If one of the determined relations Ti is not well-founded, then
Mutant’s attempted proof of �-termination fails. However, if all of the found
pairs denote well-founded relations, then �-termination has been proved. The
correctness of this assertion comes from [12], which shows that: to establish that
� is not visited infinitely often, it is sufficient to find a finite union of well-founded
relations that over-approximates the transitions through location �.

The algorithm is different from the one in the Terminator tool [5]. As de-
scribed in [3], Terminator uses counterexample-guided abstraction refinement
to add disjuncts to a collection T1, . . . , Tn of well-founded relations, and then
uses a binary reachability analysis [4] to check the subset inclusion. Checking
the inclusion is the expensive part of Terminator. In contrast, here we never
do the inclusion check. Rather, Sonar produces a finite set of Ti’s (determined
by the (y, z) pairs), which together satisfy the inclusion by construction. As with
Terminator, we still have to check for well-foundedness of each Ti.

3 Tracking Depths of Abstracted Heaps

Sonar implements an analysis that is sound for safety properties of programs.
It uses an abstract domain based on separation logic forumlæ, and as a result,
is set up to express deep properties (meaning properties that depend on areas of
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the heap not immediately referenced by program variables) of mutating heaps.
Reachability between program states is computed using a fixed-point algorithm
built from single-step symbolic execution (notationally: �) together with a case
analysis or concretion step (→E) which incrementally reveals the pointer struc-
ture of abstracted or summarized heap objects, and an abstraction step (→)
which enables convergence to fixed-points.

Sonar is based on SpaceInvaDer [7]. The difference between the two analy-
sis engines is in Sonar’s tracking of depths of inductive heap predicates. Depth
does not necessarily refer to lengths of pointer chains in the heap, but instead
refers to the number of inductive unfoldings a formula represents. For lists, this
corresponds to length. In this section we describe the underlying fundamentals
behind Sonar. We focus on linked lists in the exposition, but the method of
proving �-termination generalizes to data structures expressed using other in-
ductive predicates in separation logic, such as trees, doubly-linked lists, etc.

Programs. Sonar supports a simple language of goto programs extended with
the usual four heap operations: allocate, deallocate, load, and store. A program
P is a function mapping a fixed finite subset of naturals {0, . . . , end − 1} to
commands C, given by:

E ::= nil | x | x′ expressions
S ::= skip | x:=E | x:= new() safe commands

A(E) ::= dispose(E) | x:= [E] | [E]:=E heap accessing commands
B ::= E=E simple Boolean formulæ
G ::= B | ¬B branch tests
C ::= S | A(E) | goton | if(G) {goton} else {goton}

where n ∈ {0, . . . , end}; and variables x, y, . . . range over some infinite set Var;
and primed variables x′, y′, . . . range over some disjoint infinite set Var′. Primed
variables cannot appear in programs. They are included in expressions since these
also appear in formulæ (below). For convenience of later definitions, commands
S are syntactically distinguished from commands A(E). The difference between
the two is that for a command S, execution is always safe, while execution of a
command A(E) may be unsafe, due to access of heap location E.

Symbolic Heaps and Depths. Sonar operates over an abstract domain that
represents sets of concrete program states as sets of separation logic formulæ
called symbolic heaps. Note the inclusion of depth formulæK, and depth variable
annotations N on list segment predicates lsN (E,E):

N ::= 1 | k | k′ Π ::= true | B | K | Π ∧Π
K ::= N=N | N>N Σ ::= emp | H | Σ ∗Σ | junk

H ::= E .→E | lsN (E,E) Q ::= Π ∧ Σ

Depth variables k, l, . . . , k′, l′, . . . and primed depth variables k′, l′, . . . range over
DVar and DVar′, respectively, and denote natural numbers. DVar is infinite and
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disjoint from Var and Var′, while DVar′ is an infinite subset of DVar. Note that
formulæ are considered up to symmetry of =, permutations across ∧ and ∗ (e.g.,
Π ∧ B0 ∧ B1 and Π ∧ B1 ∧ B0 are equated), unit laws for true and emp, and
idempotency of − ∗ junk (e.g., junk ∗ junk and junk are equated).

Symbolic heap formulæ consist of two parts: a Boolean formula Π built from
=, >, and ∧ which is independent of the heap and has the usual classical arith-
metic meaning; and a heap formula Σ which expresses heap shape. The meaning
of a symbolic heap Q is the same as ∃�x′, �k′. Q in the usual semantics of sepa-
ration logic [14], where we existentially quantify all the primed variables. The
empty heap, which contains no allocated cells at all, is described by emp. A
heap consisting of a single cell at location E with contents F is described by
E .→F . The separating conjunction ∗ describes composition of disjoint heaps:
heaps with shape Σ0 ∗ Σ1 consist of two subheaps with no allocated locations
in common, one with shape Σ0 and the other with shape Σ1. Non-empty heaps,
usually consisting of unreachable cells, are described by junk. Finally, lsN (E,F )
describes acyclic singly-linked lists of length N ≥ 1. Cyclic lists, such as that
in the introductory example, can be expressed using multiple predicates: e.g.,
lsk(x, y′) ∗ lsj(y′, x). Note that the ls1 and .→ predicates are not equivalent, since
x.→x admits cycles (of length one), while ls1(x, x) is inconsistent.

The definition of the abstract transition relation asks several types of questions
about symbolic heaps: entailment of an equality (Q 6 E=F ), entailment of a
disequality (Q 6 E �=F ), or inconsistency (Q 6 false). We also sometimes ask
the negations of these questions. Sound implementations of these queries can be
obtained from those defined in [7].

Symbolic Execution ( �). The symbolic execution relation captures the effect
of executing a straight-line command from a symbolic heap. That is, Q0

C� Q1
means that Q1 over-approximates the concrete states which can result from
executing C from states satisfying Q0. We do not show the axioms which define
symbolic execution of basic commands S and A(E) as they are reported in [1, 7],
but for illustration we show the axiom for loading the contents of a memory
address E into x:

Q ∗ E .→F
x:=[E]� x=F [x′/x] ∧ (Q ∗ E .→F )[x′/x] (1)

where x′ is globally fresh. This axiom says that if we load the contents of E
into x in a state which looks like Q with a separate single heap cell at location
E with contents F , then the resulting state will look the same except that now
x will have the value of the contents of E in the pre-state, F [x′/x]. As usual
[9], we think of x′ as standing for the value of x that was overwritten, and the
renaming is necessary to account for the changing value of x.

Rearrangement (→E). Symbolic execution does not operate on arbitrary pre-
states. For instance, the axiom for load (1) requires that the source heap cell
be explicitly known. In order to put symbolic heaps into the form required for
symbolic execution of a command, we use a rearrangement relation →E , defined
by the following axioms:
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SubstE

z′=E ∧Q → Q[E/z′]

SubstN

l′=N ∧Q → Q[N/l′]

JunkGT

k′>N ∧Q → Q

JunkLT

N>k′ ∧Q → Q

Transitivity

N>k′ ∧ k′>N ′ ∧Q → N>N ′ ∧Q

Junk

Q ∗H(x′, E) → Q ∗ junk

JunkCycle

Q ∗H0(x
′, y′) ∗H1(y

′, x′) → Q ∗ junk

AppendLsNil

Q ∗H0(E, x′) ∗H1(x
′, F ) → Q ∗ lsk′′

(E,nil)
Q � F=nil

AppendLsGuard

Q ∗H0(E,x′) ∗H1(x
′, F0) ∗H2(F1, G) → Q ∗ lsk′′

(E, F0) ∗H2(F1, G)
Q � F0=F1

Here formulæ H(E,F ) are of form E �→F or lsN(E, F ); and k′, x′, y′ do not occur other
than where explicitly indicated; and k′′ is fresh.

Fig. 3. Abstraction relation (→)

Q ∗ F .→G →E Q ∗ E .→G if Q 6 E=F Switch

Q ∗ ls1(F,G) →E Q ∗ E .→G if Q 6 E=F SwitchLs

Q ∗ lsk(F,G) →E k′>k ∧ k′=1 ∧Q[k′/k] ∗ E .→G if Q 6 E=F Unroll1

Q ∗ lsk(F,G) →E k′>k ∧Q[k′/k] ∗ E .→x′ ∗ lsk(x′, G) if Q 6 E=F Unroll>1

where k′ and x′ are globally fresh. Note that these axioms are directed toward
a heap location of interest E, increasing the determinacy of symbolic execution.

Rearrangement reveals the pointer structure of heaps which are abstracted or
summarized (by an ls predicate). This is achieved by performing case analysis: a
symbolic heap rewrites to a set of symbolic heaps, each of which, modulo renam-
ing k, is logically stronger (represents fewer concrete states). Given that we are
proving �-termination, it is also crucial for rearrangement to track the changing
depths of list segment predicates. This is captured by the k′>k in the right-hand
side of Unroll>1, which indicates that the length of the list starting from x′ in
the post-state is less than that of the list starting from x in the pre-state.

Abstraction for Fixed-Point Computations (→). Abstraction is accomplished by
certain separation logic implications that rewrite a symbolic heap to a logically
weaker one. The abstraction relation on symbolic heaps Q0 → Q1 is defined by
the axioms shown in Fig. 3.

As opposed to rearrangement above, which takes lists apart and strengthens
the individual symbolic heap formulæ in a symbolic state, abstraction constructs
larger lists, weakening the symbolic heap formulæ. This step is very coarse for
depth information since, in the examples we have investigated, increasing list
lengths are not generally a progress measure for �-termination—instead it is
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Crash

Q
P (n)� �

〈n , Q〉�P �

Heap Access

Q0 →E Q2 Q2
A(E)� Q3 Q3 →∗ Q1

〈n , Q0〉�P 〈n + 1 , Q1〉 P (n) ≡ A(E)

Safe

Q0
S� Q2 Q2 →∗ Q1

〈n , Q0〉�P 〈n + 1 , Q1〉 P (n) ≡ S
Goto

〈n , Q〉�P 〈m , Q〉 P (n) ≡ gotom

If False

〈n , Q〉�P 〈m , E=F ∧Q〉
P (n) ≡ if(E �=F ) {goto l} else {gotom}
and Q � E �=F

Fig. 4. Transition relation ( �P )

decreasing list lengths, captured by the rearrangement relation, which furnish
progress measures for �-termination.

The Transition Relation ( �P ). In the Mutant algorithm, for a program P ,
SonarP = �P . The transition relation �P relates configurations consisting
of a program location and a symbolic heap to another program location and a
symbolic heap or crash (notationally '): 〈n , Q0〉 �P 〈m , Q1〉 or 〈n , Q0〉 �P

' where m ≤ end and n ≤ end − 1 are values of the program counter. The
program stops when execution reaches end either by falling through an S or
A(E) instruction, or by a goto. That is, configurations 〈end , Q0〉 are stuck.

The rules shown in Fig. 4 define the transition relation in terms of the sym-
bolic execution relation �, the rearrangement relation →E , and the reflexive
transitive closure of the abstraction relation→∗. We have shown only one of the
four axioms for conditional branches; the others can be defined similarly from [7].

The key rule is Heap Access, which says that when the current instruction
will attempt to access a heap cell E, the symbolic state Q0 is first rearranged to
reveal the heap cell at E, yielding state Q2, from which the current instruction
is executed, yielding state Q3, which is then abstracted, yielding the final state
Q1. The definition allows for flexibility regarding the amount of abstraction that
is performed, and how often. By default, Sonar fully abstracts at each step, but
when this strategy loses too much precision to prove memory safety, we abstract
fully only at the program point � in question.

The first call Y := Sonar∗
P [{I}] of the analysis in the Mutant algorithm re-

quires that the transition relation �P (i.e., SonarP ) be an over-approximation
of the concrete semantics in the usual sense: that it over-approximates reacha-
bility. If σ1 is a concrete state that is reachable from an initial state σ0 satisfying
initial symbolic heap I, then there is a reachable symbolic heap Q that is sat-
isfied by σ1. The concrete semantics does not operate on depth variables, and
the relevant notion of satisfaction involves existentially quantifying all of the
depth variables in Q. This sense of over-approximation follows essentially from
the soundness result of [7].

The second call to Sonar in the algorithm requires a different notion of over-
approximation for transitions , which we discuss in Section 4.
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A Small Example. To see how this analysis tracks the progress of heap updates
for �-termination proofs we consider advancing a pointer to a list to the next
node. The initial state is=i ∧ js=j ∧ lsj(y, x) ∗ lsi(x, nil) indicates that the heap
shape is an acyclic singly-linked list of length j + i starting from pointer y and
ending with nil. The pointer x splits this list into two sublists of length j and i.
Consider the program fragment: n: x = x->next;. In Mutant’s input format
this is represented by a program P where P (n) = x:= [x]. For this example, �P

contains two transitions, one for the case where the sublist lsi(x, nil) is of length 1:

〈n , is=i ∧ js=j ∧ lsj(y, x) ∗ lsi(x, nil)〉 (2)

�P 〈n+ 1 , x=nil ∧ is>i ∧ is=1 ∧ js=j ∧ lsk′′
(y, nil)〉

and one for the case where lsi(x, nil) is of length greater than 1:

〈n , is=i ∧ js=j ∧ lsj(y, x) ∗ lsi(x, nil)〉 (3)

�P 〈n+ 1 , is>i ∧ js=j ∧ lsk′′
(y, x) ∗ lsi(x, nil)〉

Here, we have seeded the initial state with is=i and js=j to keep track of the
initial depths is and js so that we can observe that is>i. This indicates that
the sublist lsi(x, nil) in the post-state is shorter than that in the pre-state. It is
inequalities like this which are the reason for well-foundedness of the computed
transition relations.

In the derivations of the transitions (2) and (3), first the state is=i ∧ js=j ∧
lsj(y, x) ∗ lsi(x, nil) is rewritten to two intermediate states by the application of
the rearrangement axioms Unroll1 and Unroll>1, respectively:

is=i ∧ js=j ∧ lsj(y, x) ∗ lsi(x, nil) (4)
→x is=i′ ∧ i′>i ∧ i′=1 ∧ js=j ∧ lsj(y, x) ∗ x.→nil

is=i ∧ js=j ∧ lsj(y, x) ∗ lsi(x, nil) (5)
→x is=i′ ∧ i′>i ∧ js=j ∧ lsj(y, x) ∗ x.→x′ ∗ lsi(x′, nil)

Now, in both of the resulting states, the heap cell at x is explicit, therefore the
symbolic execution rules can be applied to the right-hand side of (4) and (5):

is=i′ ∧ i′>i ∧ i′=1 ∧ js=j ∧ lsj(y, x) ∗ x.→nil
x:=[x]� x=nil ∧ is=i′ ∧ i′>i ∧ i′=1 ∧ js=j ∧ lsj(y, x′) ∗ x′ .→nil

is=i′ ∧ i′>i ∧ js=j ∧ lsj(y, x) ∗ x.→x′ ∗ lsi(x′, nil)
x:=[x]� x=x′ ∧ is=i′ ∧ i′>i ∧ js=j ∧ lsj(y, x′′) ∗ x′′ .→x′ ∗ lsi(x′, nil)

Finally, the resulting states are abstracted by →. For the first state, we apply
the SubstN and AppendLsNil rules to abstract as much as possible, and for the
second state we apply SubstN, SubstE, and AppendLsGuard, yielding:

x=nil ∧ is=i′ ∧ i′>i ∧ i′=1 ∧ js=j ∧ lsj(y, x′) ∗ x′ .→nil (6)
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→∗ x=nil ∧ is>i ∧ is=1 ∧ js=j ∧ lsk′′
(y, nil)

x=x′ ∧ is=i′ ∧ i′>i ∧ js=j ∧ lsj(y, x′′) ∗ x′′ .→x′ ∗ lsi(x′, nil) (7)

→∗ is>i ∧ js=j ∧ lsk
′′
(y, x) ∗ lsi(x, nil)

The right-hand sides of (6) and (7) are the resulting states of (2) and (3).

4 Checking Well-Foundedness of the Over-Approximation

Now that the abstract transition relation has been described, the remaining
ingredients of the �-termination proof method of Fig. 2 are Seed and WF.

Considering Fig. 2, we know that y is an element of Y (i.e., of Sonar∗
P [{I}]).

Seed(y) computes s, which is a new state in which the values of all the depth
variables occurring in y are symbolically recorded:

Seed(Q) � (
∧

k∈fdv(Q) ks=k) ∧Q

where fdv(Q) denotes the (unprimed or primed) depth variables in Q. Each ks

is a fresh symbolic constant (i.e., uninterpreted nullary function symbol), which
we formally represent as an unprimed variable. Now assume, as is done in Fig. 2,
that z ∈ Sonar+

P [{s}].
The procedure WF(z) is used to try to prove that z represents a well-founded

binary relation. Formally, this procedure proves well-foundedness of the rela-
tion that represents an over-approximation (determined by (y, z)) of all concrete
executions that visit y and then visit z.

WF implements this procedure by first computing a representative set of
arithmetic inequalities. Due to seeding and the fact that symbolic execution
maintains the relationship between the seeded information and the updated in-
formation, the arithmetic component of the relation (y, z) represents an over-
approximation of the changes in depths due to executing from y to z, and exists
entirely in the symbolic state z. Hence we can extract them via a projection α(z):

α(true ∧ Σ) � true α(K ∧ Σ) � K

α(B ∧ Σ) � true α(Π0 ∧Π1 ∧ Σ) � α(Π0 ∧ Σ) ∧ α(Π1 ∧ Σ)

The formula resulting from this projection is interpreted as a binary relation
over the naturals from the seed variables to the other variables. As an exam-
ple, consider this abstraction applied to the post-state of the transition of the
previous section (3): α(is>i ∧ js=j ∧ lsk′′

(y, x) ∗ lsi(x, nil)) = is>i ∧ js=j. We
now take this as one of the disjuncts in the transition invariant from Section 2,
Tn = is>i∧ js=j, which clearly represents a well-founded relation from is, js to
i, j, over the naturals.

After projecting out the inequalities, WF calls the RankFinder tool [11] to
attempt to prove well-foundedness:

WF(z) { return (RankFinder(αk(z)) reports “Rank function found”) }
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Checking well-foundedness relies on a second notion of over-approximation
that is relevant to the second call Z := Sonar+

P [{s}] of the depth analysis in
the Mutant algorithm. The formulation and proof of this second sense of over-
approximation is non-trivial, and for space reasons we can only give an outline of
it here. It involves setting up an instrumented semantics which manipulates the
depth variables k; the reason for the additional semantics is that the standard
concrete semantics of heap mutation does not mention the auxiliary depth vari-
ables used in our analysis. The instrumented semantics mixes both concrete and
abstract semantics. For example, an assignment statement [x]:= y alters concrete
heap cell x, but can also bump a depth variable down by one, corresponding to
an application of the Unroll>1 rearrangement rule. The crucial point is that
the rearrangement rules (→E) are sound for the updates of depth variables in
the instrumented semantics. Overall, what we require, first, is that if the projec-
tion α(Q) denotes a well-founded relation, then that implies well-foundedness of
executions in the instrumented semantics starting from seeded states; in essence,
α constrains the changes to depth variables. Then, the soundness of Mutant
requires a simulation argument connecting the instrumented semantics with a
standard concrete semantics of heap mutation.

5 A Complete Example

To illustrate the analysis in action, we consider trying to prove �-termination
of the simple program in Fig. 5, where � is location 5, and the initial state
is lsk(x, nil). As in Fig. 2, the first step of Mutant(P, I, 5) is to compute
Sonar∗

P [I]. First Sonar computes the transition relation:

〈3 , lsk(x, nil)〉 �∗
P 〈5 , y=x ∧ lsk(x, nil)〉

〈5 , y=x ∧ lsk(x, nil)〉 �+
P 〈5 , y .→x ∗ lsk(x, nil)〉

〈5 , y .→x ∗ lsk(x, nil)〉 �+
P 〈5 , lsk′

(y, x) ∗ lsk(x, nil)〉
〈5 , lsk

′
(y, x) ∗ lsk(x, nil)〉 �+

P 〈5 , lsk′
(y, x) ∗ lsk(x, nil)〉

We show only those transitions in �+
P involving program location 5, since the

algorithm will consider only those states. In this case:

C program program in Sonar format

1 void main()
2 {
3 y = x;
4 while (x!=NULL) {
5 x = x->next
6 }
7 }

P (3) = y:=x
P (4) = if(x �=nil) {goto 5} else {goto 7}
P (5) = x:= [x]
P (6) = goto 4

Fig. 5. Simple example program: list traversal
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Y = {〈5 , y=x ∧ lsk(x, nil)〉, 〈5 , y .→x ∗ lsk(x, nil)〉, 〈5 , lsk′
(y, x) ∗ lsk(x, nil)〉} ∪ Y ′

where Y ′ contains the states not at program location 5. Note that ' /∈ Y ,
meaning that executing P from I is guaranteed to be safe with respect to the
basic set of (memory) safety properties we consider.

Of the three reachable states in Y , we need only to consider q = 〈5 , lsk′
(y, x)∗

lsk(x, nil)〉 since execution from the other two states will result either in the state
〈5 , lsk′

(y, x)∗ lsk(x, nil)〉 itself or in the loop exiting. The next step in Fig. 2 is to
seed q, which yields: s = 〈5,k′s=k′∧ks=k ∧ lsk

′
(y, x)∗ lsk(x, nil)〉. The variables k

and k′ are set equal to the fresh constants ks and k′s. Later, during the successive
call to Sonar, we will be able to see how the values of k and k′ change relative
to k′s and ks.

The next step is to compute (SonarP )+[{s}], which equals:

〈5 , k′s=k′ ∧ ks=k ∧ lsk′
(y, x) ∗ lsk(x, nil)〉 �+

P 〈5 , ks>k ∧ lsk′
(y, x) ∗ lsk(x, nil)〉

〈5 , ks>k ∧ lsk′
(y, x) ∗ lsk(x, nil)〉 �+

P 〈5 , ks>k ∧ lsk′
(y, x) ∗ lsk(x, nil)〉

From this we see that the set of states at program location 5 reachable from
s after executing the loop one or more times is Z = {〈5 , ks>k ∧ lsk′

(y, x) ∗
lsk(x, nil)〉}. Let r be the element in Z from Fig. 2: r = 〈5 , ks>k ∧ lsk′

(y, x) ∗
lsk(x, nil)〉. All that remains is to prove WF(r), which we do by calculating:
αk(r) = ks>k and then calling RankFinder(ks>k). In this case RankFinder
reports that the relation is well-founded.

6 Experimental Results

In the experimental results described in [4], Terminator [5] was used to try
to prove that Windows device driver dispatch routines always return to their
calling context. A number of false bugs were reported in those experiments due
to Terminator’s inaccuracy with respect to heaps. In this section we revisit
21 loops from [4] in which �-termination was not provable. Fig. 6 displays the
results of these experiments (which were run on a 3.6GHz Pentium 4 machine).
The symbol 
 is used to indicate the 16 cases in which Mutant was able to
prove �-termination. The symbol 7 is used to represent failed proof attempts.

Loop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time (s) 0.0 0.0 8.0 0.3 1.7 13 296 0.1 5.4 0.0 8.2 821 0.0 1.6 152 0.0 2.6 3.5 58 32 261
Result � � � � � � � � � � � � � � � � � � � � �
WF checks 1 4 16 3 5 9 15 2 4 1 6 39 1 3 16 1 28 9 85 20 37

Fig. 6. Results of experiments using Mutant on loops from extracted from Windows
device drivers falsely reported as non-terminating by Terminator (see [4]). The sym-
bol 
 indicates that Mutant was able to prove the loop �-terminating; The symbol  
means that a termination bug was found.
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The number of disjuncts in the transition invariant, described in Section 2, is
reported in the bottom row.

Each failed well-foundedness check leads directly to a counterexample in the
code (the production of counterexamples could be automated but isn’t in the
current setup). Note that for now we have to extract each loop from a Windows
device driver loop by hand: Mutant currently does not support C functions and
address-of (&) operator on stack variables, so some manual translation akin to a
compiler front-end was required to construct equivalent programs. Furthermore,
loop preconditions were inserted by hand. These preconditions could probably
be automatically computed via the analysis like the one described in [7].

Example 19 is the code from Fig. 1. As we see from Fig. 6, this loop has a ter-
mination bug. The problem is that InitializeListHead creates a self-loop from
&irp->Tail.Overlay.ListEntry.Flink to &irp->Tail.Overlay.ListEntry
and that irp->Tail.Overlay.ListEntry.Flink aliases entry, meaning that
after the call to InitializeListHead, entry equals entry->Flink. Example
18 is based on fixed code provided to us from the Windows kernel team after
we reported the bug. These experiments reveal a strong difference in Mutant’s
running time between analyzing terminating versus non-terminating loops.

Example 8 is the only false bug reported by Mutant: the loop actually does
�-terminate, but our analysis is unable to prove it. This example amounts to
reversing a panhandle list. The initial state describes such lists, which cycle back
to a list node other than the head node, with the formula: lsi(c, x′) ∗ lsj(x′, y′) ∗
lsk(y′, x′). The program is essentially a common in-place list reversal algorithm.
When the program is run starting from a panhandle list, first the handle is
reversed in the usual way, then the cycle is reversed, and finally the handle is
reversed once again. Notice, in particular, that the handle is walked twice, and
so the quantity which is decreasing with each loop iteration is 2i+ j + k, which
our analysis does not detect. Finally, note that Mutant correctly proves the
termination of list reversal when starting either with an acyclic or cyclic list.

7 Conclusion

In this paper we have introduced a novel method of automatically proving the
termination of loops whose correctness depends on the mutation of the heap.
As the experimental results demonstrate, Mutant is able to prove the termi-
nation of loops that Terminator was previously unable to handle. Mutant
is completely automatic (e.g., it does not require the user to provide ranking
functions). Mutant provides information which may lead to concrete coun-
terexamples when a termination proof fails.

Related Work. Our work differs from the previous research on termination proof
methods in that we have proposed the first known tool to support entirely au-
tomatic termination proofs of imperative programs with deep heap updates. To
the best of our knowledge, the experimental results in Section 6 represent the
first known successful application of this type of tool to industrial systems with
loops that imperatively construct or destruct heap-based data structures. Note
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that absolutely no user intervention is required (i.e., ranking functions or proof
hints). Yahav’s dissertation [15] discusses experiments in which imperative list-
processing loops are proved terminating (the programs come from [8]). This work
is less automatic than Mutant: for the reason that the user must first exam-
ine the loop and specify a single (possibly lexicographically ordered) ranking
function. Mutant/Terminator automatically proves all of the examples from
[8] in less than 10s total. Note that 6.5s of this 10s was spent solving the one
arithmetic (non-heap) example using the standard Terminator algorithm.

Mutant also uses the relatively new Terminator proof-rule (finding a
disjunctively well-founded over-approximation), which was originally proposed
in [12]. While this use is not an original contribution, it means that the flavor of
the analysis is different from previous approaches (such as [16], [10] or [6]).

Our algorithm works in reverse order with respect to Terminator’s original
method for arithmetic programs. Terminator iteratively refines the set of well-
founded relations based on false counterexamples to the termination property.
The relations are well-founded by construction, the difficultly is proving that they
over-approximate the meaning of the loop or recursive function. Mutant first
computes an over-approximation and proves that it is disjunctively well-founded.
The over-approximation is given, the question is are the disjuncts well-founded?
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Abstract. We introduce calling context graphs and various static and theorem
proving based analyses that together provide a powerful method for proving ter-
mination of programs written in feature-rich, first order, functional programming
languages. In contrast to previous work, our method is highly automated and
handles any source of looping behavior in such languages, including recursive
definitions, mutual recursion, the use of recursive data structures, etc. We have
implemented our method for the ACL2 programming language and evaluated the
result using the ACL2 regression suite, which consists of numerous libraries with
a total of over 10,000 function definitions. Our method was able to automatically
detect termination of over 98% of these functions.

1 Introduction

Proofs of termination are a critical component of program correctness arguments. In
the case of transformational systems, termination proofs allow us to extend partial cor-
rectness results to total correctness. In the case of reactive systems, they are used to
prove liveness properties, i.e., to show that some desirable behavior is not postponed
forever. Unfortunately, besides being the quintessential undecidable problem [21], ter-
mination analysis is further exacerbated by modern programming language features
such as recursion, mutual recursion, non-linear loop conditions, and loops that depend
on recursive data structures.

Because of this, previous work has tended to focus on finding decidable fragments
of the problem, or has been designed for simple languages that lack the complexity of
actual programming languages. Within such restricted settings, much progress has been
made, e.g., there is work on analyzing the termination of semi-algebraic programs, toy
functional languages, and term rewriting systems (see Section 6).

We present a new termination analysis based on calling context graphs (CCGs) for
a fully featured class of modern functional programming languages. If a purely func-
tional program is nonterminating, there exists a sequence of values v1, v2, . . . , vn such
that for some function f1, f1(v1, v2, . . . , vn) leads to an infinite sequence of function
calls, f2(. . .), f3(. . .), . . ., where the call to fi results in the call to fi+1, for all i. CCGs
are a data structure which can conservatively approximate all such possible sequences.
In addition, we show that CCGs are amenable to various analyses, involving both static
analysis and theorem proving, that enable us to construct surprisingly precise approx-
imations of the actual function call sequences. The termination proof then involves

� This research was funded in part by NSF grants CCF-0429924, IIS-0417413, and CCF-
0438871.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 401–414, 2006.
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assigning sets of calling context measures (CCMs) over well-founded domains to the
calls and showing that for every possible infinite sequence there is a corresponding se-
quence of CCMs that is infinitely decreasing. We present an algorithm based on CCGs
and CCMs that can automatically reason about any source of looping behavior in first
order purely functional programming languages and which can automatically handle a
much larger class of programs than previous approaches.

We have implemented our algorithm in the ACL2 theorem proving system, which
consists of a feature-rich first-order functional programming language, a logic for that
language, and an automatic theorem prover [11,10,9]. It has a large, worldwide user
base, and has been used in a wide variety of industrial verification projects ranging
from reasoning about modern processor designs to modeling programs written in im-
perative languages such as Java. ACL2 is part of the Boyer-Moore family of provers, for
which its authors received the 2005 ACM Software System Award. Termination plays a
key role in ACL2, as it is used to justify induction schemes and also every defined func-
tion must be shown to terminate. Therefore, users spend a significant amount of time
reasoning about termination, and stand to greatly benefit from the work presented here.

In order to evaluate our work, we ran our implementation on the ACL2 regression
suite, a collection of numerous libraries by a variety of authors covering topics such as
commercial floating point verification (at AMD and IBM), JVM bytecode verification,
term rewriting algorithm verification, the verification of a model checker, the verifica-
tion of graph algorithms, etc. Our algorithm was able to automatically prove termina-
tion for over 98% of the more than 10,000 functions in the regression suite. This was
accomplished with no user interaction.

The rest of the paper is organized as follows. In Section 2 we introduce the core of
first-order functional languages. In Section 3, we introduce and develop the theory of
calling context graphs. Our termination algorithm appears in Section 4, and experimen-
tal results are given in Section 5. Some readers may want to read Section 5 first. We end
with related work and conclusions.

2 Semantics

While our method works for feature-rich, first-order functional programming languages
including ACL2, such languages are quite complicated and we cannot fully describe
them here. Instead, in Figure 1, we present the semantics of FL, a language that only
contains the core features of first-order functional languages. The semantics are similar
to what can be found in standard programming language texts. Some readers may want
to skim this section initially, returning as needed later.

We are concerned with proving the termination of well-formed function definitions
(members of the set Defs), which are of the form define f(x1, . . . , xn) = e, where
f ∈ FName is a function name, x1, . . . , xn ∈ Var are variables, and e ∈ Expr is an
expression whose free variables are a subset of {x1, . . . , xn}.

The universe of values over which FL is defined is Val and it includes symbols,
strings, integers, rationals, and lists, but is otherwise unspecified. However, since this is
a first order language, functions are not first class data objects, and are not included in
Val . We use⊥ (which is not in Val) to denote nontermination, and Val⊥ = Val ∪{⊥}.
An environment maps variables to values.
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d ∈ Defs
f ∈ FName
x ∈ Var
e ∈ Expr
v ∈ Val
u ∈ Val⊥ = Val ∪ {⊥}
ε ∈ Env = Var → Val
φ ∈ Funct = Val∗ → Val⊥
ψ ∈ TFunct = Val∗ → Val ⊆ Funct
h ∈ IHist = FName → Val∗ → Val⊥

H ∈ Hist = FName → Val∗ → Val ⊆ IHist

�e�h ε : Expr × IHist × Env → Val⊥
O : Op → TFunct

str : Funct → Val∗⊥ → Val⊥
D �d� H : Defs × Hist → Funct+

fix : (Funct∗ → Funct∗) → Funct∗

str (φ) 〈ui〉n
i=1 =

 ⊥ if 〈∃i ∈ [1..n] :: ui = ⊥〉
φ (ui)n

i=1 otherwise

fix ξ = lim
j→∞

ξ
j 〈λvi . ⊥〉m

i=1

�x�h
ε = ε.x , �v�h

ε = v

�e1 op e2�h
ε = str (O �op�) D�ei�h

ε
E2

i=1

�f(e1, . . . , en)�h
ε = str (h.f)

D�ei�h
ε
En

i=1�
��
let x1 = e1

. . .
xn = en

in e

�
��

h

ε = str
“

λ(vi)
n
i=1 . �e�h

ε[vi/xi]
n
i=1

” D�ei�h
ε
En

i=1

�if e1 then e2 else e3�h
ε = str

„
λ(v) .

 �e2�h ε if v �= nil,

�e3�h ε otherwise.

« D�e1�h
ε
E

D

�
��
define f1(x1

1, . . . , x1
n1

) = e1

. . .

define fk(xk
1 , . . . , xk

nk
) = ek

�
�� H = fix

„
λ(φi)

k
i=1 .

D
λ(vi

j)
nj
j=1 . �ei�H[φi/fi] [vi

j/x
i
j ]

ni
j=1

Ek

i=1

«

Fig. 1. Language Semantics of FL

Function definitions in FL denote mathematical functions, which can either be mem-
bers of the set Funct or TFunct . Funct consists of a set of partial functions, which
means that for some inputs, functions in Funct may return ⊥, denoting nontermina-
tion. TFunct is the subset of Funct consisting of all the total (i.e., terminating) func-
tions. A history maps function names to total functions (of the appropriate arity) and an
intermediate history maps function names to partial functions (of the appropriate arity).

The termination problem we consider is: given a history, H , and a set of mutually
recursive definitions, d, show that the functions corresponding to the definitions in d
are terminating. To do this, we need to refer not only to H , but also to the (possibly
partial) functions corresponding to the definitions in d. This is accomplished by using
an intermediate history, h, which is just H extended so that it includes the function
names appearing in d and their corresponding functions, as given by the semantics of
FL (which are given in Figure 1 and described in more detail in the next paragraph). We
then attempt to prove that the functions defined in d terminate, which implies that the
intermediate history, h, is actually a history. If so, we have a new history. Otherwise, we
reject d, revert to H , and report the problem to the user. This allows the user to incre-
mentally define programs, as is common in programming environments for functional
languages, such as Lisp.

We use five functions to define the semantics of FL. The function �e�h
ε defines

how to evaluate an expression, e, given an intermediate history, h, and an environ-
ment, ε. The function O maps FL’s unspecified set of built-in operators (Op) to their
corresponding functions. The set of built-in operators includes the usual Boolean and
arithmetic operators, such as and, or, not, iff, implies, +, -, /, *, etc. The
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function str corresponds to strict application. As input, it takes a function and a vector
of values (possibly including ⊥, which indicates nontermination). It returns ⊥ if any
of the input values is ⊥; otherwise, it returns the result of applying the function to the
values (which could also be⊥). The definitions of the semantics functions for variables,
values, built-in operators, function application, lets, and ifs are now straightforward.

Function definitions are handled with D �d�H , which defines what mathematical
functions (elements of Functs) correspond to a set of function definitions, d, given his-
tory H . Its definition depends on the fix function, which is used to define the semantics
of recursive function definitions using the standard fixpoint approach. The fix function
takes as input ξ, a function from a vector of functions to a vector of functions, and
returns the vector of functions obtained by taking the limit as j approaches infinity of
applying ξ to the vector of functions returning ⊥. The definition of D �d�H uses fix to
“unroll” the bodies of the definitions an unbounded number of times, which results in a
vector of partial functions that corresponds to the semantics of the definitions.

Throughout the rest of this paper, unless otherwise specified, we assume a fixed
history, H and a set of syntactically correct, mutually-recursive function definitions, d,
such that none of the function names in d are the same as those in the domain of H . The
intermediate history h is obtained by extending H with the semantics of the function
definitions in d. To simplify the notation, we assume the uniqueness of subexpressions.
That is, if expression e has two identical subexpressions, then we have some way of
determining which is which. This can be accomplished by pairing each subexpression
with its unique position within the base expression. We use “e1 � e2” to denote that e1
is a sub-expression of e2.

We now give several definitions related to the semantics of FL that we will use
throughout the paper. We begin by defining the set of governors under which a subex-
pression e′ of e is reached, ignoring nontermination (for now). Our definition is syn-
onymous with that in [12]. If e is an FL let statement and e′ � e, then we use σe

e′

to denote the substitution (a mapping from variables to expressions) corresponding to
the let bindings of e that are visible in e′. For example, if e = let x = e1 in e2,
then σe

e2
= {〈 x, e1〉} and σe

e1
= {}. We use eσ to denote the expression obtained by

applying substitution σ to e.

Definition 1. Given expressions e′, e such that e′ � e, the set of governors of e′ in e
is the set {e1σe

e1
| if e1 then e2 else e3 � e ∧ e′ � e2} ∪ {not(e1σe

e1
) |

if e1 then e2 else e3 � e ∧ e′ � e3}.

The idea of the governors of e′ in e is that the execution of e reaches e′ exactly when
the governors are true. We therefore define the more general notion of when expressions
“hold”:

Definition 2. We say a set of expressions,E, holds for environment ε, denotedHh �E� ε,
if
∧

e∈E(�e�h
ε /∈ {nil,⊥}).

3 Calling Context Graphs

In this section, we introduce calling context graphs (CCGs) and related notions. We also
show how CCGs can be used reason about program termination.
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define f(x) =
if not(intp(x)) or x = 0

then 0
else if x < 0 then f(x+1)

else f(x-1)

1. 〈f, {intp(x), x �= 0, x < 0}, f(x+1)〉
2. 〈f, {intp(x), x �= 0, x ≥ 0}, f(x-1)〉

	
��
���1
�� 	
��
���2

��define dec(n) =
if not(intp(x)) or x ≤ 0

then 255
else n - 1

define foo(i, j) =
if i = 1 then

if j = 1 then 0
else foo(dec(j), dec(j))

else foo(dec(i), j)

1. 〈foo, {i = 1, j �= 1}, foo(dec(j),dec(j))〉
2. 〈foo, {i �= 1}, foo(dec(i),j)〉

	
��
���1
��	
��
���2�� ��

Fig. 2. Definitions, contexts, and minimal CCGs for f and foo

Definition 3. A calling context is a triple, 〈f , G, e〉, where f is the name of a function
defined in d, G is a set of expressions whose free variables are all parameters of f ,
and e is a call of a function in d whose free variables are all parameters of f . This is
a precise calling context if e is a subexpression in the body of f and G is the set of
governors of e in the body of f .

We sometimes refer to a calling context simply as a context. The definitions and con-
texts for two examples are given in Figure 2. We now introduce the notion of a well-
formed sequence of contexts, a notion that is strongly related to termination in FL.

Definition 4. Let c =
(
〈fi, Gi, fi+1(ei,1, . . . , ei,ni+1)〉

)
i

be a sequence of calling
contexts, where ni is the arity of fi and (xi,k)ni

k=1 are the formals of fi. For a given vec-
tor of values v, we define a sequence of environments where εv1 maps x1,k to vk and εvi+1

maps xi+1,k to �ei,k�h εvi . We say c is well-formed if there exists a witness for c: a vec-

tor of values, v, such that for every i > 0,Hh �Gi� εvi and 〈∀j ≤ ni :: �ei,j�h
εvi �= ⊥〉.

We use the notation εvi introduced in the above definition throughout the paper. Termi-
nation in FL can be expressed in terms of well-formed sequences, as we see in the next
theorem. (Due to space considerations all proofs have been elided.)

Theorem 1. The functions of d terminate on all inputs iff every well-formed sequence
of precise contexts is finite.

We now define the notion of a calling context graph and show that it is a conservative
approximation of the well-formed sequence of contexts.

Definition 5. A calling context graph (CCG), is a directed graph, G = (C,E), where
C is a set of calling contexts, and for any pair of contexts c1, c2 ∈ C, if the sequence
〈c1, c2〉 is well-formed, then 〈c1, c2〉 ∈ E. If C is the set of precise contexts of d, then G
is called a precise CCG of d.

The minimal precise CCG for function f in Figure 2 is shown in the same figure. Note
that there is no edge between the two contexts. This is because if x is a positive integer,
then decrementing x by 1 will not lead to a negative integer. Likewise, adding 1 to x
if it is a negative integer cannot produce a positive integer. Notice that this mirrors the
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define size(x) = if pairp(x) then size(first(x)) + size(rest(x)) + 1
else if intp(x) then abs(x) else 0

Fig. 3. Definition of size

looping behaviors of the function. Figure 2 also contains the minimal precise CCG for
function foo. Notice that if the first context of foo is reached, foo calls itself, passing
in (dec j) for both arguments. Since (dec j) cannot simultaneously be both equal
to 1 and not equal to 1, it is impossible to immediately reach context 1 again. However
both contexts can reach context 2, and context 2 can reach context 1.

Lemma 1. Given a CCG, G = (C,E), every well-formed sequence of calling contexts
of C is a path in G.

Note that the converse of the above lemma does not hold. This is because the definition
of a CCG only requires local reachability whereas a well-formed sequence of contexts
requires that the entire sequence correspond to a single computation. As a result, a CCG
is an abstraction of the actual system. We use CCGs to perform a local analysis which if
successful can determine that the definitions terminate. To do this, we start by assigning
calling context measures to contexts in the CCG.

Definition 6. Given a calling context, c = 〈f,G, e〉, and a set S ⊆ Val , a calling
context measure (CCM) for c over S, s, is an expression whose free variables are pa-
rameters of f and for any environment, ε, Hh �G� ε⇒ �s�h

ε ∈ S.

CCMs simply map the parameters of a function into some set. For our purposes, this
set will have a well-founded ordering on it. Now we create a mechanism for comparing
the CCM of two adjacent contexts in a CCG.

Definition 7. Let G = (C,E) be a CCG with e = 〈c1, c2〉 ∈ E. Let 〈S,≺〉 be a
well-founded structure where Sc1 and Sc2 are sets of CCMs over S for c1 and c2,
respectively. Then, the CCM function for e over ≺, Sc1 , and Sc2 is the function φ :
Sc1 × Sc2 → {>,≥,×} such that: (1) φ(s1, s2) = > only if for all witnesses v for
〈c1, c2〉, we have �s1�h

εv1 5 �s2�h
εv2 ; (2) φ(s1, s2) = ≥ only if for all witnesses v for

〈c1, c2〉, we have �s1�h
εv1 8 �s2�h

εv2 ; (3) φ(s1, s2) = ×, otherwise.

We represent CCM functions for 〈c1, c2〉 graphically with a box containing the CCMs
for c1, c2 on the left and right, respectively. An edge is drawn from s1, a left CCM, to
s2, a right CCM, with the label φ(s1, s2) iff it is > or ≥. If φ(s1, s2) is ×, no edge is
drawn.

We now consider some examples. For the function f in Figure 2, we use the size
function in Figure 3 applied to f’s parameter, x, as the only CCM for both contexts.
The range of size is the set of natural numbers, and the function is designed to mirror
common induction schemes, e.g., induction on the size of a list. Notice that for each
context in our example, the CCM decreases for all values of x that satisfy the governors
of the context. The resulting CCM functions are shown in Figure 4a. For the function
foo in Figure 2, we use different CCMs. Namely, we apply dec to the arguments; note
that dec always returns a natural number, which is a well-founded domain under the
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φ1 : 1 → 1, φ2 : 2 → 2

size(x)
> ��size(x)

(a)

φ1 : 1 → 2

dec(i) dec(i)

dec(j)

> ��������� > ��dec(j)

φ2 : 2 → 1, φ3 : 2 → 2

dec(i)
> ��dec(i)

dec(j)
≥ ��dec(j)

(b)

Fig. 4. (a) CCM function for f. (b) CCM functions for foo.

define ack (x, y) =
if (not(intp(x)) or x ≤ 0) then 1
else if (not(intp(y)) or y ≤ 0)

then if x=1 then 2 else x+2
else ack(ack(x-1, y), y-1)

	
��
���1
�� ��	
��
���2�� ��

φ1 : 1 → 1,
φ2 : 1 → 2

x
> �� x

y
≥ ��y

φ3 : 2 → 1,
φ4 : 2 → 2

x x

y
> ��y

1. 〈ack, {intp(x), 0 < x, intp(y), 0 < y}, ack(x-1, y)〉
2. 〈ack, {intp(x), 0 < x, intp(y), 0 < y}, ack(ack(x-1, y), y-1)〉

Fig. 5. Ackermann’s function

< relation. The result is shown in Figure 4b. The question of how to choose CCMs is
addressed in Section 4.

We use CCM functions to show that certain infinite paths are not feasible and also to
show that CCGs correspond to terminating functions.

Definition 8. We say that a CCG, G = (C,E) is well-founded if there exists a well-
founded structure, 〈S,≺〉 and a mapping, m, from C into sets of CCMs over S such
that MC,≺,m(c) for all infinite paths, c = c1, c2, . . ., through G. MC,≺,m is a CCM
predicate and holds for an infinite sequence of contexts, c, iff there exists i0 ≥ 1 and a
sequence si0 , si0+1, . . . such that for all i ≥ i0, si ∈ m(ci) and φi(si, si+1) ∈ {>,≥},
and for infinitely many such i, φi(si, si+1) = >, where φi denotes the CCM function
for 〈ci, ci+1〉 with CCMs m(ci) and m(ci+1).

It is important to note here that we do not need to fix a CCM for each context in order
to satisfy the CCM predicate. Rather, we can select from any of the CCMs for a given
context each time it appears in a sequence. For example, consider Ackermann’s func-
tion, given in Figure 5. Here, if a sequence contains context 2 infinitely often, then y
decreases infinitely, and if it does not, then there is an infinite suffix of the sequence
that is just context 1, which means that x decreases infinitely often. It is possible to cre-
ate one measure that decreases in both cases, but this measure requires a well-founded
structure more powerful and complex than the natural numbers.

It turns out that we only need to consider maximal SCCs (strongly connected com-
ponents) to establish termination.

Theorem 2. Let G = (C,E) be a CCG, s.t. C is the set of precise contexts of d. If every
maximal SCC of G is well-founded, then all functions of d terminate on all inputs.

Notice that the converse of Theorem 2 does not hold because the paths of a CCG are
a superset of the well-formed sequences of contexts. For example, notice that when
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define g(x) = f(x+1)
define h(x) = f(x-1)
define f(x) =

if not(intp(x)) or x=0
then 0

else if x < 0
then g(x)

else h(x)

1. 〈g, {}, f(x+1)〉
2. 〈h, {}, f(x-1)〉
3. 〈f, {intp(x), x �= 0, x < 0}, g(x)〉
4. 〈f, {intp(x), x �= 0, 0 ≤ x}, h(x)〉

	
��
���1
��

��

	
��
���3��

	
��
���4
��	
��
���2��

		

Fig. 6. Altered version of function defined in Figure 2

define f(x) =
if not(intp(x))

or x ≤ 1
then 0

else if x mod 2 = 1
then f(x+1)

else 1 + f(x/2)

1. 〈f, {intp(x), 1 < x, x mod 2 = 1}, f(x+1)〉
2. 〈f, {intp(x), 1 < x, x mod 2 �= 1}, f(x/2)〉

	
��
���1
��	
��
���2�� ��

φ1 : 1 → 2

size(x) size(x)

φ2 : 2 → 1, φ3 : 2 → 2

size(x)
> ��size(x)

Fig. 7. Example of the abstraction inherent in the infinite CCM relation

we split function f from Figure 2 into several functions, as in Figure 6, all the con-
texts now appear in the same SCC. Why? Consider the function, g. Note that g(2)
results in the call f(3), which leads to context 4. A similar situation arises for h. Thus
1, 4, 2, 3, 1, 4, 2, 3, . . . is a valid path through any CCG, even though it is not a well-
formed sequence of contexts. Each time through the loop 1, 4, 2, 3, the value of x stays
the same, hence, the termination analysis presented so far fails.

Another source of imprecision is due to the local analysis used in determining if a
CCG is well-founded. If a value decreases over several steps, but increases for one of
those steps, the termination analysis presented so far will fail. Consider the example in
Figure 7. When x is odd, 1 is added to x and when it is even, x is divided by 2. This
continues until x is 1 (or not a positive integer). This results in an overall decrease of
the value of x despite the initial increase.

In order to gain more accuracy and overcome many of the problems caused by the
local nature of our analysis, we introduce the idea of context merging. This essentially
enables us to consider multiple steps instead of single steps.

Definition 9. The call substitution of e =f(e1, e2, . . . , en), denoted σe, maps xi to ei

for all 1 ≤ i ≤ n, where x1, x2, . . . , xn are the parameters of f .

Definition 10. Let 〈c1, c2〉 be a well-formed sequence of calling contexts, where c1 =
〈f1, G1, e1〉 and c2 = 〈f2, G2, e2〉. The merging of c1 and c2, denoted c1; c2, is the
calling context 〈f1, G1 ∪ {pσe1 | p ∈ G2}, e2σe1〉.
As an example, note that if in Figure 6 we merge context 3 with context 1 and context
4 with context 2, we get contexts 1 and 2 of Figure 2, respectively. This makes sense as



Termination Analysis with Calling Context Graphs 409

1; 2 : 〈f, {intp(x), 0 ≤ x, x �=1, x mod 2 = 1, intp(x+1), 0 ≤ x+1, (x+1) mod 2 �= 1}, f((x+1)/2)〉
2; 1 : 〈f, {intp(x), 0 ≤ x, x �=1, x mod 2 �= 1, intp(x/2), 0 ≤ x/2, (x/2) mod 2 = 1}, f(x/2+1)〉
2; 2 : 〈f, {intp(x), 0 ≤ x, x �=1, x mod 2 �= 1, intp(x+1), 0 ≤ x+1, (x+1) mod 2 �= 1}, f((x/2)/2)〉

Fig. 8. Merging and compaction results for Figure 7

the example in Figure 6 was obtained by splitting f into several functions and merging
essentially recombines the contexts. For a more interesting example, in Figure 7 con-
sider merging context 1 with context 2, context 2 with context 1, and context 2 with
itself; the result appears in Figure 8.

We now use merging to define the notion of absorption and show that given a CCG,
we can define an infinite sequence of CCGs such that if we can prove that at least one
CCG in the sequence terminates, then so does the original CCG. This can greatly extend
the applicability of our analysis.

Definition 11. Given a CCG, G = (C,E), the result of absorbing c ∈ C is a CCG
G′ = (C′, E′) where C′ = C\{c} ∪ {c; c′ | 〈c, c′〉 ∈ E}.

Theorem 3. Let G0,G1, . . . be a sequence of CCGs such that G0 is a precise CCG of
d, and Gi+1 is obtained from Gi by absorbing a context. If for some i, every maximal
SCC of Gi is well-founded, then every function in d terminates on all inputs.

4 Algorithm

The definitions given in Section 3 suggest the following algorithm for the termination
analysis of a set of function definitions, d, using static analysis and theorem proving.

1. Using static analysis, construct the precise calling contexts of d.
2. Using theorem proving, build a precise CCG.
3. Absorb contexts that have only one successor.
4. Divide the CCG into SCCs
5. Choose a well-founded structure for each SCC, and a set of CCMs for each context.
6. Use theorem proving to construct safe approximations of the CCM functions.
7. Perform analysis to decide the CCM predicate for all paths through each SCC.

Step 1 is straightforward, and one can construct the algorithm from Definition 1. Step
2 involves building a CCG. We wish to construct as minimal a CCG as we can, in order
to avoid spurious paths through the CCG, which complicate the rest of the algorithm and
can lead to less accurate analysis. Therefore, for every pair of contexts, c1 = 〈f,G1, e1〉
and c2 = 〈g,G2, e2〉, such that e1 is a call to g, we query the theorem prover to prove
that 〈c1, c2〉 is not well-formed, and therefore no edge needs to be added from c1 to c2.
The corresponding theorem prover query is 〈∀v ∈ Val∗ :: (

∧
p∈G1

�p�h
εv1 �= nil) ⇒

¬(
∧

q∈G2
�qσe1�h εv1 �= nil)〉. If the proof is successful, we omit the edge 〈c1, c2〉.

For this algorithm, we choose a simple absorption strategy. While absorbing a con-
text in a CCG may result in a CCG that is more amenable to analysis, it may also
increase the size of the CCG (by up to a factor of 2). However, if a context has only
one successor in the CCG, absorbing it creates a CCG at most the size of the origi-
nal. We therefore perform several passes through the graph, absorbing all such contexts
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with each pass. This simple absorption strategy is quite effective, e.g., it allows us to
automatically prove the termination of the functions in Figure 6. We plan to explore
other strategies, such as looping from step 3 through step 7 and using the result of the
previous failed termination analysis to guide absorption.

Once absorption is completed, we choose well-founded structures and CCMs. Cur-
rently, we always default to natural numbers for our well-founded structure. We use
heuristics to automatically choose CCMs. Currently, these include the following.

– We use a version of the size function from Figure 3, called acl2-count, that is
extended to deal with more types, adding the size of each parameter of a function
to the CCMs of each context from that function.

– When e1 < e2 or e1 ≤ e2 is a governor of a context, we add e1-e2 as a CCM.
– When intp(e) and 0 < e are governors of the context, we add e as a CCM.

Finally, we propagate measures other than the size of the parameters through the rest
of the contexts. That is, if we add a CCM s, to a context, then to each of its predecessors
in the CCG we add the CCM sσe, where e is the call of the predecessor. We repeat this
until the CCM is propagated to each of the contexts in the CCG.

In step 6, we approximate the CCM functions using the theorem prover. Given two
adjacent contexts, c1 = 〈f,G1, e1〉 and c2 = 〈g,G2, e2〉, in an SCC, then for every
CCM, s1, for c1 and every CCM, s2, for c2, we perform the following analysis. We
first attempt to prove that for all ε, [(

∧
p∈G1

�p�h ε �= nil) ∧ (
∧

q∈G2
�qσe1�h ε �=

nil)] ⇒ �s1�h
ε ≺ �s2σe1�h

ε. If this succeeds, we set φ(s1, s2) to be >. Otherwise,
we attempt to prove that for all ε, [(

∧
p∈G1

�p�h
ε �= nil) ∧ (

∧
q∈G2

�qσe1�h
ε �=

nil)] ⇒ �s1�h
ε � �s2σe1�h

ε. If this succeeds, we set φ(s1, s2) to be ≥. If neither
proof succeeds, we set φ(s1, s2) to be ×.

The final step of the algorithm is to determine the value of the CCM predicate. In
other words, we wish to determine that for every path through the graph, we can choose
one of the CCMs from each context in the path such that they never increase in value,
and infinitely decrease in value. A basic algorithm for doing this appears in [13].

5 Experimental Results

In this section, we experimentally evaluate the theory of calling context graphs we have
introduced in this paper. As we saw in the previous section, our analysis is param-
eterized by the CCMs used and by the merging and absorption strategies employed.
Our goal is to evaluate a simple, baseline version of the algorithms we have presented.
Therefore, we use a simple absorption strategy and a small, simple collection of CCMs.

We have implemented our termination algorithm and used it on the ACL2 system,
an industrial-strength theorem proving system that consists of a feature-rich functional
programming language, a first-order logic for reasoning about this language, and a the-
orem prover for the automation of this reasoning. The ACL2 language can roughly be
thought of as an applicative (pure, functional) subset of Common Lisp. The reality is
more complicated because ACL2 has many advanced features such as single-threaded
objects, which have been shown to enable execution at close to C speeds. ACL2 is
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actively used by a worldwide user-base to perform tasks as diverse as microproces-
sor modeling and simulation, the analysis of graph algorithms, algebraic reasoning, the
analysis of imperative programs written in languages such as Java, etc. For more infor-
mation on ACL2 see [11,10,9].

ACL2 is a good choice for us because termination arguments play a key role in its
logic. First, every program admitted by the definitional principle must be shown to ter-
minate before it is accepted by ACL2. This guarantees that definitions do not render
ACL2 inconsistent. Second, inductive reasoning, ACL2’s forte, is justified using termi-
nation arguments (to show that the induction is well-founded). Currently, termination
in ACL2 is proven by providing an ordinal-valued measure and showing that it de-
creases on every recursive call. The ordinals are a transfinite extension of the natural
numbers that form the basis of set theory; in fact, any well-founded argument can be
phrased in terms of the ordinals. In recent work, we improved ACL2’s handling of the
ordinals, defined algorithms for ordinal arithmetic, and created a library of theorems
for reasoning about the ordinals and ordinal arithmetic. The result was a significant
improvement in ACL2’s ability to reason about termination, once an ordinal measure
is provided [14,15,16,17]. ACL2 tries to automate termination analysis by guessing a
measure of the form acl2-count(x), where x is some parameter of the function.
Unfortunately, it is often the case that this simple heuristic fails and the user must dis-
cover and provide an appropriate ordinal measure.

Another advantage of using ACL2 is that it has a regression suite consisting of 137
MB of definitions and theorems. There are over 10,400 function definitions arising in
the work of various researchers around the world and ranging from bit-vector libraries
used by AMD (to prove the correctness of their floating point units) to set theory li-
braries to graph algorithms to model checkers, etc. The termination of all of these func-
tions has already been proven with ACL2. In the cases where ACL2 does not auto-
matically prove termination, human guidance is required. We distinguish two types of
guidance.

Implicit guidance is given when users prove auxiliary lemmas which help ACL2 to
complete the termination proof. While it is difficult to identify the theorems used solely
to prove termination, it is clear that many termination proofs require auxiliary lemmas
and substantial human effort. For example, in a recent posting to the ACL2 mailing
list, an experienced ACL2 user asked whether a particular proof could be simplified.
After some discussion, he simplified his proof and posted a proof challenge to see if
anyone could simplify it further. The point was to establish the termination of function
fringep. The simplified proof included a library for reasoning about arithmetic, seven
lemmas, one theory command, and five function definitions. Two of the functions were
needed to define fringep, but the other three functions were needed for the proof.
The proof script also contained several hints, the use of the proof checker, and several
theorems that were classified as :linear rules (which are handled in a special way by
ACL2). The proof was simplified by another experienced ACL2 user, but it still required
the library, five function definitions, and five theorems. Using our system, we proved
termination directly in seconds, without using the library, without the extra definitions,
without any lemmas, and most importantly, without thinking.

Explicit guidance is given when users provide the measure explicitly or when they
provide hints on how to prove termination. Such guidance is easy to detect and of the
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Table 1. Results of experiments on the regression suite

Which Functions Total # Correct % Correct
All 10,442 10,308 98.7%
With Explicit Guidance 421 287 68.2%

10,442 functions in the regression suite, 404 required the user to provide explicit mea-
sures and 17 more requited hints. For example, here is a part of a function from the
regression suite that specifies an explicit measure: an ordinal constructed using ordi-
nal multiplication (o*), ordinal addition (o+), the first infinite ordinal ((omega)), and
several auxiliary functions (e.g., tuple-set-max-first).

(defun tuple-set->ordinal-partial-sum (k S i)
(declare (xargs

:measure (o+ (o* (omega) (nfix k))
(nfix (- (tuple-set-max-first S) i)))))

...)

The actual function definition is too long to list here, but discovering infinite measures
requires some skill. Our system automatically proves that the above function terminates.

To quantitatively evaluate our work, we removed all sources of explicit hints and
ran our termination method on the full regression suite. Since identifying the implicit
guidance is difficult, we did not attempt to remove such lemmas, but we note that since
our termination analysis is very different from ACL2’s, such lemmas are not very likely
to provide much help for us. The results of our experiments are presented in Table 1. Out
of all 10,442 functions analyzed by our system, 10,308 (over 98%) were automatically
proven to terminate. Included in these are 287 of the 421 functions which required
the user to provide explicit measures or hints for ACL2 to prove termination. In other
words, of the most difficult 4% of functions to analyze, our tool successfully and fully
automatically analyzed almost 70% of them.

6 Related Work

Termination is one of the oldest problems in computing science and it has received a
significant amount of attention. Here we will briefly review recent work on automating
termination analysis.

One of the most often cited techniques for the proving termination of programs
is called the size change principle [13]. This method involves using a well-order on
function parameters, analyzing recursive calls to label any clearly decreasing or non-
increasing parameters. Then, all infinite paths are analyzed to ensure that some param-
eter never increases and infinitely decreases over each path. We use this path analysis in
step 7 of our algorithm. The size change principle has several limitations, e.g., it does
not show how to take governors into account and it does not provide any method for
determining the sizes of the outputs of user-defined functions. Both of these considera-
tions are almost always important for establishing termination in realistic programming
languages.

Much work has gone into developing termination analyses for term rewriting sys-
tems and logic programs, e.g., [2,8,4]. However, these methods do not scale to the
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complexity of functional programming languages. For example, the AProVE tool [8],
cannot prove the termination of a function that takes two integer arguments, x and y,
and increments x until it is greater than y, which is the behavior of a simple for loop.

There has been a significant amount of work on proving the termination of programs
written in high-level imperative languages such as C. This work tends to focus on semi-
algebraic functions, whose termination behavior is governed by integer arithmetic. Most
of it has been even more narrowly defined than that, dealing only with systems whose
behavior is linear [19,20]. Recently, this work has been extended to programs with
polynomial behavior [3,6]. While successful in dealing with semi-algebraic programs,
these methods are not applicable outside of this domain, e.g., they cannot reason about
data structures, which often play a crucial role in termination proofs, or non-polynomial
arithmetic. A recent paper presents an abstraction-refinement algorithm for termination
analysis. The algorithm deals with loops, but cannot currently handle recursion and was
not implemented [5].

7 Conclusion

We introduced the notion of calling context graphs and various related static and the-
orem proving based analyses that together led to a powerful new method for proving
termination of programs written in feature-rich, first-order, purely functional languages.
We implemented our algorithm and were able to automatically detect the termination
of over 98% of the more than 10,000 function definitions in the ACL2 regression suite.
For future work, we are developing an abstraction-refinement framework that uses more
advanced absorption and merging strategies to refine CCGs. We are also looking at ex-
tending our analysis to deal with imperative languages such as C by taking advantage
of various static analyses (such as alias analysis, data-flow, and control-flow) and tak-
ing advantage of the fact that Static Single Assignment (SSA), a popular intermediate
language used for the analysis and optimization of imperative programs, is essentially a
pure functional language [1]. More generally, we are interested in exploring algorithms
that combine static analysis methods with theorem proving [18].
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Abstract. Previous symbolic software model checkers (i.e., program
analysis tools based on predicate abstraction, pushdown model check-
ing and iterative counterexample-guided abstraction refinement, etc.) are
restricted to safety properties. Terminator is the first software model
checker for termination. It is now being used to prove that device driver
dispatch routines always return to their caller (or return counterexamples
if they if they fail to terminate).

1 Introduction

Terminator is a program analysis and verification tool for termination. It
supports large program fragments (i.e., >20,000 LOC) together with C pro-
gramming language features such as arbitrarily nested loops, arbitrarily nested
recursive functions, pointer-aliasing and side-effects, function-pointers, etc. It
is fully automatic; no annotations or auxiliary proof arguments (e.g., ranking
functions) need to be provided. It automatically synthesizes the termination ar-
gument. In the case where the proof cannot be refined Terminator produces
counterexamples in the form of (possibly nested) looping paths through the con-
trol flow graph. In program analysis terms, Terminator is interprocedural, path
sensitive and context-sensitive. Technically it is based on predicate abstraction,
pushdown model checking and iterative counterexample-guided abstraction re-
finement, i.e., on the ingredients of software model checkers such as Blast [12],
Magic [3], Slam [1].

We have applied Terminator to device drivers ranging in sizes from 5,000
to 35,000 LOC in order to prove that their dispatch routines always re-
turn to the operating system when called. These experiments were carried
out using an integration of Terminator and the Windows Static Driver
Verifier[1,15] product. Overall, 8 termination bugs were found in 23 device
drivers. The runtime ranged from 5 seconds to 44 hours. A full account
of the results can be found in [8]. See also the Terminator home page
http://research.microsoft.com/TERMINATOR.

2 Termination Analysis for Software

Reactive systems such as operating systems, web servers, mail servers, and
database engines are constructed from sets of components that we expect will
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always terminate. Cases where these functions unexpectedly do not return to
their calling contexts leads to non-responsive systems and system crashes. Prov-
ing that these system components always terminate has been a challenge because,
until now, no termination tool has ever been able to provide the necessary capac-
ity (>20,000 LOC) together with accurate support for programming language
features such as arbitrarily nested loops and recursive functions, pointers and
side-effects, function-pointers, etc. Terminator fills this gap.

In the context of program analysis and model checking, tools checking pro-
grams over infinite data spaces have been targeted at safety properties. These
tools are usually based on abstraction. While the preservation of termination
properties from the abstract to the concrete system is sound (if the abstract
system terminates then so does the concrete one), it is also worthless in all but
pathological cases (with classical abstraction techniques related to homomor-
phic abstraction or simulation, the abstraction to a finite graph will ‘always’
introduce a loop and thus it will not preserve the termination property).

There exist tools for proving termination for very specialized classes of
programs and calculi, such as rewriting [11], logic and functional program-
ming [5,13,14], and imperative programs with specific arithmetic opera-
tions [2,6,9]. None of these tools targets scalability and the features of practical
programming languages.

3 Foundations Behind Terminator

Terminator is the culmination of successive research, namely (i) a new proof
rule for termination, (ii) an appropriate form of abstraction for the automation of
the proof rule via abstract interpretation, (iii) a form of iterative counterexample-
guided refinement not only of the abstraction but also of the candidate termi-
nation argument, and finally (iv) a practical algorithm for binary reachability
analysis that is used for validation of candidate termination arguments. Below
we highlight the theoretical foundations of Terminator.

(i) Termination argument. The termination argument constructed by Termi-
nator is a union of well-founded relations that forms a transition invariant, i.e.,
a binary relation over program states that contains the transitive closure of the
transition relation of the program [17]. One distinguishing feature of transition
invariants is that they can be constructed by abstract fixpoint computation.
This fits well into the framework of abstract interpretation [10] and thus leads
naturally to automatic methods.

(ii) Abstraction for termination. Transition predicate abstraction [18] overcomes
the above-mentioned limitation of classical abstraction techniques to the verifica-
tion of safety properties. Transition predicate abstraction induces a finite graph
where nodes are labeled by abstract transitions. Termination is determined by
the well-foundedness of those abstract transitions, and not the absence of loops.
Transition predicate abstraction can be refined in the classical way, namely by
adding more predicates [4].
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(iii) Refinement for termination. As described in [7], Terminator incremen-
tally constructs a candidate transition invariant and thus iteratively refines the
termination argument. This refinement is again guided by counterexamples. A
counterexample is here a path that leads some state s to some state s′ such
that the pair (s, s′) violates the candidate transition invariant (which does not
yet fully contain the transitive closure of the transition relation). The path, a
sequence of statements, may be viewed as a program. Terminator uses the
ranking function synthesis tool RankFinder [16] to compute a ranking func-
tion for this program. The corresponding ranking relation consists of all pairs of
states with decreasing rank, including the pair (s, s′). The refinement of the ter-
mination argument amounts to adding this relation to the candidate transition
invariant (a union of well-founded relations).

(iv) Binary reachability analysis. In the refinement loop described above, for
each new candidate transition invariant, we need to check its validity (the fact
that it contains the transitive closure of the transition relation). Terminator
implements this check, the binary reachability analysis, using a second kind of
refinement, namely counterexample-guided abstraction refinement (viz. of transi-
tion predicate abstraction). In contrast, a safety property translates to one fixed
invariant, whose validity is checked by (standard, unary) reachability analysis.
The crux of Terminator’s implemenation of binary reachability analysis is to
reduce each new binary reachability problem to a (unary) reachability problem
for a new program constructed by a syntactic transformation from the given pro-
gram [8]. After each transformation, Terminator applies (unary) reachability
analysis. In a sense, Terminator implements a reduction of termination not to
a safety property but to the existence of a certain safety property.

4 Beyond Termination

In some cases, termination depends on additional properties (such as: the
repeated request will eventually be served) that can be modeled as fairness
assumptions. Termination is an example of a basic liveness property. We are
working on the next generation of Terminator that will prove general liveness
properties under fairness assumptions.
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Abstract. CUTE, a Concolic Unit Testing Engine for C and Java, is a
tool to systematically and automatically test sequential C programs (in-
cluding pointers) and concurrent Java programs. CUTE combines con-
crete and symbolic execution in a way that avoids redundant test cases
as well as false warnings. The tool also introduces a race-flipping tech-
nique to efficiently test and model check concurrent programs with data
inputs.

1 Introduction

Software testing is the primary technique used in the software industry to im-
prove reliability, safety, security, and robustness of software. Our research on
concolic testing [1,6,4] shows that we can combine random testing and symbolic
testing of a program to provide a scalable tool for automatically generating test
cases, which improves test coverage and avoids redundant test cases as well as
false warnings. Concolic testing involves explicit path model-checking in which
our goal is to generate data inputs and schedules that would exercise all feasi-
ble execution paths of a program. We have developed two automated concolic
testing tools: CUTE for C and jCUTE for Java programs.

We have used CUTE and jCUTE to find bugs in several real-world software
systems including SGLIB, a popular C data structure library used in a com-
mercial tool, implementations of the Needham-Schroeder protocol and the TMN
protocol, the scheduler of Honeywell’s DEOS real-time operating system, and
the Sun Microsystems’ JDK 1.4 collection framework.

2 Concolic Testing

We briefly describe the algorithm for concolic testing; details can be found
in [6,5,4]. The algorithm executes a program both concretely and symbolically.
The symbolic execution differs from traditional symbolic execution, in that the
algorithm follows the path that the concrete execution takes. During the exe-
cution, the algorithm collects the constraints over the symbolic values at each
branch point (i.e., the symbolic constraints). At the end of the execution, the al-
gorithm has computed a sequence of symbolic constraints corresponding to each
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branch point. We call the conjunction of these constraints a path constraint. Ob-
serve that all input values that satisfy a given path constraint will explore the
same execution path, provided that we follow the same thread schedule.

Apart from collecting symbolic constraints, the algorithm also computes the
race condition (both data race and lock race) between various events in the
execution of a program, where, informally, an event represents the execution of
a statement in the program by a thread.

The algorithm first generates a random input and a schedule, which specifies
the order of execution of threads. Then the algorithm does the following in a
loop: it executes the code with the generated input and the schedule. At the same
time the algorithm computes the race conditions between various events as well
as the symbolic constraints. It backtracks and generates a new schedule or a new
input, either by re-ordering the events involved in a race or by solving symbolic
constraints, respectively, to explore all possible distinct execution paths using
a depth first search strategy. Note that because the algorithm does concrete
executions, it is sound, i.e. all bugs it finds are real.

There is one complication: for some symbolic constraints, our constraint solver
may not be powerful enough to compute concrete values that satisfy the con-
straints. To address this difficulty, such symbolic constraints are simplified by
replacing some of the symbolic values with concrete values. Because of this, our
algorithm is complete only if given an oracle that can solve the constraints in a
program, and the length and the number of paths is finite.

3 Tool Details

The tools, CUTE and jCUTE, consist of two main modules: an instrumentation
module and a library to perform symbolic execution, to solve constraints, and
to control thread schedules. The instrumentation module inserts code in the
program under test so that the instrumented program calls the library at runtime
for performing symbolic execution. jCUTE comes with a graphical user interface
(a snapshot can be found in Figure 1).

CUTE and jCUTE uses CIL [3] and the SOOT compiler framework [8] to
instrument C and Java programs, respectively. Instrumentation of jCUTE asso-
ciates a semaphore with each thread and adds operations on these semaphores
before each shared-memory access. These semaphores are used to control the
schedule of the threads at runtime. To solve arithmetic inequalities, the con-
straint solver of CUTE uses lpsolve [2], a library for integer linear programming.
CUTE and jCUTE save all the generated inputs and the schedules (in case of
jCUTE) in the file-system. As such the users of CUTE and jCUTE can replay
the program to reproduce the bugs. The replay can also be performed with the
aid of a debugger. For sequential programs, jCUTE can generate JUnit test
cases, which can be used by the user for regression testing as well as for debug-
ging. jCUTE also allows the users to graphically visualize the multi-threaded
execution.

CUTE provides a macro CUTE input(x), which allows the user to specify that
the variable x (of any type, including a pointer) is an input to the program. This
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Fig. 1. Snapshot of jCUTE

comes in handy to replace any external user input, e.g., scanf(‘‘%d’’,&v) by
CUTE input(v) (which also assigns a value to &v). Note that this macro can be
used anywhere in the program. jCUTE also provides a similar function to obtain
input from the external environment.

4 Case Studies

We briefly describe our experience with two of the case-studies we have done,
one is a data structure library in C and the other is the thread-safe Collection
framework provided with Sun Microsystems’ Java 1.4.

SGLIB Library. We applied CUTE to unit test SGLIB [7] version 1.0.1, a
popular, open source C library for generic data structures, such as lists, hash
tables, red-black trees, and so on. The library has been extensively used to
implement the commercial tool Xrefactory.

We found two bugs in SGLIB using CUTE within 3 seconds of testing. The
first bug is a segmentation fault that occurs in the doubly-linked-list library
when a non-zero length list is concatenated with another zero-length list. The
second bug is an infinite loop, which CUTE discovered in the hash table library.
We reported these bugs to the SGLIB developers, who confirmed that these are
indeed bugs. Further details about this case study along with branch coverage,
runtime for testing, number of inputs generated, etc., can be found in [6].

Sun Microsystems’ Java Collection Framework. We tested the thread-
safe Collection framework implemented as part of the java.util package of
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Table 1. Results for testing synchronized Collection classes of JDK 1.4. R/D/L/E
stands for data race/deadlock/infinite loop/uncaught exceptions

Name Run time # of # of % Branch # of Funs # of Bugs
in seconds Paths Threads Coverage Tested R/D/L/E

Vector 5519 20000 5 76.38 16 1/9/0/2
ArrayList 6811 20000 5 75 16 3/9/0/3
LinkedList 4401 11523 5 82.05 15 3/3/1/1
LinkedHashSet 7303 20000 5 67.39 20 3/9/0/2
TreeSet 7333 20000 5 54.93 26 4/9/0/2
HashSet 7449 20000 5 69.56 20 19/9/0/2

the standard Java library provided by Sun Microsystems. A number of data
structures provided by the package java.util are claimed as thread-safe in the
Java API documentation. This implies that multiple invocation of methods on
the objects of these data structures by multiple threads must be equivalent to
a sequence of serial invocation of the same methods on the same objects by a
single thread.

We chose this library as a case study primarily to evaluate the effective-
ness of our jCUTE tool. As Sun Microsystems’ Java is widely used, we did not
expect to find potential bugs. Much to our surprise, we found several previ-
ously undocumented data races, deadlocks, uncaught exceptions, and an infinite
loop in the library. Note that, although the number of potential bugs is high,
these bugs are all caused by a couple of problematic design patterns used in
the implementation. The details of this case study can be found in [5]. Here
we briefly describe an infinite loop that jCUTE discovered in the synchronized
LinkedList class. We present a simple scenario under which the infinite loop
happens. We first create two synchronized linked lists l1 and l2 by calling
Collections.synchronizedList(new LinkedList()) and add null to both
of them. Then we concurrently allow a new thread to invoke l1.clear() and
another new thread to invoke l2.containsAll(l1). jCUTE discovered an in-
terleaving of the two threads that resulted in an infinite loop. However, the
program never goes into an infinite loop if the methods are invoked in any order
by a single thread. jCUTE also provided a trace of the buggy execution. This
helped us to detect the cause of the bug. A summary of the results of testing
various Java synchronized Collection classes is provided in Table 1.
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Abstract. Predicate abstraction is a technique for automatically ex-
tracting finite-state abstractions for systems with potentially infinite
state space. The fundamental operation in predicate abstraction is to
compute the best approximation of a Boolean formula ϕ over a set of
predicates P . In this work, we demonstrate the use for this operation of
a decision procedure based on the DPLL(T) framework for SAT Modulo
Theories (SMT). The new algorithm is based on a careful generation
of the set of all satisfying assignments over a set of predicates. It con-
sistently outperforms previous methods by a factor of at least 20, on a
diverse set of hardware and software verification benchmarks. We report
detailed analysis of the results and the impact of a number of variations
of the techniques. We also propose and evaluate a scheme for incremen-
tal refinement of approximations for predicate abstraction in the above
framework.

1 Introduction

In many industrial verification problems, typical logical formulas consist of large
sets of clauses such as:
p ∨ ¬q ∨ a=f(b− c) ∨ read(s, f(b− c) )=d ∨ a− g(c) ≤7

containing purely propositional atoms as well as atoms over (combined) theories,
such as the integers, arrays, or Equality with Uninterpreted Functions (EUF).
Deciding the satisfiability of such clause sets modulo the background theories is
known as the Satisfiability Modulo Theories (SMT) problem, and the systems
for doing so are called SMT solvers. Currently, SMT is a very active area of re-
search, and efficient SMT solvers exist that can handle (combinations of) many
such theories (see also the SMT problem library [TR05] and the SMT Competi-
tion [BdMS05]). One particular SMT solver used in this paper is the Barcelogic-
Tools implementation of the DPLL(T ) approach to SMT [GHN+04, NO05a]. It
consists of a Davis-Putnam-Loveland-Logemann-based DPLL(X) engine, whose
parameter X can be instantiated with a specialized solver Solver

T
for the given

(possibly combined) T under consideration, thus producing a DPLL(T ) system.
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Predicate abstraction [GS97] (an instance of the more general theory of ab-
stract interpretation [CC77]) is a technique for constructing finite-state abstrac-
tions from large or infinite-state systems. The resulting finite-state abstraction
can be analyzed efficiently using Boolean techniques. Predicate abstraction
has been applied successfully in various verification tools to analyze software
[BMMR01, HJMS02, CCG+03, FQ02], hardware [CKSY04] and high-level pro-
tocols [DDP99, LBC03].

Predicate abstraction involves approximating a concrete transition system or
a set of concrete states using a set P of formulas, also called predicates. The
predicates usually denote properties of the state and are expressed as formulas,
modulo some background theory, over the state variables. The abstraction is
defined by the value of these predicates in any concrete state of the system. The
fundamental operation in predicate abstraction can be summarized as follows:

Given a formula ϕ and a set of predicates P in a theory T , generate the
most precise approximation of ϕ using P .

Depending on the nature of the problem domain, one may either want to gen-
erate (i) the best underapproximation of ϕ, i.e., the weakest Boolean combination
of P that implies ϕ (denoted by FP (ϕ)) or (ii) the best overapproximation of ϕ,
i.e., the strongest Boolean combination of P that is implied by ϕ (denoted by
GP (ϕ)). Here, the notions of weakness, strength and implication are with respect
to entailment in the given theory T . These operations are dual of each other —
GP (ϕ) is the same as ¬FP (¬ϕ), and therefore it suffices to provide a procedure
to compute only one of them.

Example 1. Let T be the theory of the integers, and let ϕ be x<y−2 ∨ x>y.
Furthermore, let P be {p1, p2, p3} where p1, p2 and p3 are x< 0 and y= 2 and
x �=4, respectively.

W.l.o.g., we can express FP (ϕ) as a DNF, i.e., as a disjunction of cubes.
Here FP (ϕ) is p1p2 ∨ p2p3. Clearly, both its cubes T -entail ϕ and hence their
disjunction does too. Moreover it is as weak (modulo T ) as possible: all other
cubes that T -entail ϕ either contain one of these two or are T -inconsistent.

The need for efficient predicate abstraction has motivated a significant amount
of work during the last years. For example, Clarke et al. [CKSY04], and Lahiri
and Bryant [LBC03, LB04] perform predicate abstraction by Boolean quantifier
elimination using SAT solvers for propositional and first-order logic respectively.
The idea of using SMT solvers for predicate abstraction has also been explored
repeatedly [DDP99, SS99, FQ02, BCLZ04], but differently from what we do here,
in particular, concerning incrementality. The recent symbolic decision procedure
approach of [LBC05] is a specialized method for predicate abstraction based on
saturating a set of predicates; however, it imposes restrictions on the underlying
theories, it requires an expensive transformation of the queries to a logically
equivalent conjunctive normal form, and combination methods for non-convex
theories would need to be devised for it.

In this paper, we show how to adapt SMT solvers to compute predicate ab-
straction efficiently. The key idea of the procedure is to use the SMT solver to
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enumerate all T -models over P of ϕ (or, sometimes, ¬ϕ). For this purpose, we
have turned our DPLL(X) engine into an AllSAT engine, i.e., an engine that
can enumerate all models. Several ways of doing so are discussed and compared
experimentally in this paper, including some AllSAT techniques that are also
useful for DPLL-based propositional SAT solvers. With no additional work one
can now obtain an efficient tool for predicate abstraction modulo a theory T
by simply instantiating our adapted DPLL(X) engine with the corresponding
Solver

T
as it is used for DPLL(T ).

The key difference of our work with previous SMT solver-based predicate ab-
straction techniques is in the amount of incrementality achieved in enumerating
all the solutions. We show that the incrementality, aggressive theory propagation
and efficient conflict analysis present in the DPLL(T ) framework are crucial for
obtaining an efficient predicate abstraction engine.

In particular, according to our extensive experimental results on large sets of
benchmarks from three completely different sources, using the BarcelogicTools
SMT solver, we always obtain a speedup factor of at least 20 with respect to
the method that was previously best on that benchmark family. This scheme
of using SMT solvers for predicate abstraction is attractive because it allows
us to leverage the advances in the development of SMT decision procedures for
obtaining more efficient predicate abstraction procedures.

We also show how we can adapt the DPLL(T )-based AllSAT engine to com-
pute a series of increasingly precise approximations of GP (ϕ), where for some
k < n, approximations only use cubes of size k. Given a fixed set of predicates
P and a query ϕ, this allows a client of predicate abstraction to first explore
coarser approximations (that can be generated fast) that might suffice for prov-
ing a desired property. In fact, our experiments reveal that (i) for small cube
sizes, the computation times are extremely small, and that (ii) computing the
full GP (ϕ) in successive steps slightly increasing the cube size can be done almost
as efficiently as computing it directly, if each step is done incrementally from the
previous one. Although several approaches have been developed in recent years
to compute coarser approximations [GS97, BMMR01, DD01], the process of re-
fining the approximations is not incremental, and can sometimes be the main
bottleneck in the verification [BCDR04].

The rest of the paper is structured as follows. We first give some background
and definitions about SMT and DPLL(T ) in Section 2. Section 3 is on the encod-
ing in SMT of the under and upper approximation problems. Its Subsections 3.1
and 3.2 discuss the different ways of forcing the enumeration of all cubes over P
and the variations with increasing cube sizes. Section 4 analyzes a large number
of experiments on problems from three completely different applications. Finally,
Section 5 lists future work and conclusions.

2 Background

2.1 Formal Preliminaries

A theory T is a set of closed first-order formulas. A formula ϕ is T -satisfiable
or T -consistent if ϕ ∧ T is satisfiable in the first-order sense. Otherwise, it is
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called T -unsatisfiable or T -inconsistent. In this paper we will deal with (partial)
assignments M , where M is a set (conjunction) of ground literals. If M is a T -
consistent partial assignment and ϕ is a ground formula such that M is a model
of ϕ in the propositional sense, then we say that M is a T -model of ϕ. The SMT
problem for a theory T is the problem of determining, given a formula ϕ, whether
ϕ is T -satisfiable, or, equivalently, whether ϕ has a T -model. As usual in SMT,
here we only consider the SMT problem for ground (and hence quantifier-free)
CNF formulas ϕ. If ϕ and ψ are formulas, then ϕ T -entails ψ, written ϕ |=T ψ,
if ϕ ∧ ¬ψ is T -inconsistent. A theory lemma is a clause C such that ∅ |=T C.

2.2 The DPLL(T ) Approach to SMT

The so-called lazy approach to SMT, in its simplest form, initially considers each
atom occurring in the input formula F simply as a propositional symbol, i.e., it
“forgets” about the theory T . Then it sends the formula to a SAT solver. If the
SAT solver reports propositional unsatisfiability, then F is also T -unsatisfiable.
If it returns a propositional model of F , then this assignment is checked by
a specialized T -solver that can only deal with conjunctions of literals. If the
model is found T -consistent then it is a T -model of F . Otherwise, the T -solver
builds a ground clause that is a logical consequence of T , i.e., a theory lemma,
precluding that assignment. This lemma is added to F and the SAT solver is
started again. This process is repeated until the SAT solver finds a T -model or
returns unsatisfiable.

DPLL-based refinements of the lazy approach use incremental T -solvers that
check the T -inconsistency of the partial models while they are being built. More-
over, the DPLL-based SAT solver is usually on-line: upon each T -inconsistent
assignment it can then backjump to some point where the assignment was still
T -consistent, instead of restarting the search from scratch.

DPLL(T ) is such a new modular lazy-like approach for SMT. It is based on
a general DPLL(X) engine, whose parameter X can be instantiated with a spe-
cialized Solver

T
for conjunctions of (ground) atoms, thus producing a system

DPLL(T ). Once the DPLL(X) engine has been implemented, this approach be-
comes very flexible: a DPLL(T ) system for a theory T is obtained by simply
plugging in the corresponding SolverT . In DPLL(T ), a special attention is de-
voted to theory propagation, a refinement that can have a crucial impact on
performance. The idea is that the T -solver tells the DPLL(X) engine which lit-
erals can be set to true because they are T -consequences of the current partial
assignment. For example, if T is the theory of equality and the current assign-
ment contains the literals b=d, f(b)=d and f(d)=a, then the T -solver may report
a=b as a T -consequence instead of letting DPLL(X) guess a truth value for it.

3 Predicate Abstraction Using SMT

For us, a predicate will be any ground formula. If P is a set of finite predicates,
a cube over P is a conjunction p1∧ . . .∧pk ∧¬p′1 ∧ . . .∧¬p′k′ , where all pi and p′j
are distinct predicates of P and k + k′ is the size of the cube. A minterm over
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P is a cube of size |P |. A Boolean formula over P is either a predicate of P or
a conjunction, disjunction or negation of Boolean formulas over P .

Given a theory T , a set of predicates P = {p1, . . . , pn} and a ground formula ϕ,
the central operation in predicate abstraction is to compute the weakest Boolean
formula FP (ϕ) over P that T -entails ϕ. Equally important is the dual operation,
to compute the strongest Boolean formula GP (ϕ) over P that is T -entailed by
ϕ, but this operation can be reduced to the previous one, since it is not difficult
to see that FP (ϕ) is indeed ¬GP (¬ϕ).
FP (ϕ) can be characterized as the disjunction of all the minterms over P that

T -entail ϕ, that is:

FP (ϕ) ≡
∨
{c | c is a minterm over P and c |=T ϕ}

Since each minterm T -entails ϕ, this formula clearly T -entails ϕ as well. Any
other formula over P that T -entails ϕ, when expressed as a disjunction of
minterms, consists only of minterms T -entailing ϕ, all of which belong to FP (ϕ).
Hence, FP (ϕ) is also the weakest such formula. Now we can also easily charac-
terize GP (ϕ) by using its relation to FP (¬ϕ):

GP (ϕ) ≡ ¬FP (¬ϕ)
≡ ¬ (

∨
{c | c is a minterm over P and c |=T ¬ϕ})

≡
∨
{c | c is a minterm over P and c �|=T ¬ϕ}

≡
∨
{c | c is a minterm over P and c ∧ ϕ is T-satisfiable}

i.e., computing GP (ϕ) amounts to enumerating all minterms over P that are
T -satisfiable when conjoined with ϕ.

As in [LBC03, CKSY04], we can introduce a set B of n fresh propositional
variables {b1, . . . bn} and consider the formula ϕ∧

∧n
i=1 bi ⇔ pi. Given a T -model

M of this formula, we collect the conjunction of all B-literals that are true in
M , and replace each bi by its corresponding formula pi. The resulting minterm
c, called the projection of M onto P , is over P and c ∧ ϕ is T -satisfiable.

For enumerating all such c, in principle, every off-the-shelf SMT solver can be
used, by adding, each time a T -model is found whose B-literals are {l1, . . . , ln},
a blocking clause ¬l1 ∨ . . .∨¬ln and then starting the SMT solver from scratch,
and repeating this until no more T -models are found. The number of restarts is
no more than the number of different minterms over P , that is, 2n. Each model
found can be stored, say, in a BDD, or in a file to be treated once the AllSAT
procedure has finished. The computation of FP (ϕ) can be done in a similar way.

3.1 AllSAT and AllSAT over Important Symbols

The complete black-box approach explained above is not very efficient. This is
due to the restarts from scratch, where moreover the lemmas learned by the SMT
solver are not re-used between restarts, and due to the worst-case exponential
growth of the clause set (one additional blocking clause for each model found).
We now show that these problems can be entirely overcome, without modifying
the search behavior of the best DPLL implementations, i.e., using the best known
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conflict analysis techniques and conflict-driven backjumping, and without the
need of keeping the blocking clauses or the learned lemmas.

In this section we focus on the propositional case, since all these results on
AllSAT immediately extend to AllSAT in the SMT case, i.e., for enumerat-
ing all T -models using any of the modern DPLL-based SMT solvers, including
DPLL(T ).

For the general AllSAT problem, i.e., without considering a subset of impor-
tant symbols, the idea is as follows. Each time a model {l1, . . . , ln} is found,
store it and do (e.g., 1UIP) conflict-driven backjumping as if the blocking clause
¬l1 ∨ . . . ∨ ¬ln (which is conflicting in the current DPLL state) belonged to the
clause set; see [ZMMM01, NO05a]. Keeping the lemmas learned in backjump
steps (or the blocking clauses) is optional: as usual, they can be kept only as
long as they are active pruning the search.

Property 1. This AllSAT procedure terminates and enumerates all models.

As pointed out in [JHS05], for Chaff’s DPLL procedure this result easily follows
from the proofs in [ZM03]. For essentially any practical DPLL strategy or vari-
ant, it follows from [NOT05], where the termination proof uses a well-founded
ordering on DPLL search states, based on a lexicographic comparison of the
number of literals in each decision level. Roughly, the intuition is that a search
state is more advanced than another one if it has more information at lower
decision levels, i.e., for some i, it has set more literals at decision level i, and it
has the same number of literals at all decision levels lower than i.

An important variant of the AllSAT problem is, given a subset P of distin-
guished or important symbols (in this paper, the predicates), to enumerate all
(sub)models over P that can be extended to total models over all symbols. This
also has important applications to, e.g., model checking [GSY04]. For this, the
same procedure applies by removing from the blocking clause the non-important
literals, and the same correctness proof based on [NOT05] holds.

Property 2. This AllSAT procedure with distinguished symbols P terminates
and enumerates all models over P that can be extended to total models over all
symbols.

We have not found this observation elsewhere in the literature. E.g., [GSY04]
does chronological backtracking on the important literals, and forces the decision
heuristic to split on important literals first.

Quite surprisingly, if, as proposed here, not all blocking clauses or lemmas
are kept, some model may be found more than once. However, according to our
experiments, this phenomenon appears to be rare and has a very low impact on
performance, see Section 4.

3.2 Incrementally Refining the Approximation

The approaches for predicate abstraction of [DDP99, SS99, FQ02] aim at ex-
plicitly asking an SMT solver for each cube c whether ϕ ∧ c is T -satisfiable or
not. For reducing the number of calls to the SMT solver, they work by starting
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with smaller cube sizes. For example, if P is {p1, . . . , pn}, one can first send
ϕ ∧ p1 to the SMT solver, and only if this is T -satisfiable, try with ϕ ∧ p1 ∧ p2
and with ϕ ∧ p1 ∧ ¬p2, and so on. But this still leads to a large exponential
number of independent calls to the SMT solver, without much incrementality to
be exploited.

In this subsection we also work with increasing cube sizes, but in a completely
different way and with a completely different purpose. Rather than directly com-
puting the strongest overapproximation GP (ϕ), we want to compute a sequence
Gk1

P (ϕ),Gk2
P (ϕ), . . . ,Gkm

P (ϕ) of successively stronger (i.e., each one T -entails the
previous ones) overapproximations over P of ϕ, where the last one is GP (ϕ).
Here we will compute each Gk

P (ϕ) by collecting cubes of size k, and the sizes will
be such that k1 < . . . < km = |P |.

The motivation for doing this is that for certain applications, some of the first
few Gki

P (ϕ)’s may already suffice. Moreover, our experiments reveal that for small
k, computing Gk

P (ϕ) is very fast. In addition, computing the whole sequence with
small increments of k can be done almost as efficiently as computing GP (ϕ), if
each step is done incrementally from the previous one.

In the following, let restr be any function such that, given a minterm c over
P and an integer k with k ≤ |P |, restr(c, k) returns a subcube of size k of c.

Theorem 1. For every k1 < . . . < km = |P |, the sequence Gk1
P (ϕ), . . . ,Gkm

P (ϕ)
is such that

• Gki

P (ϕ) is T -entailed by ϕ for all i in {1, . . . ,m},
• Gki+1

P (ϕ) |=T Gki

P (ϕ) for all i in {1, . . . ,m− 1}, and
• Gkm

P (ϕ) is GP (ϕ).

if, for all i in {1, . . . ,m}, the following two conditions hold:

1. Gki

P (ϕ) ≡
∨
{restr(c, ki) | c is a minterm over P and c ∧ ϕ is T -satisfiable}

2. For each minterm c over P with c ∧ ϕ T -satisfiable there exists a minterm
c′ over P with c′ ∧ ϕ T -satisfiable such that restr(c, ki) ⊃ restr(c′, ki−1).

Proof. (sketch) Each Gki

P (ϕ) is T -entailed by ϕ, since the disjunction of all
minterms c over P with T -satisfiable c ∧ ϕ is T -entailed by ϕ, and for each
one of these c there is some subcube in Gki

P (ϕ). The increasing strength follows
in a similar way from the second condition, since each disjunct of Gki

P (ϕ) con-
tains a disjunct of Gki−1

P (ϕ). Finally, Gkm

P (ϕ) is GP (ϕ) if km is |P | due to the
characterization of GP (ϕ) given at the beginning of this section. ��

This theorem gives us a way to use our algorithm of the previous subsections
for computing the successive Gki

P (ϕ)’s. A difference is that, since here we collect
cubes ck of size k instead of the whole minterms, we can, after ck has been
collected, do the conflict analysis with the corresponding blocking clause ¬ck of
size k. Note that this may preclude some minterms c extending ck from later
consideration, but we are still safe since for these c we can assume restr(c, k) to
be ck. Again, as in Properties 1 and 2, termination follows from [NOT05].
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In this algorithm, one could use a function restr such that restr(c, k) always
returns the subset of literals of c over {p1, . . . , pk}, i.e., the first k elements
of P . However, having in each Gk

P (ϕ) only predicates of {p1, . . . , pk} may not
be very useful. This is because in most cases no subset of P will suffice to
construct strong invariants of interest. We believe that it is much more useful
to have most predicates of P appear in some of the k-size cubes. Therefore, in
our implementation we use a random restr function. The second condition of
Theorem 1 can be enforced as follows if one remembers the previous Gki−1

P (ϕ):
for each minterm c considered in the computation of Gki

P (ϕ), we know that a
subcube of c of size ki−1 must belong to Gki−1

P (ϕ). This subcube was added to
Gki−1

P (ϕ) as the restriction restr(c′, ki−1) for some1 minterm c′. The only thing
we have to impose is that restr(c, ki) includes restr(c′, ki−1). This is all clearer
in the example below:

Example 2. Let ϕ be the formula x < y − 2 ∨ x > y and P be {p1, p2, p3}
where p1 is x < 0, p2 is y=2 and p3 is x=4. We will construct the sequence
of approximations G1

P (ϕ),G2
P (ϕ), G3

P (ϕ). For a better understanding of the al-
gorithm, let us present the set of all minterms c such that c ∧ ϕ is T -satisfiable:
{p1p2p3, p1p2p3, p1p2p3, p1p2p3, p1p2p3, p1p2p3}.

For the computation of G1
P (ϕ), the AllSAT procedure first finds the minterm

p1p2p3 and restricts it to p3. After adding the blocking clause p3, the minterm
p1p2p3 is found and restricted to p1. Then, p1 is added as a blocking clause and
since there are no more minterms to be found we finish with G1

P (ϕ) ≡ p3∨p1.
For G2

P (ϕ) we start with the minterms already computed in the previous step.
We can restrict p1p2p3 to p2p3 (note that, due to condition 2 of Theorem 1, p1p2
would not have been a correct restriction), and similarly restrict p1p2p3 to p1p2.
After adding the blocking clauses p2∨p3 and p1∨p2, the AllSAT procedure starts
the search. First, it finds the minterm p1p2p3, and restricts it to p1p3 (again
due to condition 2 of Theorem 1, p1p2 would not have been a correct choice).
Then, after the blocking clause p1∨p3 is added, p1p2p3 is found and restricted
to p1p2. Since the blocking clauses preclude any other possible minterm, G2

P (ϕ)
is p2p3 ∨ p1p2 ∨ p1p3 ∨ p1p2.

Finally, for G3
P (ϕ) we start with the four minterms already computed and

then the AllSAT procedure will compute the two missing ones, namely p1p2p3
and p1p2p3. ��

The interesting aspect hereby is that, at each incremental step, we reuse from
previous step(s):

1. all lemmas learned by DPLL(T ) that are T -consequences of ϕ, which helps
to speed up the search.

2. all minterms c already computed.

We finish this section with three remarks about the quality of these approx-
imations. First, let us note that the strongest disjunction of cubes over P of
1 Note that we cannot assume c′ to be c because, due to the use of blocking clauses,

c might not have been considered in the computation of Gki−1
P (ϕ).
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size k that is T -entailed by ϕ does not always exist. Second, in CNF it does
exist: the strongest conjunction of clauses over P of size k that is T -entailed
by ϕ is a well-defined concept. Third, let us remark that there are formulas for
which our algorithm would compute a stronger approximation than this CNF
and viceversa.

4 Experimental Evaluation

4.1 Benchmarks and Their Source

The set of benchmarks for evaluating our technique has been generated from
three completely different verification tasks:

1. SLAM: This category contains a set of 665 predicate abstraction queries
generated from Windows device driver verification in SLAM [BMMR01]. In
SLAM, predicate abstraction is used to abstract a Boolean program from
a C program. This set has been previously used to evaluate the predicate
abstraction technique in [LBC05].

2. UCLID Suite: This category contains GP (ϕ) queries generated during the
verification of high-level description of microprocessors, cache-coherence pro-
tocols and other distributed algorithms [LB04]. Each benchmark in this cat-
egory contains around 6 to 19 predicate abstraction queries denoting the
different image computation steps.

3. Recursive Data Structures (RDS): This is a set of benchmarks gen-
erated from the verification of programs manipulating linked lists inside
UCLID [LQ06]. Each benchmark contains a set of GP (ϕ) queries for dif-
ferent abstract image computation steps.

The theories used in all the three categories are combinations of EUF and
difference logic (constraints of the form x ≤ y + c). For the latter two classes of
benchmarks for UCLID and RDS, more complex theories are axiomatized using
quantifiers. However, these quantifiers are eliminated upfront using simple (but
sufficient to prove the properties in the examples) quantifier instantiation within
UCLID, to generate a quantifier-free predicate abstraction query.

4.2 Results and Analysis

We have implemented the procedure described in Section 3.1 on top of the Barce-
logicTools implementation of the DPLL(T ) approach for SMT. Each minterm
was stored in a BDD immediately after finding it. For this, the CUDD [CUD]
BDD package was used. The result was read from the BDD as a disjunction
of prime implicants. This significantly reduced the number of disjuncts (see the
table below) especially when many minterms were stored. For each of the bench-
marks described above, our resulting system was compared with the best existing
competitor by running experiments on a 2GHz 512 MB Pentium 4.

For the SLAM benchmarks we compared our system with the symbolic deci-
sion procedure approach of [LBC05]. This set of benchmarks posed little diffi-
culty to our approach: the whole set of benchmarks (655 queries) was processed
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in less than 5 seconds, whereas the symbolic decision procedure implementation
took 273 seconds. This is a first indication that our approach is superior, but,
since the running time for each single query is negligible, we will concentrate on
analyzing the results obtained from the other two families.

For the UCLID and Recursive Data Structures benchmarks, the table below
lists the number of queries for each family, predicates each query consists of,
and the total number of minterms of the GP (ϕ)’s to be computed. Finally, for
UCLID [LBC03] we give the aggregated running time in seconds and for our
BarcelogicTools implementation, we give the running time, the speedup factor
w.r.t. UCLID, and the number of cubes in the answers. In order to be more
confident about the results, we used CUDD to check whether the output of our
tool was equivalent to UCLID’s output.

Benchmark UCLID BCLT
family #queries #prds. #minterms time time speedup #cubes

UCLID Suite:
aodv 7 21 2916 657 4.6 143x 458

bakery 19 32 426 245 11 22x 294
BRP 10 22 30 3.5 0.1 35x 24

cache ibm 10 16 326 34 1.3 26x 123
cache bounded 18 26 2238 1119 23 49x 1022

DLX 6 23 38080 335 13 26x 2704
OOO 10 25 10728 921 36 26x 242

Rec. Data Struct.:
reverse acyclic 7 16 91 20 0.6 33x 44

set union 6 24 334 22 0.7 31x 60
simple cyclic 5 15 110 3.7 0.11 34x 20
sorted int 10 21 2465 765 19 40x 250

Independently of the benchmark, BCLT is always at least 20 times faster.
Hence, it is also very robust, i.e. it is not tailored towards any specific type of
benchmark.

As mentioned in Section 3.1, a possible drawback of our AllSAT approach is
that the same minterm can be listed more than once. Therefore, we also tried a
mixed approach where, in order to preclude most repeated minterms, blocking
clauses were kept while they were active (as it is done with learned lemmas).
This did not produce any observable improvement. This is probably due to the
fact that even for the DLX and OOO families, where the number of minterms to
be enumerated is significant, the number of repeated minterms did not account
for more than 3 percent of the total.

Profiling shows that the BDD operations (including the computation of prime
implicants) take negligible runtime compared to the rest of the procedure. A
typical distribution of the running time for these benchmarks is to spend 50
percent of the total time in the Boolean reasoning part, 30 percent in the theory
reasoning and the rest mainly on the branching heuristic.

4.3 Results on Alternative Settings and Analysis

In order to understand the reasons behind the performance of our Barcelogic-
Tools implementation (called good in the table below), we also ran it with three
different settings.
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One of them, (black-box in the table) was to use the black-box approach
explained at the beginning of Section 3, where each time a T -model is found
a blocking clause is added and the search is restarted from scratch, with no
possibility to reuse the lemmas already computed. This setting was modified
by allowing the lemmas to be reused (naive in the table). Finally, in order to
analyze the role of theory propagation [NO05b], we also ran BCLT with the
more advanced enumeration algorithm but with theory propagation turned off
(noTP in the table).

Benchmark BCLT
family #queries #preds. #minterms good black-box naive no TP

UCLID Suite:
aodv 7 21 2916 4.6 24 11 11

bakery 19 32 426 11 19 13 14
BRP 10 22 30 0.1 0.12 0.13 0.2

cache ibm 10 16 326 1.3 2.3 2 2.5
cache bounded 18 26 2238 23 63 31 32

DLX 6 23 38080 13 242 63 15
OOO 10 25 10728 36 176 57 615

Rec. Data Struct.:
reverse acyclic 7 16 91 0.6 0.7 0.7 1

set union 6 24 334 0.7 1 0.8 1
simple cyclic 5 15 110 0.11 0.16 0.13 0.2
sorted int 10 21 2465 19 38 24 154

Clearly, the black-box approach is not very competitive. It significantly im-
proves if we allow the reusability of lemmas among the enumeration of models
(naive). In fact, it is not much slower than good: since the number of minterms
is not too large, the useless restarts are not too frequent, and also the explo-
sion in the formula size does not show up in its full extent. Only in the families
with many minterms (DLX and OOO), one starts noticing the benefits of a better
AllSAT algorithm.

Concerning the role of theory propagation in these benchmarks, we can see
that in some families (OOO and sorted int) it is crucial for the success of the
method. This is interesting because these two families are the ones which use
arithmetic symbols most heavily among all. Moreover, applying theory propa-
gation never increases the runtime, because the overhead in time it produces
is always compensated by a reduction in the search space. This confirms, in
another application area, the results presented in [NO05b] with respect to the
importance of theory propagation.

4.4 Results on the Incremental Refinements of the Approximation

The procedure presented in Section 3.2 has also been implemented in order to
evaluate its feasibility. The table below includes, in its third column, the time
(in seconds) needed to directly compute GP (ϕ), as explained in Section 3.1. The
other columns are in groups of two, using different increment steps, compar-
ing the incremental version of the procedure (incr in the table), with a non-
incremental version (n-incr, not reusing lemmas nor minterms from previous
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steps). For example, the column incr below step 2 contains the time needed
to compute, with the incremental algorithm, the whole set of approximations
G2

P (ϕ),G4
P (ϕ),G6

P (ϕ), . . ., until finally computing the exact GP (ϕ).

Benchmark step 1 step 2 step 5
family #preds. exact incr. n-incr. incr. n-incr. incr. n-incr.

UCLID Suite:
aodv 21 4.6 15 47 10 24 7.2 13

bakery 32 11 28 159 21 86 16 40
BRP 22 0.1 1.1 1.7 0.6 1 0.3 0.5

cache ibm 16 1.3 3 8.6 2.2 5.1 1.7 2.8
cache bounded 26 23 71 333 51 185 40 88

DLX 23 13 37 84 26 42 18 21
OOO 25 36 67 368 50 193 43 102

Rec. Data Struct.:
reverse acyclic 16 0.6 1.1 2.4 0.9 1.5 0.7 1

set union 24 0.7 1.7 4.8 1.2 2.7 0.9 1.6
simple cyclic 15 0.11 0.4 0.7 0.3 0.4 0.2 0.3
sorted int 21 19 25 113 20 63 19 36

The first important thing to note is that even when we use an increment of 1,
which means that more than 20 approximations are computed on average, the
time needed in the incremental version only increases by a factor of 2 or 3 with
respect to the time required to directly compute GP (ϕ). One can also notice that
this factor is reduced when we use a bigger increment step. This shows that in
a situation where one wants to use some of these approximations but they do
not suffice, the time needed to compute GP (ϕ) will not be much worse than if
we had tried to directly compute it.

The other important conclusion is that it is essential to use an incremental
algorithm, e.g., using an increment step of 1 and a non-incremental algorithm
requires about 10 times as much time as directly computing GP (ϕ).

5 Conclusions and Further Work

In this paper, we have demonstrated the use of an SMT solver based on the
DPLL(T ) framework for efficient predicate abstraction. The algorithm is based
on a careful generation of the set of all satisfying assignments over a set of pred-
icates, and we have illustrated the impact of the various factors such as theory
propagation, backjumping and incrementality on this approach. We also show
how the technique can be adapted to compute increasingly precise approxima-
tions with respect to a given set of predicates in an incremental fashion, which
provides an alternate method for refining predicate abstractions with a fixed set
of predicates [DD01, JM05].

We are currently investigating exploiting incrementality when computing an
abstraction over an monotonically growing set of predicates, which can be useful
for creating Boolean programs [BMMR01] incrementally. Another area of future
work is to extend a minterm c over P to a larger cube on-the-fly, before starting
the search for a new minterm — this could impact the performance of queries
(e.g. OOO, DLX and sorted int) that have a very large #minterms/#cubes ratio.
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Abstract. This paper addresses the problem of computing symbolically
the set of reachable configurations of a linear hybrid automaton. A solu-
tion proposed in earlier work consists in exploring the reachable config-
urations using an acceleration operator for computing the iterated effect
of selected control cycles. Unfortunately, this method imposes a period-
icity requirement on the data transformations labeling these cycles, that
is not always satisfied in practice. This happens in particular with the
important subclass of timed automata, even though it is known that the
paths of such automata have a periodic behavior.

The goal of this paper is to broaden substantially the applicability
of hybrid acceleration. This is done by introducing powerful reduction
rules, aimed at translating hybrid data transformations into equivalent
ones that satisfy the periodicity criterion. In particular, we show that
these rules always succeed in the case of timed automata. This makes
it possible to compute an exact symbolic representation of the set of
reachable configurations of a linear hybrid automaton, with a guarantee
of termination over the subclass of timed automata. Compared to other
known solutions to this problem, our method is simpler, and applicable
to a much larger class of systems.

1 Introduction

Hybrid automata [Hen96] provide a convenient formalism for reasoning about
systems that combine discrete and continuous features. A hybrid automaton
is basically a finite-state machine extended with real variables, equipped with
a dual semantics: A configuration can evolve either in a continuous way by
spending some time at a control location (time step), or in a discrete way by
following a transition (discrete step).

This paper considers linear hybrid automata, a subclass of hybrid automata
with a semantics essentially defined in terms of linear constraints. Linear hybrid
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automata are well suited for modeling discrete systems operating in a real-time
environment. Indeed, their variables can be used not only as real-valued clocks
for dealing with continuous time, but also as general-purpose integer counters.

In order to analyze the reachability properties of a linear hybrid automaton,
a classical solution is to explore symbolically its state space [ACH+95]. This
consists in starting from the initial configuration, and then repeatedly applying
time steps and discrete steps to obtain new reachable configurations. Since a time
step generally leads to an uncountable number of configurations, one groups such
configurations into regions that can be manipulated implicitly, with the help of
a suitable data structure.

The drawback of this approach is that state-space exploration terminates
only if the reachable state space is covered by a finite number of regions, in
which case the hybrid automaton is essentially equivalent to a finite-state region
automaton. This prevents from analyzing models in which the expressive power
of linear hybrid automata is used for describing unbounded discrete features.
For instance, the model of an idealized communication protocol may define, in
addition to the clocks dealing with the timed aspects, variables for representing
unbounded message sequence numbers. A discrete variable may also be used as
a parameter for reasoning about an infinite family of similar models.

However, techniques are known for exploring symbolically the state space
of infinite discrete systems. A solution is to add to the semantics of a system
meta-transitions , which are objects that capture the effect of iterating control cy-
cles [Boi98]. With meta-transitions, state-space exploration algorithms are able
to compute in one step the reachable configurations obtained by following ar-
bitrarily many times some loops of the system under analysis. Meta-transitions
thus accelerate state-space exploration, and can make it terminate in some cases.

In order to add meta-transitions to a linear hybrid automaton, one needs a
data structure for representing sets of configurations, as well as a decision pro-
cedure for checking whether the unbounded iteration of a given loop can be
computed over this data structure. For the former problem, a suitable represen-
tation system, the Real Vector Automaton (RVA) [BBR97, BJW05] has been
developed. One can effectively represent with RVA all the sets that are definable
in the first order additive theory of the integer and real numbers 〈R,Z,+,≤〉.
This covers linear constraints, but also discrete unbounded periodicities.

The latter problem has also been investigated in earlier work. In [BBR97],
one adapts to linear hybrid automata the meta-transition computation algo-
rithms known for unbounded integer systems. With this method, only cycles
with a deterministic behavior can be turned into meta-transitions, which con-
flicts with the inherently branching nature of timed steps. Another technique
is developed in [BHJ03], which characterizes precisely the data transformations
that label paths of timed automata, and give a sufficient periodicity criterion for
constructing meta-transitions corresponding to the iteration of such paths.

Unfortunately, this periodicity criterion is not always satisfied in practice.
This happens in particular with timed automata, which are a restricted subclass
of linear hybrid automata. However, it is known that the data transformations
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labeling the paths of timed automata have a periodic behavior [CJ98], and that
their reachability set can be computed within 〈R,Z,+,≤〉 [CJ99]. Moreover,
the shortcomings of finite-state approaches to exploring timed automata [Bou03,
BY03, BLR05] provide an incentive to develop alternate solutions.

In [BHJ03], a simple reduction rule was introduced for translating linear hy-
brid transformations into equivalent ones that satisfy the periodicity criterion.
In this paper, we generalize this idea to a much broader class of transforma-
tions, by developing several new complementary reduction rules. In particular,
we show that the iteration of the multiple-counters systems studied in [CJ98]
can be systematically reduced to iterating periodic linear hybrid transforma-
tions. As a secondary contribution, we provide a simpler proof of the central
result of [CJ98].

For the particular case of timed automata, our algorithms make it possible to
carry out symbolic state-space exploration without resorting to abstraction, and
with a guarantee of termination, which solves the problems reported in [Bou03,
BY03, BLR05]. Although this result was already achievable as a consequence
of [CJ99], our method is simpler, and applicable to a much larger class of systems.

2 Linear Hybrid Automata

2.1 Syntax and Semantics

We use the term convex linear constraint to denote a finite conjunction of linear
constraints with integer coefficients, i.e., a set {x ∈ Rn | Px#q}, with P ∈
Zm×n, q ∈ Zm, and # ∈ {<,≤,=,≥, >}m. The term linear transformation
denotes a relation of the form {(x,x′) ∈ Rn×Rn | x′ = Ax+b}, with A ∈ Zn×n

and b ∈ Zn.

Definition 1. A Linear Hybrid Automaton (LHA) [ACH+95, Hen96] is a tuple
(x, V, E, v0, X0, G,A, I, R), where

– x is a vector of n real-valued variables, or clocks, with n > 0;
– (V,E) is a finite directed control graph, the vertices of which are the loca-

tions of the automaton. The initial location is v0;
– X0 is an initial region, defined by a convex linear constraint;
– G and A respectively associate to each edge in E a guard, which is a convex

linear constraint, and an assignment, which is a linear transformation;
– I and R respectively associate to each location in V an invariant, which is a

convex linear constraint, and a rectangular activity (l,u) ∈ Zn ×Zn, which
denotes the constraint l ≤ ẋ ≤ u, where ẋ is the first derivative of x.

The semantics of a LHA (x, V, E, v0, X0, G,A, I, R) is defined by the transition
system (Q,Q0, (→δ ∪ →τ )), where

– Q = V ×Rn is the set of configurations ;
– Q0 = {(v,x) ∈ Q | v = v0 ∧ x ∈ X0 ∩ I(v0)} is the set of initial configura-

tions ;
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– The discrete-step transition relation →δ ⊆ Q × Q is such that (v,x) →δ

(v′,x′) iff x′ ∈ I(v′) and there exists e ∈ E such that e = (v, v′), x ∈ G(e)
and (x,x′) ∈ A(e). Such a transition can also be denoted (v,x) e→δ (v′,x′)
when one needs to refer explicitly to e;

– The time-step transition relation →τ ⊆ Q×Q is such that (v,x)→τ (v′,x′)
iff v′ = v, there exists t ∈ R≥0 such that x + tl ≤ x′ ≤ x + tu, with
(l,u) = R(v), and x′ ∈ I(v).

Let → denote the relation (→δ ∪ →τ ), and let →∗ be the reflexive and transi-
tive closure of →. A configuration (v′,x′) ∈ Q is reachable from a configuration
(v,x) ∈ Q iff (v,x) →∗ (v′,x′). A configuration is reachable iff it is reachable
from some configuration in Q0. The reachability set of a LHA is the set of its
reachable configurations.

2.2 Linear Hybrid Relations

Let H = (x, V, E, v0, X0, G,A, I, R) be a LHA, and let σ = e1; e2; . . . ; ep, with
p > 0 and ∀i ∈ [1, . . . , p] : ei ∈ E, be a path in its control graph. Let v1, v2, . . . ,
vp+1 ∈ V be the locations successively visited by σ.

Following σ from a configuration (v1,x) to a configuration (vp+1,x
′), denoted

(v1,x) σ→ (vp+1,x
′), amounts to performing a time step at location v1, followed

by a discrete step through e1, then a time step at v2, . . . , ending with a time step
at vp+1. This can only be done provided that x, x′, and all intermediate clock
values visited along σ, satisfy some linear constraints derived from the semantics
of time steps and discrete steps. Projecting out all intermediate variables from
these constraints, one obtains that (v1,x) σ→ (vp+1,x

′) iff x and x′ are linked
by a relation θσ that has the following form [BHJ03].

Definition 2. A Linear Hybrid Relation (LHR) is a relation

θ =
{

(x,x′) ∈ Rn ×Rn
∣∣∣P [x

x′

]
� q

}
,

with n > 0, P ∈ Zm×2n, q ∈ Zm, �∈ {<,≤}m,and m > 0.

Note that a LHR is fully characterized by its linear system (P, q,�), and that
P can be decomposed into [P1;P2], with P1, P2 ∈ Zm×n. In the sequel, we will
denote such a LHR as either (P, q,�), or (P1, P2, q,�). We will also write θ(S)
as a shorthand for {x′ | ∃x ∈ S : (x,x′) ∈ θ}.

3 Acceleration

3.1 Meta-transitions

The idea behind acceleration is to capture the effect of selected cycles in the
control graph (V,E) of the LHA H being analyzed, i.e., paths that start and end
in the same control location.



442 B. Boigelot and F. Herbreteau

Let σ be such a cycle, starting from the location v1 ∈ V . The meta-transition
[Boi98] corresponding to σ is defined as the relation σ∗

→ such that (v,x) σ∗
→ (v′,x′)

iff v = v′ = v1 and (x,x′) ∈ θ∗σ, where θ∗σ = ∪i≥0 θ
i
σ.

Intuitively, following a meta-transition once leads in one step to all the con-
figurations that could be reached by iterating its underlying cycle arbitrarily
many times. Adding meta-transitions to the transition relation of a system thus
preserves its semantics, but speeds up, or accelerates , state-space exploration,
making it possible to explore in finite time some infinite region automata (though
not all of them).

The practical use of meta-transitions requires a decision procedure for
checking whether the closure θ∗ of a given transformation θ can effectively be
constructed and computed over sets of data values that are symbolically rep-
resentable. We describe in the next section a symbolic representation system
suited for analyzing linear hybrid automata.

3.2 Real Vector Automata

In order to explore symbolically the state-space of a linear hybrid automaton,
one needs a data structure for representing the sets of configurations that have
to be handled. Since hybrid automata have a finite number of control locations,
it is actually sufficient to represent symbolically sets of clock values, that is,
subsets of Rn.

When only time steps and discrete steps are performed, the sets to be rep-
resented are characterized by conjunctions of linear constraints, and thus cor-
respond to convex polyhedra. However, following meta-transitions may produce
sets that cannot be expressed as finite unions of polyhedra. For instance, think
of a cycle that has the effect of adding a constant set of values S0 to the current
clock value. The meta-transition associated to this cycle would transform a set
S of clock values into the set ∪i∈NS + iS0. We say that sets of this form have a
periodic structure.

Real Vector Automata (RVA) [BBR97] have been introduced as effective data
structures for representing convex and non convex polyhedra, as well as sets
with a periodic structure. A RVA is, essentially, a finite-state automaton rec-
ognizing the infinite-word encodings of real vectors in some base r > 1. It is
shown in [BJW05] that RVA are able to represent all the sets that are definable
in 〈R,Z,+,≤〉, i.e., the first-order additive theory of integer and real numbers.
It is known that these sets essentially correspond to those that have a periodic
structure [Wei99]. Efficient algorithms have been developed for constructing and
manipulating RVA, that do not rely on the costly mechanisms usually associ-
ated to infinite-word automata. An implementation of RVA is available in the
framework of the LASH toolset [LASH].

3.3 Acceleration of Linear Hybrid Relations

Let σ be a cycle of a LHA H, and let θσ be its associated LHR. This cycle
can be turned into a meta-transition if unbounded iterations of θσ preserve
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the representable nature of sets. This property is formalized by the following
definition.

Definition 3. The LHR θσ is iterable iff, for each set S ⊆ Rn definable in
〈R,Z,+,≤〉, the set θ∗σ(S) is definable in the same theory.

The following sufficient criterion for iterability is given in [BHJ03].

Theorem 1. Let θσ = (P, q,�). If the system (P, q,�) over x and x′ is only
composed of constraints of the form p.x#q, p.x′#q, and p.(x′ − x)#q, with
p ∈ Zn, q ∈ Z, and # ∈ {<,≤}, then θσ is iterable.

LHR that satisfy the hypotheses of Theorem 1 are said to be periodic. Intuitively,
if a LHR θσ is a conjunction of constraints of the form p.(x′−x)#q, then its effect
consists in adding a constant convex polyhedronΠ to the current clock value, i.e.,
θσ(S) = S+Π for all sets S ⊆ Rn. One thus has, for each k ≥ 0, θk

σ(S) = S+kΠ ,
hence θk

σ is a conjunction of constraints of the form p.(x′−x)#kq. One can then
compute θ∗σ within 〈R,Z,+,≤〉 by quantifying k over the natural integers. For
any set S ⊆ Rn, we thus have θ∗σ(S) = ∪i∈NS + iΠ, which has a periodic
structure.

Constraints of the form p.x#q or p.x′#q are handled using a convexity argu-
ment. When a system of periodic constraints is iterated k times from a clock value
x to a value x′, one can always place the intermediate values x1,x2, . . . ,xk−1
produced by the successive iterations onto the straight line joining x and x′.
Since the constraints are convex, it is thus sufficient to enforce them on x1 and
xk−1, which can be done by a simple construction [BHJ03].

4 Reduction Rules

The iterability criterion expressed by Theorem 1 is not sufficient for identifying
all LHR θ such that θ∗(S) has a periodic structure for any S ∈ Rn. This re-
striction is problematic in practice, since simple case studies such as the classical
leaking gas burner [ACH+95] cannot be handled.

In this section, we develop reduction rules aimed at broadening substantially
the scope of Theorem 1. The approach consists in considering LHR θ that are not
periodic, such as those given in Figure 1, and then try to express their iterated
effect in terms of that of a periodic LHR θ′. Precisely, we say that θ is reducible
to θ′ if θk(S) can be expressed in terms of (θ′)k(S) within 〈R,Z,+,≤〉, for any
S ⊆ Rn and k > 0. Concretely, that θ reduces to θ′ entails that an algorithm for
computing (θ′)∗ can straightforwardly be transformed into one computing θ∗.

We first generalize in Section 4.1 a reduction rule introduced in [BHJ03], and
then propose new rules in Sections 4.2 and 4.3.

4.1 Subspace Reduction

Consider the non-periodic LHR θ1 in Figure 1. This relation transforms R2 into
a set of smaller dimension, namely E1 = θ1(R2) = {(x, x − 1) | x ∈ R}. Hence,
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θ1 ≡
{

x′
1 + x′

2 = 2x1 + 1
x′

1 − x′
2 = 1

θ2 ≡
{

x′
1 + x′

2 = 2x1 + 1
x1 − x2 = 1

θ3 ≡
{

x′
1 + x′

2 = x1 + x2 + 1
x′

1 − x′
2 ≥ x1 + x2

θ4 ≡
{

x′
1 + x′

2 ≤ 2x1 + 1
x′

1 + x′
2 ≥ x1 + x2

x′
1 + x′

2 ≥ x1 − x2

θ5 ≡


x′

1 + x′
2 ≤ 2x1 + 1

x′
1 + x′

2 ≥ x1 + x2

x′
1 + x′

2 ≥ x1 − x2

x′
1 − x′

2 ≤ 2

θ6 ≡


x′

1 + x′
2 ≤ 2x1 + 1

x′
1 + x′

2 ≥ x1 + x2

x′
1 + x′

2 ≥ x1 − x2

x1 − x2 ≤ 2

θ7 ≡
{

x′
1 ≥ x2 + 1

x′
2 ≥ x1 + 2

θ8 ≡
{

x′
1 ≥ x2 + 1

x′
2 ≥ x1 + 2

x′
3 + x′

4 ≤ x3 + x4 + 3
θ9 ≡

{
x′

1 + x′
2 ≥ x1 − x2 + 1

x′
1 − x′

2 ≥ x1 + x2 + 2
x′

1 + x′
3 ≤ x1 + x3 + 3

Fig. 1. Examples of non-periodic LHR

for any set S ⊆ R2, the images θ1(S), θ2
1(S), θ3

1(S), . . . , are all subsets of E1. It
is thus sufficient to study the iterations of θ1 in this subspace, in which it turns
out to be periodic.

Formally, restricting a LHR θ ⊆ Rn×Rn to a subspace E such that dim(E) =
m, with m < n, is done by a variable change operation. Let u0 ∈ Zn be an
arbitrary element of E, let u1,u2, . . . ,um ∈ Zn be a vector basis of E−u0, and
let U ∈ Zn×m = [u1; . . . ; um]. We introduce new variables y1, y2, . . . , ym and
y′1, y

′
2, . . . , y

′
m, such that (x1, . . . , xn) = U(y1, . . . , ym) + u0 and (x′1, . . . , x

′
n) =

U(y′1, . . . , y
′
m)+u0. Adding these constraints to the underlying system of θ, and

then projecting out the variables xi and x′i for all i ∈ [1, . . . , n], one obtains a
transformation θ′ ⊆ Rm×Rm that has the same iterative behavior as θ. Indeed,
for any S ⊆ Rn and k > 0, we have θk(S) = U(θ′)k−1(S′) + u0, where S′ ⊆ Rm

is the solution of θ(S) = US′ + u0. It is worth emphasizing that computing S′

from S and θk(S) from (θ′)k−1(S′) can be done within 〈R,Z,+,≤〉. We thus
have the following rule.

Reduction Rule 1. If a LHR θ ⊆ Rn×Rn is such that dim(θ(Rn)) = m with
m < n, then θ is reducible to a computable LHR θ′ ⊆ Rm ×Rm.

In the case of our example θ1, we have dim(E1) = 1, which prompts the definition
of new variables y1, y

′
1 such that x1 = y1, x2 = y1− 1, x′1 = y′1, and x′2 = y′1− 1.

The LHR θ1 then translates into θ′1 ≡ y′1 = y1 + 1, which is periodic.
Rule 1 admits a dual form. The LHR θ2 in Figure 1 is such that θ2(R2) = R2,

hence Rule 1 does not apply. Notice however that θ2 produces a nonempty result
only when it is applied to values that belong to E2 = θ−1

2 (R2) = {(x, x−1) | x ∈
R}. In order to study the iterations of θ2, one can therefore ignore the values
that are outside of this subspace. This leads to the following rule.

Reduction Rule 2. If a LHR θ ⊆ Rn ×Rn is such that dim(θ−1(Rn)) = m
with m < n, then θ is reducible to a computable LHR θ′ ⊆ Rm ×Rm.

Technically, the reduction of θ is performed in the following way. Let E =
θ−1(Rn). We first transform θ into θ′′ = θ ∧ (x′ ∈ E), so as to systemati-
cally discard output values that do not belong to E. Then, we define a variable
change (x1, . . . , xn) = U(y1, . . . , ym) + u0, with U ∈ Zn×m and u0 ∈ Zn, from
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Rn to E. Applying this variable change to θ′′ yields a LHR θ′ ∈ Rm ×Rm. For
each S ⊆ Rn and k > 0, we then have θk(S) = θ(U(θ′)k−1(S′) + u0), where S′

is the solution of S ∩ E = US′ + u0.

4.2 Rank Reduction

Rules 1 and 2 are not able to capture all sources of periodicity. For instance, they
cannot be applied to the LHR θ3 in Figure 1, since θ3(R2) = θ−1

3 (R2) = R2.
However, remark that applying θ3 to two vectors (a1, a2) and (b1, b2) such that

a1 +a2 = b1 +b2 produces identical output values. Therefore, the iterations of θ3
can be studied with respect to a single variable y1 = x1+x2. Like in the previous
case, this variable change transforms θ3 into a LHR of smaller dimension.

Formally, consider a LHR θ ∈ Rn×Rn. The system of constraints (P1, P2, q,
�) of θ can be rewritten as P2x

′ � −P1x + q. Let p = ρ(P1) be the rank of
P1. If p < n, then the possible values of P1x, and hence also of x′, can be
described in terms of only p independent variables. We express P1 as a prod-
uct P1 = P ′

1U , with P ′
1 ∈ Zm×p and U ∈ Zp×n, and introduce new variables

y1, . . . , yp, y
′
1, . . . , y

′
p such that (y1, . . . , yp) = U(x1, . . . , xn) and (y′1, . . . , y

′
p) =

U(x′1, . . . , x
′
n). Adding these constraints to (P1, P2, q,�), and then projecting

out x1, . . . , xn and x′1, . . . , x
′
n, yields a LHR θ′ ∈ Rp × Rp. For each S ⊆ Rn

and k > 0, we have θk(S) = θ′′((θ′)k−1(US)), where θ′′ ∈ Rp ×Rn ≡ P2x
′ �

−P ′
1y + q. Thus, θ is reducible to θ′, which leads to the following rule.

Reduction Rule 3. If a LHR θ ⊆ Rn × Rn = (P1, P2, q,�) is such that
ρ(P1) = p with p < n , then θ is reducible to a computable LHR θ′ ⊆ Rp ×Rp.

A similar reduction can also be applied if the rank of P2 is less than the number
of variables. Consider the LHR θ4 in Figure 1. If the vector (a1, a2) belongs (resp.
does not belong) to θ4(S) for some S ⊆ R2, then for all (b1, b2) ∈ R2 such that
b1 + b2 = a1 + a2, we have (b1, b2) ∈ S (resp. (b1, b2) �∈ S). Thus, the behavior of
θ4 can be studied with respect to a single variable defined as y1 = x1 + x2.

More generally, let θ ∈ Rn × Rn be a LHR, and let (P1, P2, q,�) be its
underlying system of constraints. If p = ρ(P2) is such that p < n, then we
decompose P2 into P2 = P ′

2U , with P ′
2 ∈ Zm×p and U ∈ Zp×n, and introduce

new variables y1, . . . , yp, y
′
1, . . . , y

′
p such that (y1, . . . , yp) = U(x1, . . . , xn) and

(y′1, . . . , y′p) = U(x′1, . . . , x′n). This variable change transforms θ into a LHR
θ′ ∈ Rp×Rp. For each S ⊆ Rn and k > 0, we have θk(S) = θ′′((θ′)k−1(Uθ(S))),
where θ′′ ∈ Rp ×Rn ≡ Ux′ = y. We therefore have the following rule.

Reduction Rule 4. If a LHR θ ⊆ Rn × Rn = (P1, P2, q,�) is such that
ρ(P2) = p with p < n , then θ is reducible to a computable LHR θ′ ⊆ Rp ×Rp.

4.3 Static Reduction

None of the reduction rules obtained so far can handle the LHR θ5 in Figure 1.
One nevertheless observes that the linear system of θ5 contains a constraint
x′1 − x′2 ≤ 2 that is solely expressed over the output variables. Requiring that
the value produced at the end of an iteration of θ5 satisfies this constraint is
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actually equivalent to imposing x1 − x2 ≤ 2 on the input value of the next
iteration. Hence, the LHR θ6 in Figure 1, on which Rule 4 can be applied, has
essentially the same iterative behavior as θ5.

Formally, let θ be a LHR. We call a constraint of θ static if it involves only
either x1, . . . , xn, or x′1, . . . , x

′
n, and dynamic otherwise. A static constraint is

said to be explicit if it is not implied by the dynamic constraints of θ. We denote
by θ the conjunction of explicit static constraints in θ. The LHR obtained from
θ by rewriting over x1, . . . , xn (resp x′1, . . . , x′n) all constraints in θ is denoted
θx (resp. θx′).

For all S ⊆ Rn and k > 1, we have θk(S) = (θ ∧ θx)((θx)k−2(θ(S))) and
θk(S) = θ((θx′)k−2(θ(S) ∧ θx′)). We thus have the following rule.

Reduction Rule 5. Every LHR θ is reducible to θx and θx′ .

In practice, Rule 5 is only useful when it can be followed by another reduc-
tion. A simple guideline consists of reducing systematically LHR θ to θx before
attempting to apply Rules 2 and 4, and to θx′ before Rules 1 and 3.

5 Multiple Counters Systems

The combination of Rules 1 to 5 suffices for many applications. However, these
rules are unable to handle relations such as θ7 in Figure 1. This LHR is actually
an instance of a Multiple Counters System (MCS). It is known [CJ98] that all
such relations θ are iterable within 〈R,Z,+,≤〉.

In this section, we give a simpler proof of that result, and use it to derive
an expression of θk(S) in terms of k ∈ N and S ⊆ Rn. We then show that the
acceleration of MCS can be reduced to that of periodic LHR. MCS are formally
defined as follows.

Definition 4. A Multiple Counters Systems (MCS) [CJ98] is a relation θ(x,x′)
⊆ Rn×Rn, defined by a finite conjunction of constraints of the form z1#z2 + c,
where z1, z2 ∈ {x1, . . . , xn, x

′
1, . . . , x

′
n}, # ∈ {<,≤,≥, >}, and c ∈ Z.

5.1 Acceleration of MCS

Let θ ⊆ Rn ×Rn be a MCS. We assume w.l.o.g. that the explicit static con-
straints of θ are expressed over both x1, x2, . . . , xn and x′1, x′2, . . . , x′n.

Our goal is to construct within 〈R,Z,+,≤〉 an expression for θk(x0,xk) in
terms of the variables x0, xk and k. For a fixed value of k, such an expression
can be obtained by projecting x1,x2, . . . ,xk−1 out of θ(x0,x1)∧θ(x1,x2)∧· · ·∧
θ(xk−1,xk), which can be done by Fourier-Motzkin elimination.

In this operation, the dynamic constraints of θk(x0,xk) are all obtained as
combinations of constraints in θ(x0,x1), θ(x1,x2), . . . , θ(xk−1,xk). Each dy-
namic constraint of θk results from combining a sequence of constraints of θ that
links a variable x0

i to a variable xk
j , with i, j ∈ [1, . . . , n], hence it takes the form

xk
j #x0

i + c, where # ∈ {<,≤,≥, >} and c ∈ Z. Likewise, the static constraints
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of θk correspond to sequences of constraints of θ that link either x0
i to x0

j , or xk
i

to xk
j , for some i, j ∈ [1, . . . , n].

This leads to a simple way of characterizing the constraints of θk. Inspired
by [Rev93, CJ98], we build two directed graphs Gθ

< and Gθ
> in the following

way. The vertices of these graphs correspond to the variables x1, . . . , xn. The
edges of Gθ

< (resp. Gθ
>) are labeled by tuples (#, c, d), where # ∈ {<,≤} (resp.

# ∈ {>,≥}) is a strictness marker , c ∈ Z is a cost , and d ∈ {−1, 0, 1} is a depth.
The edges of Gθ

< and Gθ
> are created as follows:

– For each constraint xj � xi + c in θ, with �∈ {<,≤}, we add the edge
(xi, (�, c, 0), xj) to Gθ

<, and the edge (xj , (8,−c, 0), xi) to Gθ
>;

– For each constraint x′j � xi + c in θ, we add the edge (xi, (�, c, 1), xj) to
Gθ

<, and the edge (xj , (8,−c,−1), xi) to Gθ
>;

– For each constraint x′j 8 xi + c in θ, we add the edge (xj , (�,−c,−1), xi) to
Gθ

<, and the edge (xi, (8, c, 1), xj) to Gθ
>.

For each path π in Gθ
< or Gθ

>, we define its strictness s(π) as the strongest
marker labeling the transitions followed by π, and its cost c(π) and depth d(π) as
the sums of the individual cost and depth of all these transitions. The absolute
depth of π is |d(π)|. The minimum (resp. maximum) depth d−(π) (resp. d+(π))
of π is defined as the smallest (resp. largest) depth among all prefixes of π.
Intuitively, a path π of Gθ

< or Gθ
> linking a variable xi to a variable xj represents

constraints xd′
j #xd

i + c, where # corresponds to the strictness of π, d′ − d to its
depth, and c to its cost. The minimum and maximum depth of π then bound
the superscripts of the intermediate variables that are visited by π, and that are
thus projected out when the constraints of θ are combined.

Proposition 1. Each dynamic constraint xk
j #x0

i + c of θk(x0,xk), with # ∈
{<,≤,≥, >} and c ∈ Z, corresponds to a path π from xi to xj in either Gθ

<

or Gθ
>, such that s(π) = #, c(π) = c, d(π) = k, d−(π) = 0, and d+(π) = k.

Similarly, static constraints x0
j#x0

i + c correspond to paths π from xi to xj such
that s(π) = #, c(π) = c, d(π) = 0, d−(π) = 0, and d+(π) ≤ k. Finally, static
constraints xk

j #xk
i + c correspond to paths π from xi to xj such that s(π) = #,

c(π) = c, d(π) = 0, d−(π) ≥ −k, and d+(π) = 0.

The problem of computing the constraints of θk(x0,xk) has thus been reduced
to that of characterizing, in terms of k, the costs of the paths of depths 0 and k
that link two given variables in Gθ

< and Gθ
>, without exceeding some minimum

and maximum depths. Note that, in the case of multiple paths, it is sufficient
to consider the strongest constraints, which correspond to the paths with the
minimal cost in Gθ

< and with the maximal cost in Gθ
>.

We now show that this characterization can be carried out with a bounded
construction. Let π be a path of Gθ

< (the graph Gθ
> is handled symmetrically).

– If π contains occurrences of a simple loop σ, i.e., π = π1σ
k1π2 with k1 > 0,

such that d(σ) = 0 and c(σ) ≥ 0. Then the path π′ = π1π2 has the same
depth as π, but a smaller or equal cost.
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– If π contains occurrences of a simple loop σ such that d(σ) = 0 and c(σ) < 0.
Then π represents an unsatisfiable constraint.

– If π contains occurrences of two simple loops σ1 and σ2, i.e., we have π =
π1σ

k1
1 π2σ

k2
2 π3 or π = π1σ

k2
2 π2σ

k1
1 π3, such that either d(σ1) > 0 and d(σ2) >

0, or d(σ1) < 0 and d(σ2) < 0, and c(σ1)/|d(σ1)| ≤ c(σ2)/|d(σ2)|. Then,
removing |d(σ1)|/g occurrences of σ2 and adding |d(σ2)|/g occurrences of
σ1, with g = gcd(|d(σ1)|, |d(σ2)|), transforms π into a path with the same
depth, but a smaller or equal cost.

– If π contains occurrences of two simple loops σ1 and σ2 such that d(σ1) < 0,
d(σ2) > 0, and c(σ1)/d(σ1) ≥ c(σ2)/d(σ2). Then removing −d(σ1)/g occur-
rences of σ2 and d(σ2)/g occurrences of σ1 from π, where g = gcd(−d(σ1),
d(σ2)), yields a path that has the same depth as π, but a smaller or equal
cost.

– If π contains occurrences of two simple loops σ1 and σ2 such that d(σ1) < 0,
d(σ2) > 0, and c(σ1)/d(σ1) < c(σ2)/d(σ2). For any l > 0, adding −l.d(σ1)/g
occurrences of σ2 and l.d(σ2)/g occurrences of σ1, with g = gcd(−d(σ1),
d(σ2)), transforms π into a path that has the same depth, but a smaller or
equal cost. In this case, we thus obtain the strongest constraint by selecting
the largest value of l for which the minimum and maximum path depths are
not exceeded. The path π is then split into π = π1π2, such that each subpath
π1 or π2 contains only iterations of either σ1 or σ2, and the split point
maximizes the depth of the subpath π1 or π2 that contains the iterations of
σ2. Since the constraints represented by π are implied by those corresponding
to π1 and π2, these two paths can now be considered individually.

Let l< (resp. l>) be the least common multiple of the absolute depths of the
simple cycles in Gθ

< (resp. Gθ
>). Applying repeatedly the above transformations,

the paths of Gθ
< are eventually replaced by ones in which all occurrences of

simple loops but one have an absolute depth less than l<. We thus have a simple
algorithm for iterating θ:

1. Compute l = lcm(l<, l>). Since l is fixed, θ is reducible to θl;
2. In order to obtain the constraints of (θl)k(x0,xk), it is sufficient to consider

the paths of Gθl

< and Gθl

> with a depth d ∈ {0, k}, that are either acyclic or of
the form π1σ

d−d(π1)−d(π2)π2, where π1 and π2 are acyclic, and σ is a simple
cycle of absolute depth 1. These paths can be inspected in bounded time.
For each of them, one must also ensure that the minimum and maximum
depth constraints imposed by Proposition 1 are satisfied.

Recall that σ represents a constraint of the form x′i#xi + c, hence σk−d0 ,
with d0 = d(π1) + d(π2), corresponds to x′i#xi + (k − d0)c. The dynamic
constraints of (θl)k(x0,xk) are thus obtained in the form k ≥ q ⇒ xk

j #x0
i +

kδ + γ, with δ, γ ∈ Z, and q ∈ N.

5.2 MCS and Periodic LHR

The results of the previous section give an interesting insight into the iterative
behavior of MCS. For any MCS θ, we now know that there exists l > 0 such that



The Power of Hybrid Acceleration 449

(θl)k can be decomposed into (θl)k = θ0 ∪
⋃

1≤i≤p θi ◦ (θ′)k−ki ◦ θ′i, where p ≥ 0,
θ′ is a periodic LHR, θ0, θ1, . . . , θp, θ

′
1, . . . , θ

′
p are LHR, and k1, . . . , kp ∈ N. We

therefore have the following result.

Reduction Rule 6. Every MCS θ is reducible to a periodic LHR θ′.

In practice, we iterate a given LHR θ by first applying all possible reductions rules
from 1 to 5, and then checking whether the resulting system forms a periodic
LHR, a MCS, or a conjunction of both. In the last situation, we can iterate θ
provided that the periodic LHR θP and the remaining MCS θM that compose θ
are defined over distinct subsets of variables. Indeed, assuming w.l.o.g. that the
variables of θP precede these of θM , we have θk(S) = θk

P (SP )× θk
M (SM ), for all

S ⊆ Rn and k > 0, where SP and SM are the projections of S over the variables
of θP and θM . The LHR θ8 in Figure 1 provides an example of relation that can
be handled in this way.

This approach has the shortcoming that the class of LHR that can be iterated
is not closed under linear transformations, e.g., the LHR θ9 in Figure 1, which
is functionally equivalent to θ8, cannot be handled. A method that lifts this
restriction will be investigated in another paper.

6 Application to Timed Automata

Definition 5. A Timed Automaton (TA) is a LHA (x, V, E, v0, X0, G,A, I, R)
such that

– its initial region X0, guard G(e) of each edge e ∈ E, and invariant I(v) of
each location v ∈ V are conjunctions of constraints of the form xi#c and
xi − xj#c, with # ∈ {<,≤,=,≥, >} and c ∈ Z;

– the assignment A(e) of each edge e ∈ E has the form
∧n

i=0 x
′
i = dixi, with

∀i ∈ [1, . . . , n] : di ∈ {0, 1}. In other words, a transition can either reset a
clock, or leave it unchanged;

– the activity R(v) of each location v ∈ V equals ((1, . . . , 1), (1, . . . , 1)), i.e.,
all clocks increase uniformly with time.

It is shown in [Fri98, CJ98] that the LHR that label arbitrary paths of timed
automata can be turned into MCS by a simple variable change operation. Let π
be such a path. The idea consists in defining one new global clock t that is never
reset, and that will serve as a reference for relating the values of other variables.
Then, for each clock xi of the TA that is reset along π, or that is evaluated
without having been reset, one introduces a new variable ti such that xi = t− ti.
Let t0, t01, t

0
2, . . . denote the initial values, and t′, t′1, t

′
2, . . . the final values, of

t, t1, t2, . . . with respect to π. Intuitively, each t′i gives the date, expressed with
respect to the reference timeframe, at which the corresponding clock xi has been
last reset. Expressed over t0, t01, t

0
2, . . . and t′, t′1, t

′
2, . . ., the LHR induced by π

takes the form of a MCS [Fri98, CJ98].
Together with Rule 6, this result gives an effective algorithm for turning

any cycle of a TA into a meta-transition. We now recall a property established
in [CJ99].
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Theorem 2. For any TA, there exists a finite choice of meta-transitions for
which symbolic state-space exploration terminates.

Algorithms are given in [Boi98, BLFP03] for discovering automatically such a
choice of meta-transitions whenever one exists. It is thus possible to guaran-
tee that exploring symbolically the state-space of timed automata with hybrid
acceleration terminates.

7 Conclusions

The contribution of this paper is to show that, for a large class of linear hybrid
relations θ, computing θ∗ reduces to iterating the periodic relations considered
in [BHJ03]. This broadens substantially the applicability of hybrid acceleration,
and provides a powerful framework for reasoning about linear hybrid automata.

A secondary contribution is to provide a simpler proof of the acceleration
result for multiple counters systems given in [CJ98]. We have established that
the iterative behavior of such systems reduces to that of periodic relations, which
brings their acceleration algorithm closer to an actual implementation.

For the particular case of timed automata, an exact state-space exploration
algorithm was already known [CJ99]. Compared to this method, the advantage
of our approach is to be applicable to a much larger class of systems (although
obviously without a general guarantee of termination). For large systems, we
also expect our technique to scale up much more nicely than [CJ99]. Indeed,
iterating a periodic hybrid relation in 〈R,Z,+,≤〉 is fundamentally very close to
iterating a linear transformation within 〈Z,+,≤〉, as done by the NDD package
of LASH [LASH]. Although this conjecture remains to be substantiated with
actual experiments, we believe that adding timed constraints to the case studies
performed with LASH will not significantly complicate their analysis.
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Abstract. We present lookahead widening, a novel technique for using
existing widening and narrowing operators to improve the precision of
static analysis. This technique is both self-contained and fully-automatic
in the sense that it does not rely on separate analyzes or human involve-
ment. We show how to integrate lookahead widening into existing analyz-
ers with minimal effort. Experimental results indicate that the technique
is able to achieve sizable precision improvements at reasonable costs.

1 Introduction

Abstract interpretation is a general framework used for static analysis and veri-
fication of software [7,6]. In abstract interpretation, the collecting semantics of a
program is expressed as a least fix-point of a set of equations. The equations are
solved over some abstract domain chosen based on desired precision and cost.
Typically, the equations are solved iteratively; that is, successive approxima-
tions of the solution are computed until they converge to a least fix-point. How-
ever, for many useful abstract domains (particularly those for analyzing numeric
properties, such as intervals, octagons [11], and polyhedra [8,9]) such chains of
approximations can be very long or even infinite. To make use of such domains,
abstract interpretation uses an extrapolation technique, called widening [7].

Widening attempts to predict the fix-point based on the sequence of approx-
imations computed on earlier iterations of the analysis. Typically, widening de-
grades the precision of the analysis; i.e., the obtained solution is a fix-point or
a post-fix-point, but not necessarily the least fix-point. If the obtained solution
is a post-fix-point, it can be refined by computing a descending approximation
sequence that converges to a (not necessarily least) fix-point. Again, the chain
of approximations can be very long or infinite. To ensure convergence, either a
fixed, finite number of descending iterations is performed, or a counterpart of
widening, called narrowing [7] is used. Such use of widening and narrowing is
sufficient to get precise results for loops with regular1 behavior. However, as we
illustrate in §2, it loses precision for more complex loops.
� Supported by ONR(N00014-01-1-{0708,0796}) and NSF (CCR-9986308 and CCF-

0524051).
1 In this paper, we use the term regular in the sense of ordinary usage, i.e., consistent

in action, orderly, predictable, etc. We do not use it in the mathematical sense of
formal-language theory.
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In this paper, we present a novel approach to using existing widening and
narrowing operators to improve the precision of numeric program analysis. The
idea behind the approach is to separate loops into phases with simpler behavior,
and apply existing analysis methods to the individual phases. This offers an
opportunity to obtain better results when phases of a loop have regular behavior
that is lost when they are considered simultaneously. In practice, we achieve this
effect by propagating two abstract values. The first value is used to keep the
analysis within the current loop phase: this value is used to decide “where to
go” at program conditionals and is never widened. The second value is used to
compute the solution for the current phase: both widening and narrowing are
applied to it. When the second value stabilizes, it is promoted into the first value,
thereby allowing the analysis to advance to the next phase.

We refer to the first value as the main value, because it contains the overall
solution after the analysis converges, and to the second value as the pilot value,
because it “previews” the behavior of the program along the paths to which
the analysis is restricted.2 The overall technique is called lookahead widening,
because, from the point of view of the main value, the pilot value determines a
suitable extrapolation for it by sampling the analysis future.

We show how to implement lookahead widening in practice so that it can
be integrated into existing analyzers with minimal effort. The idea behind the
implementation is to construct from an arbitrary abstract domain, such as inter-
vals, octagons, or polyhedra, an abstract domain that implements our technique.
The constructed domain can then be directly plugged into existing analyzers.
However, to guarantee that such an analysis converges, we impose two minor
restrictions: one on the iteration strategy employed by the analyzer, and one
on the properties of the widening operator of the base domain. A major benefit
of our implementation is that it can be directly used in analyzers that are not
equipped for computing descending iteration sequences. Such a situation often
arises when a capability to model numeric properties is added to an existing
symbolic analyzer.

We present experimental results that we obtained by applying a prototype
implementation of the technique to a handful of benchmarks that appeared re-
cently in the literature on widening. Lookahead widening improves precision for
half of the benchmarks. We also present experimental results from on-going work
in which weighted pushdown systems are used for numeric program analysis. The
use of lookahead widening in this framework allowed to establish tighter loop
invariants for 4-40% of the loops in a selected set of benchmarks, with overheads
ranging from 3% to 30%.
Contributions. In this paper we make the following contributions:

– We present a novel technique, lookahead widening, that uses existing widen-
ing and narrowing operators to improve the precision of static analysis. The
technique is both self-contained and fully-automatic.

– We show how to implement lookahead widening in practice so that it can be
integrated into existing analyzers with minimal effort.

2 The word pilot is used in the sense of, e.g., a sitcom pilot in the television industry.
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– We present experimental results that we obtained with two prototype im-
plementations of lookahead widening. Our results suggest that lookahead
widening improves analysis precision at modest cost.

Paper Organization. The paper is organized as follows: §2 introduces basic
concepts and presents the running example; §3 describes lookahead widening;
§4 addresses several implementation issues; §5 presents experimental results; §6
discusses related work.

2 Preliminaries

In this section, we briefly introduce several concepts that will be used throughout
the paper. Due to space limitations, we assume that the reader is familiar with
abstract interpretation and the standard use of widening and narrowing. For
a thorough discussion of these topics, see [12, §4.2]. We assume that widening
points are selected according to Bourdoncle’s technique [4]. That is, we assume
that a weak topological order (WTO) is computed for the nodes in the program’s
control-flow graph (CFG), and that widening is performed at the heads of the
components that the WTO defines.3 Another concept from [4] that is important
for the paper is the recursive iteration strategy, which requires the analyzer to
stabilize the currently analyzed WTO component before proceeding to CFG
nodes outside of the component. The examples in the paper use the abstract
domain of polyhedra [8,9].

Running Example. We use the program in Fig. 1(a) as a running example.
Fig. 2 illustrates the results from applying a solver that incorporates standard
widening techniques to the program. For brevity, only some of the program points
are shown. Widening is performed at node n1 on the second and third iterations.
After the third iteration, the analysis converges to a post-fix-point. A descending
iteration sequence converges in one iteration: it recovers the precision lost by
the application of widening on the third iteration, but is not able to recover the
precision lost by the application of widening on the second iteration.

3 Lookahead Widening

Let us start by explaining the weaknesses of the standard approach that our
technique aims to overcome. The loop in Fig. 1(a) has two explicit phases: during
the first phase (the first 51 iterations) both variables x and y are incremented;
during the second phase (iterations 51 through 102) variable x is incremented,
but variable y is decremented. While the loop’s behavior during each phase
is regular and could be captured precisely by standard use of widening and
narrowing, the overall loop behavior is non-regular and, as was shown in §2, the
standard approach yields an imprecise solution.

In particular, the limitation of the standard approach is manifested at the
beginning of the second iteration. At that point in the analysis, an application
3 In structured programs, components defined by a WTO correspond to program loops.
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x = 0;
y = 0;

while(true)
{

if(x <= 50) y++;
else y--;

if(y < 0) break;

x++;
}

(a)

ne

n1

n2 n3

n4

n5

n6nx

x←0
y←0

x≤50 x≥51

y←y+1 y←y−1

y≥0

x←x+1

y≤−1

(b)

x

y

51

51 102

(c)

xy

−1

102

(d)

Fig. 1. Running example: (a) a loop with non-regular behavior; (b) control-flow graph
for the program in (a); (c) the set of program states at n1: the points with integer
coordinates that lie on the dark upside-down “v” are the precise set of concrete states;
the gray triangle gives the best approximation of that set in the polyhedral domain;
(d) the single program state that reaches nx

of widening yields an overapproximation of the behavior of the first phase of the
loop, i.e., no upper bounds are discovered for x and y. As a result, the analysis
starts exploring the second phase of the loop with imprecise initial assumptions,
in effect, propagating the precision loss incurred on the first phase. As the last
column in Fig. 2 shows, the descending iteration sequence fails to recover the
lost precision.

The general idea behind our technique is to improve the precision of the anal-
ysis by obtaining a more precise solution for each loop phase before proceeding
to the next. Intuitively, this can be envisioned as applying standard analysis
techniques to a (finite) sequence of syntactic restrictions of the analyzed pro-
gram that eventually converge to the entire program. The result obtained for a
particular program restriction is used as the starting point for the analysis of
the next restriction in the sequence.

Fig. 3 illustrates this process for our running example. Fig. 3(a) shows the first
program restriction that is considered. Note that this restriction corresponds to
the first phase of the loop. Fig. 3(c) shows the solution at node n1, obtained for
this restriction with the standard method. Fig. 3(b) shows the second restric-
tion of the program; this restriction encompasses both loop phases, but does
not include edges that lead outside of the loop. The analysis starts with the
values obtained from the first restriction, and, at n1, yields the solution shown
in Fig. 3(d), which is the precise invariant for the loop in the polyhedral domain.
The final restriction consists of the entire program (Fig. 1(b)). Applying stan-
dard analysis methods to this restriction yields, at node nx, the solution shown
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CFG Ascending iterations Descending iterations
Node 1st iteration 2nd iteration 3rd iteration 1st iteration
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Fig. 2. Standard analysis trace. Widening is performed at node n1. At the join point,
n4, the polyhedra that are joined are shown in dark gray and the result is shown in
light gray.

in Fig. 3(e), which is the least fix-point, in the polyhedral domain, for the set of
equations generated for the program in Fig. 1.

Although the above idea leads to superior results, it may seem to be hard to
implement in practice. In particular, it is not obvious how to automatically derive
program restrictions that correspond to loop phases. In the remainder of this
section, we show how to implicitly confine the analysis to individual loop phases
and how to implement our technique in a way that can be directly integrated
into existing analyzers with only minor changes to their implementations.

3.1 Approximation of Loop Phases

Rather than explicitly derive syntactic program restrictions, as described above,
our technique approximates this behavior by using a specially designed abstract
value to guide the analysis through the program. That is, the analysis propagates
a pair of abstract values: the first value (referred to as the main value) is used
to decide at conditional points which paths are to be explored; the second value
(referred to as the pilot value) is used to compute the solution along those paths.
Widening and narrowing are only applied to the pilot value. Intuitively, the
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Fig. 3. Syntactic program restrictions for the program in Fig. 1: the omitted CFG
nodes and edges are shown in gray and are dashed; (a) the first restriction corresponds
to the first loop phase; (b) the second restriction consists of both loop phases, but not
the loop exit edge; (c) solution (at n1) for the first restriction; (d) solution (at n1) for
the second restriction; (e) solution (at nx) for the third restriction (shown in Fig. 1(b))

main value restricts the analysis to a particular loop phase, while the pilot value
computes the solution for it. After the pilot value stabilizes, it is used to update
the main value, essentially switching the analysis to the next syntactic restriction
in the sequence.

Let D be an arbitrary abstract domain: D = 〈D,�,�,',⊥,∇, ∆, {τ}〉, where
D is a set of domain elements; � is a partial order on D; �, ', and ⊥ denote least
upper bound operation, the greatest element, and the least element of D with
respect to �; ∇ and ∆ are the widening operator and the narrowing operator;
and {τ : D → D} is the set of (monotonic) abstract transformers associated with
the edges of program’s CFG. We construct a new abstract domain:

DLA = 〈DLA,�LA,�LA,'LA,⊥LA,∇LA, {τLA}〉 ,

each element of which is a pair of elements of D: one for the main value and
one for the pilot value. The pilot value must either equal the main value or
overapproximate it. Also, the main value (and, consequently the pilot value)
cannot be bottom. We add a special element to represent bottom for the new
domain:

DLA = {〈dm, dp〉 | dm, dp ∈ D, dm � dp, dm �= ⊥} ∪ {⊥LA} .

The top element for the new domain is defined trivially as 'LA = 〈','〉.
Abstract transformers are applied to both elements of the pair. However, to

make the main value guide the analysis through the program, if an application of
the transformer to the main value yields bottom, we make the entire operation
yield bottom:
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τLA(〈dm, dp〉) =
{
⊥LA if τ(dm) = ⊥
〈τ(dm), τ(dp)〉 otherwise

We define the partial order for this domain as lexicographic order on pairs:

〈cm, cp〉 �LA 〈dm, dp〉 � (cm 
 dm) ∨ [(cm = dm) ∧ (cp � dp)] .

This ordering allows us to accommodate a decrease in the pilot value by a strict
increase in the main value, giving the overall appearance of an increasing se-
quence. However, the join operator induced by �LA, when applied to pairs with
incomparable main values, sets the pilot value to be equal to the main value in
the result. This is not suitable for our technique, because joins at loop heads,
where incomparable values are typically combined, would lose all the information
accumulated by pilots. Thus, we use an overapproximation of the join operator
that is defined as a component-wise join:

〈cm, cp〉 �LA 〈dm, dp〉 = 〈cm � dm, cp � dp〉 .

The definition of the widening operator encompasses the essence of our tech-
nique: the main value is left intact, while the pilot value first goes through an
ascending phase, then through a descending phase, and is promoted into the
main value after stabilization. Conceptually, the widening operator is defined as
follows:

〈cm, cp〉∇LA 〈dm, dp〉 =

 〈cm � dm, cp∇ dp〉 if the pilot value is ascending
〈cm � dm, cp ∆dp〉 if the pilot value is descending
〈dp, dp〉 if the pilot value has stabilized

The direct implementation of the above definition requires an analyzer to be
modified to detect whether the pilot value is in ascending mode, descending
mode, or whether it has stabilized. Also, for short phases, there is a possibility
that the main value exits the phase before the pilot value stabilizes, in which
case the pilot must be switched to ascending mode. These are global properties,
and the modifications that are required depend heavily on the implementation of
the analyzer. In our implementation, we took a somewhat different route, which
we describe in the next section.

3.2 Practical Implementation

To simplify the integration of our technique into an existing analyzer, we impose
on both the analyzer and the underlying abstract domain restrictions that allow
us to check locally the global properties that are necessary for defining a widening
operator:

– R1. Analyzer restriction: the analyzer must follow a recursive iteration
strategy [4]; that is, the analysis must stay within each WTO component
until the values within that component stabilize.

– R2. Abstract domain restriction: the abstract domain must possess a
stable widening operator [4]; that is, x � y must imply that y∇x = y.
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Furthermore, our implementation does not utilize narrowing operators, and only
computes the equivalent of a single descending iteration for each loop phase.
We believe that this simplification is reasonable because meaningful narrowing
operators are only defined for a few abstract domains; also, in the experimental
evaluation we did not encounter examples that would have significantly benefited
from a longer descending-iteration sequences.

We define the widening operator as follows:

〈cm, cp〉∇LA 〈dm, dp〉 =


〈cm, cp〉 if 〈dm, dp〉 �LA 〈cm, cp〉
〈dp, dp〉 if dp � cp
〈cm � dm, cp∇dp〉 otherwise

The first case ensures that the widening operator is stable. The second case
checks whether the pilot value has stabilized, and promotes it into the main
value. Note that the pilot value that is promoted is not cp, but the value dp,
which was obtained from cp by propagating it through the loop to collect the
effect of loop conditionals (i.e., one possibly-descending iteration is performed).
The last case incorporates the pilot’s ascending sequence: the main values are
joined, and the pilot values are widened.

Soundness. It is easy to see that the results obtained with our technique are
sound. Consider the operations that are applied to the main values: they precisely
mimic the operations that the standard approach applies, except that widening is
computed differently. Therefore, because the application of ∇LA never decreases
main values and because main values must stabilize for the analysis to terminate,
the obtained results are guaranteed to be sound.

Convergence. We would like to show that a standard analyzer that is con-
structed in accordance with the principles outlined in §2 and that employs DLA

as an abstract domain converges. The use of the recursive iteration strategy (R1)
allows us to limit our attention to a single WTO component: that is, if we show
that the analysis converges for an arbitrary component, then it must converge
for the entire program. Let us focus on the head of an arbitrary component: this
is where both widening is applied and stabilization is checked.

First, we show that either the pilot value is promoted or the entire compo-
nent stabilizes after a finite number of iterations. To do this, we rely on the
property of the recursive-iteration strategy that the stabilization of a compo-
nent can be detected by stabilization of the value at its head [4, Theorem 5].
The main value goes through a slow ascending sequence, during which time the
analysis is restricted to a subset of the component’s body. The pilot goes through
an accelerated ascending sequence, which, if the underlying widening operator
∇ is defined correctly, must converge in a finite number of iterations. ∇LA de-
tects stabilization of the pilot’s ascending sequence by encountering a first pilot
value (dp) that is less than or equal to the pilot value on the previous iteration
(cp): because the widening operator is stable (R2), application of widening will
not change the previous pilot value. Note that cp is a (post-)fix-point for the
restricted component, and dp is the result of propagating that (post-)fix-point
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through the same restricted component, and thus, is itself a (post-)fix-point.
Two scenarios must now be considered: either the main value has also stabilized
(i.e., dm � cm), in which case 〈dm, dp〉 �LA 〈cm, cp〉 and the entire component
stabilizes (due to stability of ∇LA); or the main value has not yet stabilized, in
which case the (post-)fix-point dp is promoted into the main value.
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ne

�
n6 x

y

x

y

1

1
x

y

2

2

51

51
x

y

50
51

51 52
x

y
51

48

51 54 102

n1
x

y

x

y

1

1
x

y
51

51
x

y

50
51

51 52 102
x

y
51

51 102

n4
x

y

1 x

y
51

50

1
2

1
x

y

50
51

50 51

1 x

y
51

49

50 52 101

1 x

y
51

50 51 101

1

-1

n6
x

y

1

1
x

y
51

51

1
2

1 2
x

y

50
51

51 52

1

1
x

y
51

49

51 53 102

1

1
x

y
51

51 102

1

1

nx ⊥ ⊥ ⊥ ⊥ x

y

-1

51 102

Fig. 4. Lookahead-widening analysis trace. Widening is applied at node n1. Main values
are shown in dark gray. Light gray indicates the extent of the pilot value beyond the
main value. Pilot values are promoted on the 3rd and 5th iterations.

Next, we show that only a finite number of promotions can ever occur. The
argument is based on the number of edges in the CFG. Depending on whether
or not new CFG edges within the component’s body are brought into consid-
eration by the promotion of the pilot value into the main value, two scenarios
are possible. If no new edges are brought into consideration, then the analy-
sis stabilizes on the next iteration because both main value and pilot value are
(post-)fix-points for this component. Alternatively, new CFG edges are taken
into consideration. In this case, the process described in the previous paragraph
starts anew, eventually leading to the next promotion. Because the body of the
component is finite, new edges can only be brought into consideration a finite
number of times. Thus, there can only be a finite number of promotions before
the analysis of a component converges.
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Revisiting the Running Example. We illustrate the technique of looka-
head widening by applying it to our running example. Fig. 4 shows the trace
of abstract operations performed by the analysis. Due to space constraints, we
only show abstract values accumulated at program points of interest. The first
iteration is identical to the standard approach shown in Fig. 2. Differences are
manifested on the second iteration: the widening operator propagates the un-
modified main value, but applies widening to the pilot value. At node n4, note
that the pilot value has been filtered by the conditional on the edge (n1, n2).
In contrast, in Fig. 2, the abstract state at n4 on the second iteration has an
unbounded band running off to the northeast. On the third iteration, the pi-
lot value that reaches node n1 is smaller than the pilot value stored there on
the second iteration. Thus, this pilot value is promoted into the main value.
This corresponds to the solution of the first loop phase from Fig. 3(a). As the
third iteration progresses, the analysis starts exploring new CFG edges that were
brought into consideration by the promotion, in essence, analyzing the program
restriction from Fig. 3(b).

On the fourth iteration, at n1, the widening operator is applied to the pilot
value. At n6, note that the pilot value has been filtered through the conditional
on the edge (n4, n5). On the fifth iteration, the pilot value is promoted again.
From here on the analysis proceeds in the same fashion as the standard analysis
would, and converges on the next iteration. The analysis obtains more precise
abstract values at all program points, except for n2 (not shown in the figure).

4 Implementation Notes

“Accumulating” Analyzers. In some analyzers, rather than computing the
abstract value for a CFG node n as the join of the values coming from pre-
decessors (i.e., V (n) =

⊔
(m,n)∈E τ(m,n)(V (m))), such analyzers accumulate the

abstract value at n by joining the (single) abstract value contributed by a given
predecessor mi to the value stored at n (i.e., V (n) = V (n)� τ(mi,n)(V (mi))). In
particular, the WPDS++ implementation of weighted pushdown systems [10],
which was our main target for integrating our technique, follows this model.

The challenge that such an analyzer design poses to lookahead widening is that
the pilot value cannot be promoted directly into the main value by applying
∇LA of the previous section. That is, it is not sound to update n’s value by
V (n) = V (n)∇LAτ(mi,n)(V (mi)) because if the pilot value of τ(mi,n)(V (mi)) is
promoted to be the main value at n, this can lose the contribution of one or
more of n’s other predecessors.4 For instance, in Fig. 4, on the third iteration,
an accumulating analyzer would attempt to widen the value at n1 with the value
at n6. (The identity transformation is associated with edge (n6, n1).) The pilot
value at n6 is strictly smaller than the pilot value at n1, and thus qualifies to be

4 In contrast, in analyzers that update n with the join of the values from all predeces-
sors, any promotion of the pilot in V (n) = V (n)∇LA

⊔
(m,n)∈E τ(m,n)(V (m)) does

account for the contributions from all predecessors.
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promoted. However, promoting it would result in an unsound main value: the
point (0, 0) would be excluded.

To allow lookahead widening to be used in such a setting, we slightly redefine
the widening operator for accumulating analyzers. In particular, before making
decisions about promotion, we join the new pilot value with the main value
that is stored at the node. This makes the pilot value account for the values
propagated along other incoming edges. The new widening operator is defined
as follows:

〈cm, cp〉∇LA 〈dm, dp〉 =

 〈cm, cp〉 if 〈dm, dp〉 �LA 〈cm, cp〉
〈dp � cm, dp � cm〉 if dp � cm � cp
〈dm � cm, cp∇(dp � cm)〉 otherwise

Runaway Pilots. In loops (or loop phases) that consist of a small number of
iterations, it is possible for the analysis to exit the loop (or phase) before the
pilot value has stabilized. For instance, if the condition of the if-statement in
the running example is changed to x < 1, the pilot value will be widened on
the second iteration, but will not be effectively filtered through the conditionals
because of the contribution from the path through node n3, which is now enabled
by the main value. As a result, the analysis will propagate a pilot value that is
larger than desired, which can lead to a loss of precision at future promotions.
We refer to this as the problem of runaway pilots.

One possible approach to alleviating this problem is to perform a promotion
indirectly: that is, instead of replacing the main value with the pilot value, apply
widening “up to” [9] to the main values using the symbolic concretization [13]
of the pilot value as the set of “up to” constraints.

Memory Usage. The abstract states shown in Fig. 4 suggest that the main
value and the pilot value are often equal to each other: in our running example,
this holds for abstract states that arise on the first, third, and fifth iterations
of the analysis (more than half of all abstract states that arise). In our imple-
mentation, to improve memory usage, we detect this situation and store a single
value instead of a pair of values when the pilot value is equal to the main value.

Delayed Widening. Another interesting implementation detail is the inter-
action of lookahead widening with a commonly used technique called delayed
widening. The idea behind delayed widening is to avoid applying the widening
operator during the first k iterations of the loop, where k is some predefined con-
stant. This allows the abstract states to accumulate more explicit constraints
that will be used by the widening operator to generalize the loop behavior.
We found it useful in practice to reset the delayed-widening counter after each
promotion of the pilot value. Such resetting allows the analysis to perform k
widening-free iterations at the beginning of each phase.

5 Experimental Results

We experimented with two implementations of lookahead widening: the first
implementation was built into a small intraprocedural analyzer; the second im-
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Table 1. Intraprocedural implementation results. Columns labeled steps indicate the
number of node visits performed; LFP indicates whether the analysis obtains the least-
fix-point solution (‘-’ indicates that we were not able to determine the least fix-point
for the benchmark); Improved precision reports the percentage of important program
points at which the analysis that used lookahead widening yielded smaller values (‘-’
indicates no increase in precision). Important program points include loop heads and
exit nodes.

Program Vars Loops Depth Standard+ Lookahead Overhead Improved
steps LFP steps LFP (% steps) precision (%)

test1 1 1 1 19 yes 19 yes - -
test2 2 1 1 24 yes 24 yes - -
test3 3 1 1 16 - 19 - 18.8 -
test4 5 5 1 79 - 97 - 22.8 33.3
test5 2 2 2 84 yes 108 yes 28.6 -
test6 2 2 2 110 - 146 - 32.7 100.0
test7 3 3 2 93 no 104 yes 11.8 25.0
test8 3 3 3 45 yes 45 yes - -
test9 3 3 3 109 yes 142 yes 30.3 -
test10 4 4 3 227 no 266 no 17.2 20.0

astree1 1 1 1 16 no 19 yes 18.8 50.0
astree2 1 1 1 27 - 33 - 22.2 -

phase 2 1 1 46 no 58 yes 26.1 100.0
merge 3 1 1 63 no 64 yes 1.6 100.0

plementation was built into an off-the-shelf weighted-pushdown-system solver,
WPDS++ [10]. In both cases, incorporation of lookahead widening required no
changes to the analysis engine.5 Both implementations used polyhedral abstract
domains built with the Parma Polyhedral Library [2].

Intraprocedural Implementation. We applied the first implementation to
a number of small benchmarks that appeared in recent papers about widening.
The benchmarks test* come from work on policy iteration [5]. The astree*
examples come from [3], where they were used to motivate threshold widening:
a human-assisted widening technique. Phase is our running example, and merge
is a program that merges two sorted arrays.

Because lookahead widening essentially makes use of one round of descending
iteration for each WTO component, we controlled for this effect in our experi-
ments by comparing lookahead widening to a slight modification of the standard
widening approach: in Standard+, after each WTO component stabilizes, a sin-
gle descending iteration is applied to it. This modified analysis converged for all
of our benchmarks, and yielded solutions that were at least as precise and often
more precise than the ones obtained by the standard analysis. The only excep-
tion was test10, where the results at some program points were incomparable
to the standard technique.

5 Weighted pushdown systems, by default, do not support widening. Certain changes
had to be made to the engine to make it widening-aware.
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Tab. 1 shows the results we obtained. To determine least-fix-points, we ran
the analysis without applying widening. The results indicate that lookahead
widening achieved higher precision than the strengthened standard approach on
half of the benchmarks. Also, the cost of running lookahead widening was not
extremely high, peaking at about 33% extra node visits for test6.

Space constraints limit us to discussing just one of the benchmarks. In
astree1, an inequation is used as the loop condition: i = 0; while(i != 100)
i++;. We assume that the inequation ‘i �= 100’, which is hard to express in
abstract domains that rely on convexity, is modeled by replacing the corre-
sponding CFG edge with two edges: one labeled with ‘i < 100’, the other
labeled with ‘i > 100’. The application of widening extrapolates the upper
bound for i to +∞; the descending iterations fail to refine this bound. In
contrast, lookahead widening is able to obtain the precise solution: the main
value, to which widening is not applied, forces the analysis to always follow the
‘i < 100’ edge, and thus the pilot value picks up this constraint before being
promoted.

Table 2. WPDS implementation results. Instr lists the number of x86 instructions in
the program. Coverage indicates what portion of each program was analyzed. Stack
symbols correspond to program points: there are (roughly) two stack symbols per basic
block. Same-level rules correspond to intraprocedural CFG edges between basic blocks;
push rules correspond to procedure calls; pop rules correspond to procedure returns.
Reported times are for the WPDS poststar operation. Precision improvement is given
as the percentage of loop heads at which the solution was improved by the lookahead-
widening technique.

Name Program Push-down System Time (sec) Overhead Improved
instr coverage stack same push pop std look (%) precision

(%) sym level ahead (%)

speex 22364 7.9 517 483 26 20 1.13 1.33 17.4 40.0
gzip 13166 29.0 1815 2040 76 20 5.70 7.32 28.4 38.2
grep 30376 22.0 9029 10733 201 39 18.62 20.61 10.7 3.3
diff 142959 24.7 9516 11147 217 67 28.41 32.87 15.7 7.5
plot 119910 27.5 15536 15987 1050 159 44.08 45.41 3.0 20.3
graph 129040 26.0 16610 17800 824 155 53.92 56.67 5.1 19.8
calc 178378 18.7 26829 28894 1728 241 85.33 92.23 9.3 5.2

WPDS Implementation. We used the WPDS++ implementation to deter-
mine linear relations over registers in x86 executables. CodeSurfer/x86 was used
to extract a pushdown system from the executable. The contents of memory
were not modeled and reads from memory were handled conservatively. Also, we
chose to ignore unresolved indirect calls and jumps: as the result, only a portion
of each program was analyzed. We applied this implementation to a number
of GNU Linux programs that were compiled under Cygwin. The lookahead-
widening technique was compared to standard widening. No descending itera-
tion sequence was applied, because it would have required a major redesign of
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the WPDS++ solver. Tab. 2 presents the results obtained: lookahead widening
improves the precision of the analysis on all of the benchmarks, and runs with
an overhead of at most 30%.

6 Related Work

Improving Widening Operators [1]. One research direction is the design of
more precise widening operators—that is, widening operators that are better at
capturing the constraints that are present in their arguments. This approach is
orthogonal to our technique: lookahead widening would benefit from the avail-
ability of more precise (base-domain) widening operators.

Widening “up to” [9] (a.k.a. limited widening). In this technique, each
widening point is augmented with a fixed set of constraints, M . The value that
is obtained from the application of the standard widening operator is further
restricted by those constraints from M that are satisfied by both arguments of
the widening operator. Given a well-chosen set of constraints, this technique is
very powerful. A number of heuristics are available for deriving these constraint
sets. In principle, the propagation of the pilot value by our technique can be
viewed as an automatic way to collect and propagate such constraints to widen-
ing points. Alternatively, whenever such constraint sets are available (e.g., are
derived by some external analysis or heuristic), lookahead widening can utilize
them by applying widening “up to” to the pilot values. This will be beneficial
when the lookahead widening is not able to break a loop into simpler phases (for
instance, if a loop contains a non-deterministic conditional).

“New-Control-Path” Heuristic [9]. This heuristic addresses imprecision
that is due to new loop behaviors that appear on later loop iterations: it de-
tects whether new paths through the loop body were explored by the analysis
on its last iteration—in which case the application of widening is delayed (to let
captured relationships evolve before widening is applied). While this heuristic
handles the introduction of new loop behaviors well, it does not seem to be able
to cope with complete changes in loop behavior, e.g., it will not improve the
analysis precision for our running example. The lookahead-widening technique
can be viewed as an extension of the new-control-path heuristic: not only the
application of widening is delayed when the new control paths become avail-
able, but also the solution for the already explored control paths is refined by
computing a descending iteration sequence.

Policy iteration [5]. This technique abandons chaotic iteration altogether in
favor of different equation-solving strategies. While this technique is guaran-
teed to find the most precise solution, the search carried out in policy space
appears to be quite expensive, and the approach requires building dedicated
analyzers. In contrast, our technique can be easily integrated into existing
analyzers.
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1 Introduction

HTP is an SMT Modulo theorem prover similar to many others.[2,3,4,5,6,9,11]
As input, HTP accepts problems using the SMT-LIB format[8]. As output, HTP
will answer either SAT, UNSAT or UNKNOWN. Alternatively, HTP can be run
in a preprocessing mode in which the output is the simplified problem in SMT-
LIB format. An evidence file showing the derivation in a human readable form
can be produced. There is a Treeview application which shows this derivation in
a tree widget making it convenient to navigate a complex proof.

The main contribution of HTP is the introduction of a preprocessor that
includes algorithms for detecting unate predicates, eliminating variables, sym-
metry breaking and boolean encoding. The other algorithms of HTP are similar
to other systems. HTP implements a DPLL(T) similar to BarcelogicTools[6].
There are domain theories for equality of uninterpreted function symbols, real
difference logic, linear inequality and array logic.

2 The Preprocessor

HTP has a preprocessor that applies a number of algorithms to incrementally
simplify problems before handing them off to the DPLL(T) solver. There are
command line switches to turn on and off some of the algorithms.

2.1 Rewriting

Before anything else is done with a problem, HTP rewrites it using a num-
ber of algebraic simplification rules for arithmetic and boolean equations. As
an example, the system will rewrite a+b=2*a+1 to b=a+1 and it will rewrite
1+1+1+1+1+a<1+1+b to a+3<b. Boolean expressions are also simplified. For ex-
ample, a and a is rewritten to a.

HTP also implements a simple contextual rewriting mechanism. The idea is
that certain subterms can be assumed to be true or false while rewriting others.
For example, for the expression a<b and not(a=b), when simplifying not(a=b),
the system can assume a<b is true. This reduces not(a=b) to true and hence
the whole expression reduces to a<b.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 467–470, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2.2 The Unate Detection Algorithm

For any boolean expression E (which HTP is trying to satisfy), if asserting a
predicate P is guaranteed to make E false, then we know that for any assignment
to the predicates satisfying E, we know that P has to be false. P is thus a unate
predicate. The theorem can be simplified by making not(P) an assumption and
then simplifying E. HTP can detect unate predicates efficiently.

The algorithm is most easily described through the use of an example, (a<b)
and (if b=c then a+1=b else a<b+1). This expression has four atomic pred-
icates, a<b, b=c, a+1=b and a<b+1. The goal is to figure out which are unate.

The system creates a table with all pairwise implications between the atomic
predicates. Then the system annotates each boolean subterm of the expression
with four sets, the set of atomic predicates that when asserted make that subterm
true, the set of atomic predicates which when asserted make that subterm false,
the set of atomic predicates which when denied make that subterm true and the
set of atomic predicates which when denied make that subterm false.

The system starts by computing these sets for each of the atomic predicate
subterms in the theorem. Then these sets are combined with simple set opera-
tions (union or intersection) to create the sets for each of the non-atomic terms.
The table below shows these computations for the example above.

Assert makes true Deny makes false
b=c b=c b=c
a<b a<b,a+1=b a<b,a<b+1
a+1=b a+1=b a+1=b,a<b,a<b+1
a<b+1 a<b,a<b+1,a+1=b a<b+1
if b=c then a+1=b else a<b+1 a+1=b a<b+1
(a<b) and (if b=c a+1=b a<b,a<b+1
(then a+1=b else a<b+1)

HTP stores all expressions as DAGs. Hence, the work in computing these
sets only needs to be done once for each unique subterm. Also, the sets are
represented as bit vectors making the computations very efficient.

Variable elimination is a special case of unate detection. If it is found that
denying a predicate of the form v=e, where v is a variable, makes the theorem
false, then we know any satisfying assignment must have v=e as true. Hence,
within our theorem, we can replace all instances of v with e and simplify. We
do not need to enter v=e as an assumption.

2.3 Symmetry Breaking

Symmetry breaking in HTP is an extension of the idea studied in the context of
SAT problem solving.[7]. The algorithm works through the following steps. First,
all symmetric pairs of variables are detected. A pair of variables (a,b) are said to
be a symmetric pair if in the theorem T (the theorem HTP is trying to prove)
when replacing all instances of a with b and b with a, the resulting theorem is
exactly the same as T. The current algorithm for finding pairs simply tests all
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possible pairs of variables of the same type to see if swapping them produces the
same theorem. From this set of symmetric pairs of variables, symmetric pairs
of atomic predicates are identified. P1 and P2 are said to be symmetric if there
is a set of symmetric variable pairs {(a1, b1) . . . (an, bn)} such that P1 can be
transformed to P2 by simply replacing each ai with bi and each bi with ai for
each of the pairs in the set of symmetric variables. Next we calculate groups of
symmetric predicates. A group of symmetric predicates is a set of two or more
atomic predicates such that any two predicates in the group are symmetric.
Finally, symmetry breaking disjuncts are added in a manner similar to [7].

2.4 Boolean Encoding

HTP implements an algorithm for doing boolean encoding of difference logic
built on ideas from [10]. More information on this algorithm is available on the
author’s website at www.fordocsys.com/htp.htm.

3 Current State of the Implementation

The system is implemented in C and compiled both on Windows and Linux.
The Treeview program for viewing outputs is only available on Windows. The
author’s website contains detailed tables with results and a downloadable exe-
cutable. HTP has been run in stand alone mode on the entire QF UF problem
set as well as the scheduling problems in QF RDL[1] giving results which are
competitive with other top systems. The preprocessing mode has been run on
all SMT-COMP’05 problems except the QF UFIDL and QF AUFLIA sections.

The preprocessor was evaluated by running the output in MathSat[2], YIC-
ES[3], Simplics[4] and BarcelogicTools[6]. Using symmetry breaking, the prepro-
cessor substantially improved the performance of problems in the QF UF section.
However, the current algorithm cannot be applied to other sections. Combining
the preprocessor with YICES yields a combined theorem proving tool that can
solve 40 problems from SMT-COMP’05. BarcelogicTools, the top system from
the competition, only solved 39 problems. Unate detection and rewriting im-
proved the performance of the QF LRA/spider benchmarks, the QF LIA/sal
and the QF LRA/sal sections. For many of these problems, rewriting and unate
detection were sufficient to solve the problems. Rewriting also improved the per-
formance of the QF LIA/wisa benchmarks. This was due to many expressions
of the form 1+1+1+...+x=y being simplified to n+x=y. The unate detection and
rewriting had little impact for the other sections. In some cases applying the
preprocessor changed the performance of other tools by as much as a factor of
five either way. This variance has also been seen with minor permutations of
problems in many SMT Modulo solvers. The difference logic encoding was quite
effective in improving performance when it was applicable.

4 Conclusion and Future Work

Good preprocessing techniques are the most promising direction for finding per-
formance improvements. Future work will also include expansion of the stand
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alone mode to handle problems from all divisions of SMT-COMP’05[1] as well
as adding bit vector and quantifier logic. The two most promising preprocessing
directions for creating additional performance enhancements are that of devel-
oping boolean encoding algorithms and symmetry breaking. Boolean encoding
routines are being extended beyond difference logic. Symmetry breaking is being
extended to handle problems outside the QF UF division.

Acknowledgement. The author thanks Leonardo de Moura from SRI for his
feedback on this paper.
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1 Introduction

Software systems are often modeled using infinite structures such as unbounded
integers, infinite message queues and call stacks, and unbounded number of pro-
cesses. This makes verification of these systems hard- in fact, for most common
classes of infinite state systems, the verification problem is undecidable.

In the Learning-to-Verify [12,13,11,10] project, we have developed a new
paradigm for verification of systems (possibly infinite state) which is based on
using techniques from computational learning theory. Verification of systems usu-
ally entails computing either the set of states reachable from the initial states or
certain fixpoints associated with logical formulas. To see our main idea, consider
the problem of identifying the set of reachable states which is needed for verify-
ing safety properties. Instead of computing this set by iteratively applying the
transition relation, we view it as a target set to be learned by answering certain
queries (such as membership and equivalence queries). In general, these queries
cannot be answered for the reachable states directly. To solve this problem, in-
stead of learning the reachable states, we learn a richer set of state-witness pairs
where a pair consists of a reachable state and a witness which demonstrates how
that state is reachable. We have shown that the additional information in the
witness allows both membership and equivalence queries to be answered. Once
the set of state-witness pairs is learned, the reachable states are easily computed
which can in turn be used to check the safety property. We have also extended
the learning technique to verify liveness properties using either Computational
Tree Logic with fairness or ω-regular languages (see [12,13]).

The learning based verification method enjoys several nice properties. First,
the running time of the verification algorithm depends not on the time taken to
converge to the fixpoint (which may not even be achievable in a finite number
of steps) but on the size of the symbolic representation of the fixpoint. Sec-
ond, it avoids the space overhead of computing intermediate approximations to
the fixpoint. Finally, the learning based verification method is sound (it never

� Supported in part by ONR N00014-02-1-0715. Part of this work was done while the
author was at the University of Illinois.

�� Supported in part by NSF CAREER 0448178 and NSF CCF 0429639.
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gives an incorrect answer) and if the fixpoint set is representable in the sym-
bolic representation used by the learner, it is also complete (it is guaranteed to
terminate).

In this paper, we present a tool called Lever which implements some of the
techniques developed in the Learning-to-Verify project. We give some details
about the tool and discuss results of running Lever on some interesting ex-
amples. We also compare Lever with some other tools that are available for
verification of infinite state systems.

Related Work. Independently of our work, Habermehl et al. [4] have also pro-
posed a learning based method for verification of systems. However, their work
assumes that the transition system is length-preserving which is a restrictive as-
sumption in the case of verification of liveness properties. Learning has also been
used for verification in other contexts such as learning assumptions in composi-
tional reasoning and mining specifications. This is different than our approach
because we are learning the fixpoints needed for verification. Apart from learning
based verification, some other tools used for verification of infinite state systems
are: FAST [3] which uses acceleration techniques to compute the effect of infinite
iteration of certain loops, BRAIN [8] which does a backward search from the “un-
safe states” and uses Hilbert’s bases for symbolic representation of integer sets
and ALV [1] which uses widening and can also employ acceleration techniques.
For a more detailed treatment of the related work, the reader is referred to [14,9].

2 Overview of Lever

Lever is currently targeted towards systems with unbounded natural numbers
and parameterized systems with unbounded number of processes. The input to
Lever consists of a description of the system model to be analyzed in terms of its
variable declarations, transition guards and actions, initial states, the labeling of
states with atomic propositions and the property to be verified. The syntax used
for the input is similar to FAST [3]. If Lever terminates on the given system,
the output is simply whether the system satisfies the given property or not. In
future, a negative answer may be extended to providing a counterexample trace
demonstrating the property violation.

Motivated by the practical success demonstrated by regular model checking,
the states of the system are represented as strings and regular sets (encoded as
Deterministic Finite Automata) are used for the symbolic representation of the
fixpoints to be computed for verification. More precisely, we encode a vector
(x1, x2, . . . , xn) of natural numbers as a string s over an alphabet Σ = {0, 1}n.
The value of xi is given in binary by a string formed by s by projecting each
of its letters to its ith component. This representation is similar to Boigelot’s
Number Decision Diagrams and is known to be expressive enough to encode any
Presburger set.

We use the automata library from MONA [6]. MONA keeps the states of the
automata explicitly but the transition relation is encoded as a multi-terminal
shared BDD. This allows a compact representation of the automata even when
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the alphabet is of large size. The transducer representing the transition relation
is also encoded as an automaton in MONA with a set of new variables added to
represent the values taken by system variables after application of a transition.

As mentioned earlier, Lever uses learning to find the fixpoints needed for
verification. We use a learning framework that allows the learner to make two
kinds of queries: a membership query asking if a particular element is a member
of the target set and an equivalence query asking if a proposed hypothesis is
equal to the target set. Since regular sets are used as the underlying symbolic
representation for sets of states, we need an algorithm for learning regular sets
using membership and equivalence queries. For this, we use a modified version of
the algorithm described in Kearns and Vazirani [5] which in turn is inspired by
the classical Angluin’s [2] algorithm for learning regular sets. One major change
we have made in the Kearns-Vazirani algorithm is to use the idea of analyzing
counterexamples in a binary-search manner as described in Rivest et. al. [7]. For
efficiency, we also use a symbolic way of answering certain kinds of membership
queries as described in [14].

3 Results

We have used Lever to analyze over 30 different examples. These include vari-
ous cache coherence protocols such as Dragon, Firefly, Illinois, MESI, MOESI,
Berkeley, Futurebus and Synapse; mutual exclusion protocols such as peter-
son, lamport, ticket and bakery; broadcast protocols such as consistency, and
producer-consumer; petri nets such as lastinfirstserved protocol, Esparza-Finkel-
Mayr Counter Machine, RTP and manufacturing; and counter machines such
as lift and barber. We have used Lever to analyze some safety properties, some
simple branching time properties and some more complicated liveness proper-
ties which also need fairness constraints. All these examples are available for
download along with the Lever tool.

In order to evaluate the performance of our tool, we have compared our Lever
tool with three other tools popular for verifying safety properties of infinite state
systems: FAST [3], BRAIN [8] and ALV [1]. In Table 1, we present a few of the
examples we have analyzed (space constraints prevent us from presenting the full
results but these are available in [9]). All analysis was done on Intel Xeon based
Linux machine running at 1.70GHz with 1GB memory. For some examples, the
analysis could not be completed either because the tool did not terminate in two
hours, or it exhausted available memory, or (in the case of ALV) it reported that
it cannot provide an answer. For these cases, the table shows an entry of ↑.

The overall comparison of the performance of the various tools is mixed.
No single tool is able to outperform all others for all the examples. There are
also examples in which some tools are unable to give an answer within a given
period of time while others are successful. However, the important observation
is that the performance of Lever is comparable to the other tools and for some
examples it is significantly better. Another significant advantage of using Lever
is that, given enough time and memory, the learning based technique gives is
guaranteed to terminate as long as the set being learned is regular.
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Table 1. Running times for safety properties. Due to space constraints only a few
examples are presented; full results can be obtained from [9].

Lever FAST BRAIN ALV

noaccel 0.031s ↑ 0.004s 0.025s

flatcounter 0.153s ↑ 0.004s 0.052s

manufacturing 0.821s 2.422s 10.974s ↑
ticket2i 0.585s 0.679s ↑ ↑
consistency 0.932s 142.814s 0.057s 571.473s

kanban 3.952s 7.081s ↑ ↑

We have also used Lever to do a case study on the verification of a model of
the Read-Copy-Update mechanism in the Linux kernel. The interested reader is
referred to [9] for details.
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Abstract. We describe a formal verification of a recent concurrent list-based set
algorithm due to Heller et al. The algorithm is optimistic: the add and remove
operations traverse the list without locking, and lock only the nodes affected by
the operation; the contains operation uses no locks and is wait-free. These prop-
erties make the algorithm challenging to prove correct, much more so than simple
coarse-grained locking algorithms. We have proved that the algorithm is linearis-
able using simulation between input/output automata modelling the behaviour of
an abstract set and the implementation. The automata and simulation proof obli-
gations are specified and verified using PVS.

1 Introduction

Concurrent algorithms are notoriously difficult to design correctly, and high perfor-
mance algorithms that make little or no use of locks even more so. Formal verification
of such algorithms is challenging because their correctness often relies on subtle inter-
actions between processes that heavier use of locks would preclude. These proofs are
too long and complicated to do (and check) reliably “by hand”, so it is important to
develop techniques for mechanically performing, or at least checking, such proofs.

In this paper we describe a formal verification of LazyList, a recent concurrent
list-based set algorithm due to Heller et al. [1]. Our proof shows that the algorithm
is linearisable to an abstract set object supporting add, remove, and contains meth-
ods. Linearisability [2] is the standard correctness condition for concurrent shared data
structures. Roughly, it requires that each operation can be assigned a unique linearisa-
tion point during its execution at which the operation appears to take effect atomically.

The LazyList algorithm is optimistic: add and remove operations attempt to locate
the relevant part of the list without using locks, and only use locks to validate the infor-
mation read and perform the appropriate insertion or deletion. The contains operation
uses no locks, and is simple, fast, and wait-free. Heller et al. present performance stud-
ies showing that this algorithm outperforms well known algorithms in the literature,
especially on common workloads in which the contains method is invoked significantly
more often than add and remove [1].

The simplicity and efficiency of the contains method is achieved by avoiding all
checks for interactions with concurrent add and remove operations. As a result, a con-
tains operation can decide that the value it is seeking is not in the set at a moment when
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in fact the value is in the set. The main challenge in proving that the algorithm is lin-
earisable is to show that this happens only if the sought-after value was absent from the
set at some point during the execution of the contains operation.

We have proved that the algorithm is linearisable using simulation between input/out-
put automata modelling the abstract behaviour of the set and the implementation. Our
proof uses a combination of forward and backward simulations, and has the interesting
property that a single step of the implementation automaton can correspond to steps by
an arbitrary number of different processes in the specification automaton. We modelled
the automata and encoded the proof obligations for simulations in the PVS specification
language [3], and used the PVS system to check our proofs.

Apart from presenting the first complete and formal verification of an important new
algorithm, a contribution of this paper is to describe our ongoing work towards making
proof efforts like these easier and more efficient. The proof presented in this paper builds
on earlier work in which we proved (and in some cases disproved and/or improved)
a number of nonblocking implementations of concurrent stacks, queues and deques
[4,5,6,7]. While we still have work to do in this direction, we have made a lot of progress
in understanding how to model algorithms and specifications, and how to approach
proofs. In this paper, we briefly describe some of the lessons learned. We have made
our proof scripts available at http://www.mcs.vuw.ac.nz/research/SunVUW/,
so that others may examine our work in detail and benefit from our experience.

The rest of the paper is organised as follows. We describe the LazyList algorithm in
Section 2, and our verification of it in Section 3. We discuss our experience with using
PVS for this project in Section 4, and conclude in Section 5.

2 The LazyList Algorithm

The LazyList algorithm implements a concurrent set supporting three operations:

– add(k) adds k to the set and “succeeds” if k is not already in the set.
– remove(k) removes k from the set and “succeeds” if k is in the set.
– contains(k) “succeeds” if k is in the set.

Each operation returns true if it succeeds; otherwise it “fails” and returns false.
The algorithm uses a linked-list representation. In addition to key and next fields,

each list node has a lock field, used to synchronise add and remove operations, and a
marked field, used to logically delete the node’s key value (see Figure 1). The list is
maintained in ascending key order, and there are two sentinel nodes, Head and Tail,
with keys−∞ and +∞ respectively. We assume that the list methods are invoked only
with integer keys k (so that −∞ < k < +∞).

As explained in more detail below, a successful add(k) operation inserts a new node
containing k into the list, and a successful remove(k) operation logically removes k
from the set by marking the node containing k (i.e., setting its marked field to true),
before cleaning up by removing the node from the list. Thus, at any point in time, the
abstract set is exactly the set of values stored in the key fields of the unmarked nodes in
the list.
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private class Entry {
int key;
Entry next;
boolean marked;
lock lock;

}

Fig. 1. Declaration of list node type

b
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Fig. 2. Inserting and removing list nodes

The add(k) and remove(k) methods (see Figure 3) use a helper method locate(k),
which sets curr to point to the first node with a key greater than or equal to k and pred
to point to that node’s predecessor in the list—the values in Head and Tail ensure that
these both exist. The locate method optimistically searches the list without using locks,
and then locks the nodes pointed to by curr and pred. If both nodes are unmarked (i.e.,
their marked fields are false) and pred.next is equal to curr, the add or remove operation
can proceed; otherwise, the locks are released and the search is restarted.

An add(k) operation calls locate, then compares curr.key to k. If curr.key is not
equal to k, then k is not in the list, so add creates a new node, setting its key field to
k and its next field to point to curr (see Figure 2). It then sets the next field of pred to
point to this new node, releases the locks on curr and pred, and succeeds. If curr.key is
equal to k, then k is already in the list, so the add operation fails.

A remove(k) operation also calls locate, then compares curr.key to k. In this case,
if curr.key equals k, then remove removes the node at curr from the list and succeeds;
otherwise, k is not in the list, so remove fails. A successful removal is done in two
stages: first the key is logically removed from the set by setting the marked field of
curr; then it is physically removed by setting the next field of its predecessor (pred) to
its successor (curr.next) (see Figure 2). Separating the logical removal of the key from
the set and the physical removal of the node from the list is crucial to the simplicity
and efficiency of the algorithm: because nodes are not removed before they are marked,
observing an unmarked node is sufficient to infer that its key is in the set.

A contains(k) operation makes a single pass through the list, starting from Head,
searching for a node with a key not less than k. If this node contains k and is not
marked, the contains operation succeeds; otherwise it fails. This operation requires no
locks and is wait-free (i.e., it is guaranteed to complete within a finite number of its own
steps, even if processes executing other operations are delayed or stop completely).

Linearisation Points. A common way to prove that an algorithm is linearisable is to
identify a particular step of each operation as the linearisation point of that operation.
With some simple invariants showing there are no duplicate keys in the list, it is straight-
forward to assign linearisation points in this way for add and remove operations, and
for successful contains operations. We can linearise a successful add operation when it
inserts its node into the list (line 6), a successful remove operation at the point at which
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contains(k) :
1 curr := Head;
2 while curr.key < k do
3 curr := curr.next;
4 if curr.key = k and
5 ˜curr.marked then

return true
else
return false

locate(k) :
while true do

1 pred := Head;
2 curr := pred.next;
3 while curr.key < k do
4 pred := curr;
5 curr := curr.next;
6 pred.lock();
7 curr.lock();
8 if ˜pred.marked and
9 ˜curr.marked and

10 pred.next = curr then
11 return pred, curr

else
12 pred.unlock();
13 curr.unlock()

add(k) :
1 pred, curr := locate(k);
2 if curr.key != k then
3 entry := new Entry();
4 entry.key := k;
5 entry.next := curr;
6 pred.next := entry;
7 res := true

else
8 res := false;
9 pred.unlock();

10 curr.unlock();
return res

remove(k) :
1 pred, curr := locate(k);
2 if curr.key = k then
3 curr.marked := true;
4 entry := curr.next;
5 pred.next := entry;
6 res := true

else
7 res := false;
8 pred.unlock();
9 curr.unlock();

return res

Fig. 3. Pseudocode for LazyList algorithm

it marks the node (line 3), and a successful contains operation at the point at which it
reads the marked field of a node containing its key (line 5). An unsuccessful add or
remove can be linearised anywhere between acquiring the lock on curr and releasing
the lock on pred.

Things are not so simple for failed a contains operation, however. If the node found
by the loop at lines 2 and 3 contains a key greater than k, or it is marked, contains(k)
returns false. But there is no step of the contains operation at which k is guaranteed not
to be in the set. In particular, when its key or marked field is checked, the node may
have already been removed from the list, and another process may have added a new
node with key k, so that k is in the abstract set at that time. Thus the simple approach
of proving linearisability by defining a linearisation point for each operation at one of
its steps does not work for this algorithm.

The key to proving that LazyList is linearisable is to show that, for any failed
contains(k) operation, k is absent from the set at some point during its execution. Our
proof shows that if a contains(k) operation fails, then either k is absent from the set
when the operation begins or some successful remove(k) operation marks a node con-
taining k during the execution of the contains(k) operation. Because there may be many
contains(k) operations executing concurrently, it is sometimes necessary to linearise
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multiple failed contains operations after the same remove(k) operation. We found this
interesting, because our previous proofs have not required this.

3 Verification

To prove that LazyList is a linearisable implementation of a set supporting add, remove,
and contains operations, we define two input/output automata (IOA) [8,9]: a concrete
automaton ConcAut, which models the behaviour of the LazyList algorithm, and a sim-
ple abstract automaton AbsAut, which specifies all correct behaviours of a linearisable
set. We use simulation proof techniques [10] to prove that ConcAut implements AbsAut.

3.1 I/O Automata and Simulation Proofs

We now informally describe the IOA model and simulation proofs. In our verification,
we use a simplified version of IOAs, which is sufficient for this verification. See [8,9,10]
for a more detailed and formal discussion.

An IOA consists of a set of states and a set of actions. Each action has a precondition,
which determines the set of states from which it can be executed, and an effect, which
determines the next state after the action has been executed. The actions are partitioned
into external actions, which define the interface of the automaton, and internal actions,
which represent internal details. An automaton C implements an automaton A if for
every execution of C, there exists an execution of A with the same external actions,
implying that C and A are indistinguishable to an external observer.

One way to prove that C implements A is by forward simulation. Given an arbitrary
execution of C, we inductively construct an equivalent execution for A by working
forwards from the beginning ofC’s execution, choosing a (possibly empty) sequence of
actions ofA for each step in C’s execution. That is, we start from some initial state ofA,
choose a sequence of actions ofA for the first step ofC, execute those actions, resulting
in a new state of A, and then choose and execute a sequence of actions corresponding
to the next step of C, and so on. In a forward simulation proof, we must choose the
action(s) of A for a given step of C based on the step and the state of A thus far in the
simulation; we cannot use steps of C later in the execution to make this choice.

The goal is for the constructed execution of A to have the same external behaviour
as the execution of C. To guarantee that it does, we insist that the sequence of actions
chosen for an internal action of C contains no external actions, and the sequence of
actions chosen for an external action of C contains that external action and no other
external action. We must also ensure that the sequence of actions we choose for A can
be executed from the state of A resulting from the sequence of actions corresponding
to the previous step of C.

To ensure that we can successfully carry out this process over the entire execution of
C, we must choose actions forA in a way that keepsA “in step” withC. We capture our
intuition about what “in step” means by defining a relation, called a forward simulation,
between states ofC and states of A, and we choose actions forA so as to “preserve” the
simulation relation. Often the biggest challenge lies in precisely capturing our intuition
about why C implements A so that we can define a simulation relation that makes this
possible.
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For some algorithms and their specifications, however, there is no way to define such
a forward simulation because for some action of C, the actions of A that we should
choose depend on future actions (i.e., actions that appear later in the execution). As we
explain later, LazyList is one such algorithm. In such circumstances, we use a back-
ward simulation. Instead of starting from the initial state and working forwards along
an execution of C, in a backward simulation we start at the last state of an arbitrary ex-
ecution, and work backwards towards the initial state. (Because we are only concerned
with safety properties in this work, it suffices to consider only finite executions.)

Apart from the direction of the induction, there are some additional differences be-
tween forward and backward simulations. First, in a forward simulation, the sequence
of actions we choose for A (together with the current state of A) uniquely determines
the poststate for A (at least for automata with deterministic actions like the ones we
use). But in a backward simulation, for a given action of C, we are given a poststate of
A, and we must choose not only a sequence of actions for A, but also a prestate such
that executing the chosen action(s) from this prestate brings us to the given poststate
and the prestate of C’s action is related by the simulation relation to the chosen prestate
for A.

Second, we must ensure that when we reach the beginning of C’s execution, A is
in an initial state too. Therefore, a backward simulation relation must ensure that every
state ofA that is related to an initial state ofC is an initial state ofA. Forward simulation
has no such proof obligation.

When a backward simulation is necessary, it is often convenient to develop the proof
in two stages by defining an “intermediate” automaton, and proving (i) that the concrete
automaton implements the intermediate automaton using a forward simulation and (ii)
that the intermediate automaton implements the abstract one using a backward simu-
lation. We took this approach for this verification, as we had used it successfully in
previous verifications, e.g. [5].

3.2 The Abstract and Concrete Automata

We now describe informally the abstract and concrete IOAs that we use in this verifi-
cation; more detailed descriptions of the way we use IOAs to model specifications and
implementations can be found in [4,5,6,7].

The abstract automaton AbsAut models a set of processes operating on an abstract
set, in which each process is either “idle”, in which case it can invoke any operation on
the set, or is in the midst of executing an operation.

Each operation is modelled in AbsAut using four actions: two external actions
modelling the operation’s invocation and response, and two internal actions modelling
successful and unsuccessful application of the operation. For example, for the add oper-
ation (see Figure 4), the addInv(k, p) action models the invocation of the add(k) opera-
tion by process p, and the addResp(r, p) action models the operation returning boolean
value r to process p. The precondition of the doAddT action requires that k is not in
the abstract set, and its effect adds k to the set; the precondition of the doAddF action
requires that k is in the set, and its effect does not modify the set.

Per-process program counter variables constrain the order in which actions are per-
formed, ensuring that each operation consists of an invocation action, a do action, and a
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Action Precondition Effect
addInv(k, p) pc(p) = idle pc(p) := pcDoAdd(k)
doAddT(k, p) pc(p) = pcDoAdd(k) AND

NOT member(k, keys)
pc(p) := pcAddResp(true)
keys := add(k, keys)

doAddF(k, p) pc(p) = pcDoAdd(k) AND
member(k, keys)

pc(p) := pcAddResp(false)

addResp(r, p) pc(p) = pcAddResp(r) pc(p) := idle

Fig. 4. AbsAut actions for the add operation

response action. These variables also connect the return value of the response action to
the do action. For example, the doAddT(p) action sets process p’s program counter to
pcAddResp(true). Thus each operation is guaranteed to return a value consistent with
applying the operation atomically at the point at which the do action is executed. Be-
cause each operation “takes effect” atomically at the execution of its internal do action,
all executions of AbsAut are behaviours of a linearisable set. Thus, proving that ConcAut
implements AbsAut proves that LazyList is a linearisable set implementation.

The concrete automaton ConcAut models a set of processes operating on a set im-
plemented by the LazyList algorithm. It has the same external actions as AbsAut (i.e
invocations and responses for each operation), and has an internal action for each step
of the algorithm corresponding to a labelled step in the pseudocode shown in Figure 3,
which are assumed to be atomic. In fact, conditional steps in the algorithm have two
associated actions, one for each outcome of the step. For example, the precondition of
the cont2T(p) action (which models an execution by process p of line 2 of the con-
tains method when the test succeeds) requires that p’s program counter is pcCont2 and
curr.keyp < kp, and its effect sets p’s program counter to pcCont3. The compound tests
in contains (lines 4 and 5) and locate (lines 8 to 10) are each treated as a sequence of
(two and three, respectively) atomic tests. We also assume that allocation of a new node
(add line 3) is atomic.

3.3 An Intermediate Automaton

As mentioned earlier, we cannot prove that ConcAut implements AbsAut using a for-
ward simulation proof. The reason is that, to do so, we must identify a point at which
each operation “takes effect” and choose the corresponding do action in AbsAut at that
point. However, as explained in Section 2, a failed contains operation may not take ef-
fect at the point that it determines it has failed: the point at which the sought-after key
is absent from the set may be earlier. A correct forward simulation proof would have to
choose the doContF action at a point that the key is absent from the set. However, at
that point, it is still possible that the contains operation will return true, so choosing do-
ContF would make it impossible to complete the proof because when ConcAut executes
the external contResp(true) action, the precondition for this action would not hold in
the AbsAut state (recall that we are required to choose the same action for AbsAut when
the ConcAut action is external).

Thus, we introduce an intermediate automaton IntAut that eliminates the need to
“know the future” when choosing appropriate actions to prove that ConcAut implements
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IntAut using a forward simulation, and we show that IntAut implements AbsAut using a
backward simulation. Because backward simulations are generally more difficult than
forward ones, we prefer to keep the intermediate automaton as close as possible to
the abstract one. We achieved this by modifying AbsAut slightly so that the contains
operation can decide to return false if the key it is seeking was absent from the set at
some time since its invocation (though it may still return true if it finds its key in the
set). We now explain how we achieved this.

The state of IntAut is the same as that of AbsAut, except that we augment each pro-
cess p with a boolean flag seen outp. When process p is executing a contains(k) oper-
ation, seen outp indicates whether k has been absent from the set at any time since the
invocation of the operation.

The transitions of IntAut are the same as those of AbsAut, except that:

– The contInv(p, k) action sets seen outp to false if k is in the abstract set, and to true
otherwise.

– The doRemT(q, k) action, in addition to removing k from the set, also sets
seen outp for every process p that is executing contains(k).

– The precondition of the doContF(k, p) action requires seen outp to be true instead
of k being absent from the set.

Thus the doContF(p) action is enabled if k was not in the set when contains(k) was
invoked, or if it was removed later by some other process q performing doRemT(q, k).
Therefore, in this automaton, a contains(k) operation can decide to return false even
when k is in the set, provided k was absent from the set sometime during the operation.
This is what we need in order to prove a forward simulation from ConcAut to IntAut.

3.4 The Backward Simulation

Because IntAut is so close to AbsAut, the backward simulation is relatively straightfor-
ward: it requires that the sets of keys in IntAut and AbsAut are identical, and that each
process p in AbsAut stays “in step” with process p in IntAut, with one exception. In
AbsAut, p may have already executed doContF, indicating that it will subsequently re-
turn false, whereas in IntAut, p has not yet decided to return false. This is allowed only
if seen outp is true, indicating that either k was absent from the abstract set at the in-
vocation contInv(k, p), or was present at the invocation but was subsequently removed
before doContF is performed. The PVS definition of our backward simulation between
IntAut state i and AbsAut state a is shown below.

bsr(i, a): bool = i‘keys = a‘keys AND
FORALL p: (i‘pc(p) = a‘pc(p) OR

(i‘pc(p) = pcDoCont AND
a‘pc(p) = pcContResp(false) AND
i‘seen_out(p)))

Below we briefly describe how we choose an action sequence for AbsAut for a given
step of IntAut in our backward simulation proof. Readers interested in details of how we
choose a prestate for AbsAut, and how we discharge the various proof obligations for a
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backward simulation (including proving that our choices result in a valid execution of
AbsAut) can examine our files and step through the proofs.

In the backward simulation, for most actions in IntAut, we choose the same action
for AbsAut. However, as discussed above, we cannot simply choose doContF in AbsAut
when a doContF action occurs in IntAut because the sought-after key may be in the set
at that point. Instead, we choose doContF actions as follows:

– For a contInv(k, p) action in IntAut, if p is enabled to return false in the poststate
of AbsAut, we choose contInv(k, p) followed by doContF(k, p).

– For a doRemT(k, p) action in IntAut (which removes k from the abstract set), we
choose a sequence of actions for AbsAut consisting of doRemT(k, p) followed by
a doContF(k, p) action for each process p that is executing a contains(k) operation
and is enabled to return false in the poststate of AbsAut.

3.5 The Forward Simulation

When defining the relationship between the states of IntAut and ConcAut, one option is
to represent the relationship directly in the forward simulation. However, because in this
case the relationship is quite complex, we instead reflect the state of IntAut within Conc-
Aut by introducing two auxiliary variables, aux keys and aux seen out. Then, rather
than constructing the forward simulation to directly relate the ConcAut state and the
IntAut state, we capture this relation as invariants of ConcAut, and simply require, for
the forward simulation, that the auxiliary variables equal their counterparts in IntAut.
This makes it easier to test properties using a model checker before we attempt to prove
them.

ConcAut is augmented with the auxiliary variables in a straightforward manner:
aux keys is updated when a node is inserted into the list at line 6 of the add method,
or is marked for deletion at line 3 of the remove method; and aux seen outp is updated
when the contains method is invoked by process p, and when another process executes
line 3 of the remove method to remove the same value p is seeking.

With the addition of the auxiliary variables, the simulation relation is quite simple.
Like the backward simulation relation, it has two components, one relating data and
one relating program counters of processes. The first component simply requires that
the auxiliary variables of ConcAut equal their counterparts in IntAut. The second com-
ponent is more complicated than in the backward simulation relation, because we must
relate each program counter of ConcAut to a program counter value in IntAut.

The proof for the forward simulation is also quite straightforward: almost all of the
cases of the proof were dispatched automatically using PVS strategies. The only proofs
that required user interaction were those to show that whenever we choose a do action
for IntAut for a given ConcAut action, that action’s precondition holds in IntAut. These
proofs required the introduction of high-level invariants of the concrete automaton—
one for each action corresponding to a do action in the intermediate automaton—that
show that at the point that we choose these actions in the simulation, their preconditions
hold in IntAut.

For one interesting example, we must show that when we choose doContF(k, p) as
the action for IntAut, seen outp is true. More specifically, we show that aux seen outp
is true in the ConcAut state, and then use the simulation relation’s requirement that
aux seen out and seen out are equal to infer that the IntAut action is enabled.
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3.6 Invariants

To prove the invariants required to show that an IntAut action’s precondition holds when
we choose it in the simulation, we needed over a hundred supporting invariants and
lemmas. Proving these properties was the bulk of the proof effort. We do not have room
to discuss all these properties, but we invite the interested reader to consult our PVS
theory files and proof scripts.

Many of these properties are “obvious”: In an informal proof, we might say that some
follow “by inspection” (e.g., a local variable of a process is changed only by an action
of that process; the key field of a node is changed only by line 4 of the add method).
Others follow immediately given that nodes are not modified unless they are locked or
newly allocated (e.g., the pred node of a process at lines 2–9 of the add method is not
marked). One “obvious” invariant that was more difficult to prove than we expected is
that a node pointed to by curr is public, which means that it was placed into the list at
some time in the past (i.e., it was allocated by some process that is not still at lines 4–6
of the add method with that node pointed to by entry). Proving this required jointly
proving that pred is public, that the successor of any public node is public, that entry
is public for a process at line 5 of the remove method, and that entry.next = curr for
a process at line 6 of the add method. These five properties mutually depend on each
other, and are expressed in the public nodes invariant.

The locate works invariant captures properties that are guaranteed by the locate
method because it locks the nodes and then validates the desired properties before re-
turning to add or remove. Specifically, locate works says that after returning from a
call to locate, the process has locks on adjacent live nodes (i.e., public and unmarked
nodes) such that the key of the first node is less than the sought-after key, and the key of
the second is greater or equal. The locate works invariant ensures, for example, that,
before the next field of the pred node is set at line 5 of the remove method, that field
still points to the curr node. The entry unchanged in rem invariant ensures that the
value written to that field is the value in the next field of the curr node, so that exactly
one node (the curr node) is removed.

The aux keys accurate invariant states that aux keys is exactly the set of keys
for which there is a live node. The proof of this property is mostly straightforward
because a key is inserted into aux keys each time a new node containing that key is
inserted into the list (thus becoming live), and removed from aux keys each time a
node containing the key is marked (thus ceasing to be live). The difficult case in this
proof is showing that marking a node with a certain key ensures that no live node with
that key exists. This case uses several additional invariants: live nodes in list says
that all live nodes are reachable from Head; one from other says that if two different
nodes are both reachable from Head then one of them is reachable from the other; and
later nodes greater and public says that if one node is reachable from another,
then it has a higher key. Together these three properties imply that there is at most one
live node with a given key at any time, and therefore marking one falsifies the existence
of any such node, as required.

Given the aux keys accurate invariant, and the simulation relation’s requirement
that ConcAut’s aux keys equals IntAut’s keys, it is easy to see that we can choose the
doContT action when a contains(k) operation finds an unmarked node with key k,
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and therefore decides to return true. A contains(k) operation that returns false is more
interesting. First, note that if seen outp is set to true during a contains(k) operation of
process p, then it remains true for the duration of the operation, so we are justified in
choosing the doContF action for IntAut if ConcAut decides to return false.

Otherwise, assume seen outp is set to false by contInv(k, p) and remains false
throughout the operation until it decides to return false. This implies that there is a
live node containing k when contInv(k, p) is executed. Because nodes are marked be-
fore being removed from the list, the node remains live throughout the operation unless
it is marked. If it is marked, the action sequence chosen for IntAut corresponding to the
marking action in ConcAut sets seen outp to true, contradicting the assumption. There-
fore, the node remains live throughout the operation, implying that, immediately after
the cont1 action reads Head into currp, the live node is reachable from the node indi-
cated by currp. As explained below, this remains true as p walks down the list towards
the live node unless the node is marked (again, this contradicts the assumption). Thus,
the contains(k) operation finds this live node, and does not return false as assumed.

The above reasoning is captured in part by the cont val still in invariant, which
states that as p executes the loop at lines 2 and 3 of the contains(k) method, either
aux seen outp is true, or there is a path from currp to a live node m containing k. The
path property is expressed as leadsfrom(currp,m), which states that there is a non-
zero-length path from currp to m. leadsfrom is defined using leadsfromsteps as
follows to allow us to prove to PVS that inductive proofs over it are finite.

leadsfromsteps(c, n, m, w): INDUCTIVE bool =
n /= Tail AND ((w=1 AND c‘nextf(n) = m) OR

(w>1 AND c‘nextf(n) /= m AND
leadsfromsteps(c,c‘nextf(n),m,w-1)))

leadsfrom(c, n, m): bool = EXISTS w: leadsfromsteps(c, n, m, w)

A challenging part of the proof is proving that leadsfrom(currp,m) is falsified
only from a state in which node m is marked, and therefore cont val still in is not
falsified by leadsfrom(currp,m) becoming false (because the invariant implies thatm
is unmarked). The intuition for this property is clear: changes outside the path between
currp and m have no effect, and inserting or removing a node from the list between
currp and m preserves the leadsfrom(currp,m) property. Thus, only removing a link
to m can falsify leadsfrom(currp,m), and it is easy to prove that this occurs only
after m has been marked. While the intuition for this property is straightforward, the
proof is somewhat involved because it requires various inductions over the leadsfrom
property to capture the effects of inserting and removing nodes in the middle of the list.
Our decision to represent the path property using the recursive leadsfrom predicates
was driven by our desire to minimise the size of the state space to accommodate model
checking work by our colleagues (see below). Explicitly encoding the paths in auxiliary
variables would simplify the proof considerably.

4 Experience with PVS

We used PVS [3] to verify all the proofs discussed in this paper. As we are not experts
in the use of PVS, and we had no special support, our experience may be relevant both
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to others considering using PVS to verify similar proofs, and as a comparison to others’
experience with different formal tools. In addition to our work with PVS, we collabo-
rated with David Friggens and Ray Nickson, who developed models for this algorithm
for use in the model checkers Spin and SAL [11,12]. As well as model checking the en-
tire algorithm for small numbers of threads and small bounds on the queue size, which
gave us some confidence that our proof attempt would eventually be successful, they
used these models to test some of the putative invariants we used in our proofs before
we actually proved them.

In approaching this verification, we worked mostly “top-down”, starting with the
simulation proofs and then proceeding with the invariants. We did not develop the basic
proof using PVS; rather, we figured out the top-level invariants informally, and prepared
a fairly detailed proof sketch of these invariants, and some of their supporting lemmas
and invariants, before formalizing them in PVS. We did not, however, work out all the
low-level lemmas and invariants that we knew would be helpful for the proofs, leaving
many of them to be stated and proved as necessary.

As mentioned earlier, introducing auxiliary variables in the concrete automaton
pushed the bulk of the work for this proof into the verification of invariants. The com-
plete verification contains 165 PVS proofs: 32 typecheck constraints, 30 lemmas for the
simulation proofs, and 103 invariants and supporting lemmas. Pushing most of the work
into the invariants reduced the state that had to be managed within a PVS proof, because
invariants are about a single automaton, while simulations are relations between two au-
tomata. Also, unlike simulation relations, invariants are straightforward to check using
model checkers, so this reduced the gap between our work and that of our colleagues
working with Spin and SAL.

PVS includes support for proof management, tracking which proofs have been done,
and marking lemmas as proven but “incomplete” if they depend on earlier lemmas that
have not yet been proved completely. This support helped us to work independently on
different lemmas, which was especially helpful as the authors were spread over three
countries. However, PVS manages changes at the file level—any change in a file in-
validates all proofs for lemmas in that file—so we often had to rerun proofs that were
unchanged. Finer-grained dependency tracking would have saved us considerable time.

PVS supports the creation of user-defined rules, called strategies, by combining
built-in rules. These strategies can be saved and used in other proofs (or used again
in a single proof). We used strategies extensively, for example, to set up the beginning
of invariant proofs, which almost always begin assuming the invariant holds on an arbi-
trary reachable state and setting up as a goal that it holds after executing any action; to
extract parts of the precondition or effect of an action; and to handle the many “trivial”
cases in the forward simulation proof for concrete actions that did not correspond to
any action in the intermediate automaton.

As useful as strategies are, we found that in many cases it was better to define a
lemma that captured a desired property than to design a strategy to prove it. There are
two advantages: First, PVS doesn’t have to do the proof each time—it just uses the
lemma. Second, often the way you state a property makes a significant difference in
how you are able to use it. With a lemma, you can easily control how a property is
stated.
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One challenge in this verification was making proofs that PVS could check quickly.
In particular, in an invariant proof, we typically show that the property is preserved by
every action. Usually, only a few actions affect any of the variables mentioned by the
property, and only those actions need to be considered; the rest obviously preserve the
property. However, PVS must check all of those actions, and even a couple of seconds
for each action turns into minutes for 52 actions. Thus, we stated and proved several
“does not modify” lemmas, one for each variable, stating which actions actually modi-
fied that variable, and we used those lemmas extensively to avoid having PVS consider
each of the other actions separately.

We also found it helpful to define functions to describe things that we wanted to
refer to frequently, and especially that we might want to use in a strategy. For exam-
ple, in the forward simulation proof, we defined the action corr function to return, for
any transition of the concrete automaton, the corresponding sequence of actions of the
intermediate automaton. We also defined pcin and pcout to return, for each action, the
program counters corresponding to the prestate and poststate respectively.

5 Concluding Remarks

We have developed the first complete and formal correctness proof for the LazyList
algorithm of Heller et al. [1]. We model the algorithm and specification as I/O Au-
tomata in the PVS specification language, and proved that the algorithm implements
the specification using simulation proofs developed in and checked by the PVS system.

As in previous algorithms we have verified [4,5,6,7], we found that the outcome
of an operation cannot always be determined before it takes effect. Our proof uses a
combination of backward and forward simulations to deal with this problem. An inter-
esting aspect of the proof, which we have not encountered in our previous proofs, is the
need for an arbitrary number of operations to be linearised after an action of a different
operation.

In a related manual verification effort, Vafeiadis et al. [13] also present a verifica-
tion of the LazyList algorithm. They add the abstract set as an auxiliary variable and
add actions that perform the abstract operation and record the abstract result at the
linearisation point of each operation. They then use the Rely-Guarantee proof method
[14,15] to show that the implementation and the abstract set behave the same way in
every execution of this augmented algorithm. Because it is impossible to correctly lin-
earise a failed contains operation without knowledge of the future, this approach can-
not be used to prove the linearisability of failed contains operations, and [13] only
considers this case informally. It is noteworthy that this case accounted for a large pro-
portion of the complexity and the effort involved in our completely machine-checked
proof.

We have made our proof scripts available so that others may benefit from our experi-
ence (see http://www.mcs.vuw.ac.nz/research/SunVUW/). We also plan to test
our hypothesis that substantial parts of our proof can be reused to verify several opti-
mised versions of LazyList. In the longer term, we plan to continue refining our proof
methodology to make it easier and more efficient to develop fully machine-checked
proofs for concurrent algorithms.
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Abstract. Many multithreaded programs employ concurrent data types to safely
share data among threads. However, highly-concurrent algorithms for even seem-
ingly simple data types are difficult to implement correctly, especially when con-
sidering the relaxed memory ordering models commonly employed by today’s
multiprocessors. The formal verification of such implementations is challeng-
ing as well because the high degree of concurrency leads to a large number of
possible executions. In this case study, we develop a SAT-based bounded ver-
ification method and apply it to a representative example, a well-known two-
lock concurrent queue algorithm. We first formulate a correctness criterion that
specifically targets failures caused by concurrency; it demands that all concurrent
executions be observationally equivalent to some serial execution. Next, we de-
fine a relaxed memory model that conservatively approximates several common
shared-memory multiprocessors. Using commit point specifications, a suite of
finite symbolic tests, a prototype encoder, and a standard SAT solver, we success-
fully identify two failures of a naive implementation that can be observed only
under relaxed memory models. We eliminate these failures by inserting appro-
priate memory ordering fences into the code. The experiments confirm that our
approach provides a valuable aid for desigining and implementing concurrent
data types.

1 Introduction

Shared-memory multiprocessor architectures dominate the server and scientific com-
puting market today and are even finding their way into desktop, laptop and gaming
machines. Nevertheless, programming such systems remains a challenge [1]. To cope
with the subtleties of concurrent program executions, software architects often intro-
duce abstraction layers in the form of concurrent data types.

Concurrent data types provide familiar data abstractions (such as queues, hash tables,
or trees) to client programs that have concurrently executing threads. The interface of
the data type specifies the operations. The implementation provides the actual code for
the operations; it hides the concurrency from the client program, using lower-level syn-
chronization primitives such as locks or semaphores as needed. To allow for more con-
currency and better performance, optimized implementations use fine-grained locking
or even avoid locks altogether by using lock-free synchronization techniques [2, 3, 4].
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Writing correct and efficient code for concurrent data types is challenging. To make
matters worse, many contemporary shared-memory architectures use relaxed memory
ordering models [5]. For example, a processor may execute memory accesses in a dif-
ferent order than specified by the program, and stores may take effect locally before be-
coming visible to remote processors. Although regular “fully synchronized” programs
are not sensitive to the memory model, implementations that contain concurrency op-
timizations (such as intentional data races or lock-free synchronization) become ex-
posed to such ordering and atomicity relaxations. Because the resulting executions are
counterintuitive and nondeterministic, even highly skilled engineers are likely to make
programming errors when relying on informal reasoning and conventional testing only,
which motivates the use of formal verification.

The operations of the concurrent data type are invoked by a multi-threaded client
program and may execute concurrently on a multiprocessor. Our correctness criterion
is operation-level sequential consistency. It requires that all concurrent executions be
observationally equivalent to a serial execution, that is, an execution in which the opera-
tions execute atomically and in the order they are invoked by each thread. As we assume
that all serial executions reflect the semantics of the abstract data type correctly (which
can be verified independently using standard techniques for sequential programs), cor-
rectness in our sense implies that client programs always observe the correct semantics.
In particular, the data type is guaranteed to appear sequentially consistent to the client
program even if the underlying multiprocessor executions are not sequentially consis-
tent [6] on the instruction level.

To bound the number of threads, the state space, and the depth of the execution,
we consider client programs that make a fixed number of operation calls only. We
call these bounded instances symbolic tests. Furthermore, the user must specify com-
mit points [7], that is, single out an instruction within each operation such that the
logical order of the operations always matches the execution order of their commit
points. We qualify soundness and completeness of our approach as follows: (a) it can
prove correctness for all executions of the given symbolic test, and (b) it generates
counterexamples that are sound with respect to the chosen memory model and commit
point specification.

We encode the existence of a violating execution as a CNF instance that can be
solved or refuted by a standard SAT solver (corresponding to cases (b) and (a) above).
Our encoding combines several ideas that appear in prior work, such as loop unrolling
and SSA transformations [8] and axiomatic memory model encodings [9, 10].

We successfully applied our method to an example that represents optimized imple-
mentations of concurrent data types, the two-lock concurrent queue by Michael and
Scott [11]. First, we verified that the implementation code is correct for all symbolic
tests in our suite when executed on a sequentially consistent memory model. Next, our
prototype found two failures that can occur when the same code is executed on a relaxed
memory model. Guided by the counterexamples, we identified the problematic instruc-
tion reorderings and prevented them by inserting two memory ordering fences. Finally,
we verified that with these fences, the code executes correctly on a relaxed memory
model for all symbolic tests in the suite.
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1.1 Related Work

Most prior work on formal verification of concurrent data types assumes a sequentially
consistent memory model [12, 13, 14]. In that context, linearizability [15] is the correct-
ness criterion of choice. Unfortunately, its definition assumes that an execution globally
orders the operation invocations and returns, which is not well defined on relaxed mem-
ory models because instructions may be reordered across operation boundaries.

Model checking of assembly code snippets for relaxed memory models was first
attempted with explicit state enumeration [16, 17] using an operational memory model
and interleaving concurrency. More recently, constraint-based encodings of axiomatic
memory models have been proposed for memory-model sensitive race detection [9].
Our approach differs because we specifically target concurrent data types and because
we use operation-level sequential consistency as our correctness criterion.

2 The Challenge

Our verification target is the two-lock FIFO queue implementation [11] by Michael and
Scott (Fig. 1). We chose this example because of its optimized use of locks: the enqueue
and dequeue operations can proceed concurrently because they use independent locks.
This concurrency improves performance, but it also introduces a race condition if the
queue is empty. Race conditions sometimes indicate an improper locking discipline
[18], but as we see here, they may also be a side effect of concurrency optimizations.

We encountered several challenges in the course of our case study:

Avoiding State Explosion. An interleaving model of concurrency can lead to large state
spaces; relaxed memory models exacerbate this effect because they introduce additional
concurrency at the instruction level. Therefore, we decided against unrolling the transi-
tion relation and representing executions as global state sequences. Instead, we repre-
sent the program executed by each thread as a linear symbolic instruction stream, and
we encode the relative order of instructions using SAT variables.

Defining Memory Models. We compared the memory model specifications for the
IBM PowerPC [19], Sun SPARC v9 TSO/PSO/RMO [20], Alpha [21], and IBM zAr-
chitecture [22]. Although there are many differences, the specifications use similar rules
(axioms) to describe the valid memory orderings. By comparing the axioms, we derived
a generic relaxed memory model (to be defined in section 3.4) that provides a common
conservative approximation and abstracts unneeded details.

Encoding Memory Models. We can encode the memory model axioms directly be-
cause we have explicit representations of the instruction streams for each thread [9, 23].
In contrast, classic interleaving models based on labeled transition systems require a
prior conversion of the axiomatic specification into an operational style [16, 17].

Bounding Instances. To achieve a bounded formulation, we approximate admissible
client programs using a manually constructed suite of symbolic tests. Each test spec-
ifies a fixed, finite sequence of symbolic operation invocations for each thread. Un-
like deterministic tests, a symbolic test covers all possible instruction interleavings and
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structure node_t {
value: value_t;
next: ptr to node_t

}

structure queue_t {
head: ptr to node_t;
tail: ptr to node_t;
headlock: lock_t;
taillock: lock_t;

}
1 initialize(Q: ptr to queue_t)
2 // Make dummy node
3 node = new_node()
4 node->next = NULL
5 Q->head = Q->tail = node
6 Q->headlock = FREE
7 Q->taillock = FREE
8

9 enqueue(Q: ptr to queue_t,
10 value: value_t)
11 node = new_node()
12 node->value = value
13 node->next = NULL
14 lock(&Q->taillock)
15 Q->tail->next = node
16 Q->tail = node
17 unlock(&Q->taillock)

27 dequeue(Q: ptr to queue_t,
28 pvalue:ptr to value_t)
29 : boolean
30 lock(&Q->headlock)
31 node = Q->head
32 new_head = node->next
33 if new_head == NULL
34 // queue empty
35 unlock(&Q->headlock)
36 return false
37 endif
38 *pvalue = new_head->value
39 Q->head = new_head
40 unlock(&Q->headlock)
41 free(node)
42 return true

Fig. 1. Michael and Scott’s two-lock queue implementation [11]. The queue is represented by a
dynamically allocated singly linked list with head and tail pointers, each protected by a separate
lock. To simplify the empty queue case, the first node of the linked list is a “dummy” element: its
value is not part of the queue.

reorderings and all possible call arguments and return values. The total number of in-
structions executed during a test is bounded because the operations do not contain loops.
As a result, each test has a finite (albeit exponential) number of possible executions,
which explains how we avoid the undecidability of sequential consistency [24].

Representing Parameters. The implementation is parameterized by (a) the number of
threads, (b) the size of the queue, (c) the size of the instruction reordering window, and
(d) the number of distinct data values. As our formulation targets individual symbolic
tests with finitely many executions, we can easily find static bounds. For instance, the
number of threads is explicitly specified by the test, the queue size and the number of
data values never exceed the number of “enqueue” calls, and the instruction reorder
window need not be larger than the total number of instructions.

Avoiding Mixed Quantifiers. Our correctness criterion contains alternating quantifiers
(we ask if there exists a observationally equivalent serial execution for each concurrent
execution), which can not be directly encoded in SAT. We avoid this problem (at the
expense of some generality and automation) by asking the user to designate one in-
struction for each operation to be the commit point. If correctly specified, the order in
which the commit points execute matches the logical order of the operations. With this
additional information, we can construct a deterministic serial reference execution for
each concurrent execution. If the two executions are observationally equivalent in all
cases, we have shown that the implementation is sequentially consistent. If not, our tool
provides a counterexample trace that shows both executions, which may point out an
actual defect in the implementation or an incorrect commit point specification.
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Making Memory Accesses Explicit. The original algorithm (Fig. 1) uses a pseudo-
code notation similar to C. To accurately model synchronization instructions and the
effects of the memory model, we require a lower-level representation that makes the
loads and stores explicit. Our back-end prototype accepts a loop-free imperative in-
termediate language that has (a) a small syntax, (b) a well-defined semantics even for
weak memory models, and (c) supports modelling of spin loops, atomic blocks, and
assertions.

Translating the Code. We envision a tool that includes a front end that accepts a subset
of C and performs the translation automatically. However, for this case study, we used
a straightforward manual translation of the pseudo-code into our tool’s intermediate
language.

Modelling Locks and Detecting Deadlocks. The code for the two-lock queue makes
calls to lock() and unlock() without fully specifying their memory ordering se-
mantics. For reference, we use a lock implementation from an architecture manual [20]
that contains a spin loop, an atomic load-store primitive, and (partial) memory ordering
fences. We use a reduction for side-effect free spin loops that allows us to model a sin-
gle iteration of the spin loop only, while still covering all executions and detecting all
deadlocks caused by an improper locking discipline in the implementation.

Modelling Dynamic Memory Management. To model dynamic memory allocation,
we create an array of blocks, each with its own lock. The allocation call nondeterminis-
tically selects a free block and locks it. The deallocation call unlocks it again. The array
size is bounded by the number of “enqueue” calls in the symbolic test.

3 Solution

In this section, we formalize symbolic tests and our correctness criterion, we show how
to prove correctness or provide a counterexample for a given commit point specification,
and we formally define our memory model.

3.1 Symbolic Tests

A symbolic test T (A,B) specifies a finite sequence of operation invocations for each
thread. A is a set of symbolic variables that represents argument values passed to the

T (A,B)

thread 1: thread 2:
(b1, b2) = dequeue() enqueue(a2)
enqueue(a1) (b5, b6) = dequeue()
(b3, b4) = dequeue()

A = {a1, a2} and B = {b1, . . . , b6}

Meaning of the operations:

— enqueue(v)
adds value v to the queue

— dequeue() returns values (r, v)
if queue is empty, returns r = false;
otherwise, returns r = true and the
dequeued value v

Fig. 2. An example for a symbolic test T (A,B)
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operations, and B similarly represents values returned by the operations. For our queue
example, a symbolic client program T (A,B) may look as in in Fig. 2.

For a given symbolic test T (A,B), let VA be the set of valuations to the variables in
A, and let VB the set of valuations to the variables in VB . Given an implementation I , a
memory model Y , and a symbolic test T (A,B), we define the set RT,I,Y ⊂ VA × VB

to consist of all tuples (a, b) such that it is possible to observe the output values b
when executing the test T with implementation I and input values a on a machine with
memory model Y .

Let ΠT be the set of all total orders on the invocations in T . We say an order o ∈ ΠT

is consistent with T (written consistent T (o)) if and only if for all invocations made by
the same thread, the order in T matches the order o. Define the function gI,T : ΠT ×
VA → VB such that gI,T (o, a) describes the return values that result from executing the
invocations appearing in T in a single thread, in the order specified by o, and with input
values a. We guarantee that gI,T is a well-defined function as follows:

1. We admit only implementations I whose single-threaded executions are determin-
istic. Where we want nondeterminism (such as for modelling memory allocation),
we express it by declaring additional symbolic input values.

2. We assume that executions never deadlock. However, because deadlocks are well
possible in practice, we discharge this assumption separately by performing a prior
check for deadlocks using an independent SAT instance (which we do not describe
further here).

With the formalism introduced above we can now precisely define operation-level
sequential consistency for a given test T .

Formulation. The implementation I is correct for a given symbolic test T and a mem-
ory model Y if and only if for all (a, b) ∈ RT,I,Y , there exists an invocation order
o ∈ ΠT such that o is consistent with T and b = gI,T (o, a).

If an implementation is correct for all symbolic tests T , it is guaranteed to be free
of defects that are caused by concurrency; if it contains any other errors, those are
guaranteed to manifest themselves in some serial execution, and can therefore be easily
covered with conventional verification methods.

3.2 Encoding Concurrent Executions

Our first subgoal is to encode the concurrent executions in a way that is suitable for SAT
solving. We show in this section how to define auxiliary variables C, M and a formula
ΦT,I,Y (A,B,C,M) such that for all (a, b) ∈ VA × VB the following holds:

(a, b) ∈ RT,I,Y ⇔ ∃C : ∃M : ΦT,I,Y (a, b, C,M) (1)

The variable M represents the memory order; different valuations to M correspond
to different instruction interleavings (and possibly reorderings). C is a set of variables
that represent intermediate values of the computation. Each variable that represents
an input, intermediate, or return value is local to a thread k, and we partition A =⋃

k Ak, B =
⋃

k Bk, C =
⋃

k Ck accordingly. The formula ΦT,I,Y then decomposes
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(a) Implementation code for the (b) Symbolic instruction stream for
operation func the expanded invocation y = func(x)

var arr : array[8] of int

op func(int index) returns int
if (index < 0) then
return 0

else
return arr[index]

endif
endop

move (x < 0), c
[+c] move 0, r1
[-c] load arr[x], r2

move (c ? r1 : r2), y

(c) Corresponding formula over Ak = {x}, Bk = {y}, Ck = {c, r1, r2}
∆(Ak, Bk, Ck) ≡ (c = (x < 0)) ∧ (r1 = 0) ∧ ((c ∧ (y = r1)) ∨ (¬c ∧ (y = r2)))

Fig. 3. Example of the thread-local encoding

into subformulas that represent the communication and the thread-local components
separately:

ΦT,I,Y (A,B,C,M) ≡ ΘT,I,Y (M,C) ∧
∧
k

∆T,I,k(Ak, Bk, Ck) (2)

The Thread-Local Formulas. For each thread k, the formula ∆T,I,k captures the
connection among input values Ak, intermediate values Ck, and return values Bk: the
solutions to ∆T,I,k(Ak, Bk, Ck) correspond to all possible executions of thread k in an
unspecified environment (that is, for arbitrary values returned by the load instructions).
We obtain the encoding as follows (see Fig. 3 for an example):

– Expand the invocation sequence for thread k specified in T (A,B) by inlining the
implementation code I .

– Unroll loop iterations. We can skip this step for this case study (and avoid the
associated loss of precision) because the implementation code is already loop-free.

– Compile the code into a linear, finite instruction sequence consisting of loads,
stores, fences, and instructions that capture the thread-local computations. We call
the latter move instructions.

– Create a variable in Ck for each intermediate value produced by a load or move.
– For each move instruction, create constraints on the source and destination values

that express the nature of the computation. Take the conjunction of these constraints
to get the formula ∆T,I,k.

– If the code contains conditionals, use predicates to express conditional execution
of instructions. For each instruction i, define the predicate π(i) to be a boolean for-
mula over variables inCk that captures the condition(s) under which this instruction
gets executed. Fig. 3 illustrates how to use predicates; we skip the further details of
the compilation algorithm here.
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The Communication Formula. The formula ΘT,I,Y (M,C) encodes the valid inter-
actions between the threads as they execute load, store, and fence instructions. It thus
captures the shared memory semantics of the multiprocessor, which is defined by the
memory model Y.

To encode ΘT,I,Y , we first create predicated instruction streams for each thread as
described in section 3.2. Let X be the set of all loads and stores appearing in these
streams. Let ΠX be the set of all total orders on X . Define the memory order variable
M to range over ΠX . We can now encode ΘT,I,Y such that its solutions have the
following properties: (a) the value loaded by a load matches the last value stored to the
same address (where “last” is interpreted in terms of the memory order M ), and (b) the
memory order M follows the ordering axioms of the memory model.

We give a full definition for the formula ΘT,I,Relaxed describing our relaxed memory
model in section 3.4; in the remainder of this section we discuss the similar but some-
what simpler case of a sequentially consistent multiprocessor only. For each memory
access x ∈ X , let π(x) be its predicate (a boolean formula over the variables in C that
captures the condition under which x gets executed), and let ax, vx ∈ C be the variables
that represent the address and data value of x, respectively. Let L ⊂ X be the set of
loads, and S ⊂ X be the set of stores. Let <p be the program order; that is, <p is a
partial order on X such that x <p y if and only if x, y are appear in the same stream,
and x comes before y. Then

ΘT,I,SeqCons(M,C) ≡
∀x, y ∈ X : (π(x) ∧ π(y) ∧ x <p y)⇒ x <M y

∧ ∀l ∈ L : ∀s ∈ S : sees (l, s)⇒ [ vl = vs ∨ (∃s′ ∈ S : sees (l, s′) ∧ s <M s′) ]

where sees (l, s) ≡ (π(l) ∧ π(s) ∧ (as = al) ∧ (s <M l))

(3)

The second line of (3) expresses that the memory order may not contradict the program
order, which is the essence of sequential consistency. The third line of (3) specifies that
a load gets the last value “seen”, that is, the last value stored to the same address. It uses
the subformula sees (l, s), which is defined on the last line of (3) and says that a load
“sees” a store if and only if it succeeds it in the memory order M , goes to the same
address, and both predicates are true.

The formula (3) still contains non-boolean variables and quantifiers. To obtain a CNF
representation, we (a) encode non-boolean variables in A, B, or C as bitvectors, (b)
expand quantifiers into finite conjunctions or disjunctions, and (c) break M down into
boolean variables {Mxy | x, y ∈ X} such thatMxy represents x <M y and add clauses
to express transitivity, antisymmetry and non-reflexivity. The number of variables and
clauses is then quadratic and cubic in |X |, respectively.

3.3 Encoding Correctness

We now show how to construct a formula Ψ such that (a) Ψ can be solved by a SAT
solver, (b) unsatisfiability of Ψ implies correctness, and (c) given a satisfying assign-
ment for Ψ , we can construct a counterexample trace. Such a trace shows a concurrent
execution for which the serial reference execution is not observationally equivalent.
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For a given test T and implementation I , a commit point specification h is understood
as a function ΠX → ΠT that maps a given memory order m to the invocation order
h(m) that reflects how m orders the commit points. Now we can define

ΨT,I,Y,h ≡ ∃A : ∃B : ∃C : ∃M : ΦT,I,Y (A,B,C,M) ∧
( gI,T (h(M), A) �= B ∨ ¬ consistent T (h(M)) )

(4)

To encode the subformula gI,T (h(M), A) �= B in (4), we create a copy T ′(A,B′) of
T (A,B) in which we put each invocation in a separate thread, and we define a special
“memory model” Atomic, which is similar to sequential consistency but executes each
thread atomically. Then gI,T (h(m), A) �= B if and only if

∃B′ : ∃C′ : ∃M ′ : ΦT ′,I,Atomic(A,B′, C′,M ′) ∧ h(M ′) = h(M) ∧ B �= B′ (5)

After substituting (5) into (4), we can move all existential quantifiers to the front as
required for SAT solving.

If the SAT solver determines that ΨT,I,Y,h is unsatisfiable, it follows directly from
the definitions that the implementation I is correct for the test T and memory model
Y (regardless of h). However, if the SAT solver provides a satisfying assignment for
ΨT,I,Y,h, our prototype presents the corresponding concurrent and serial executions to
the user. The user can then analyze the counterexample and determine whether there is
a defect in the implementation or a mistake in the commit point specification h.

3.4 Encoding Relaxed Memory Models

Relaxed memory models impose fewer ordering restrictions on the instruction streams
than sequential consistency; therefore RT,I,SeqCons ⊂ RT,I,L for all relaxed models L.
Finding a uniform specification framework for the puzzling variety of memory models
is a challenge of its own [25, 26]. For this case study, we restricted our attention to a
selection of memory models (listed in the next paragraph) that are commonly used by
hardware. Moreover, we are content with a conservative approximation, that is, a model
Relaxed such that RT,I,Y ⊂ RT,I,Relaxed for all memory models Y in our selection.

We compared the memory model specifications for the IBM PowerPC [19], Sun
SPARC v9 TSO/PSO/RMO [20], Alpha [21], and IBM zArchitecture [22]. Although
there are many differences, all of the specifications are based on a similar axiomatic
style: they consist of a collection of rules that describe the valid instruction orderings
and how values may flow from stores to loads. This non-operational style suits our
purpose well; it allows us to compare the different models and derive a common ap-
proximation Relaxed, which we now describe in detail.

First, let us describe the relaxations with respect to sequential consistency informally.
We use the symbols X , M , C, S, L, π(x), ax, vx, and <p as defined in section 3.2.

– Accesses to different locations by the same thread may be executed out of order: If
x, y ∈ X and x <p y and ax �= ay , we may have y <M x.

– Loads to the same location by the same thread may be executed out of order: If
l, l′ ∈ L and l <p l

′ and al = al′ , we may have l′ <M l.
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– Stores may be non-atomic: the stored value may be held in a thread-local buffer
before becoming visible to other threads. We use <M to express the time at which
a store commits globally, and we adjust the definition of sees (l, s) to allow a load
to see stores in the buffer. For example, if s ∈ S and l ∈ L and s <p l and as = al,
we may have l <M s and sees (l, s).

Our formalization is similar to the Sparc RMO memory model axioms [16]. In fact,
our generic model is equivalent to the latter if we remove the RMO-specific axiom (m1)
that defines how value and control dependencies influence the memory order.

If a memory ordering fence instruction appears in between two memory accesses
in the code, they must execute in order. Fences affect only instructions in the same
thread, and there exist specific variations (such as load-load, load-store, store-load or
store-store fences) that target a subset of instructions only. Formally, let F to be the set
of memory fences appearing in all instruction streams, and for each fence f ∈ F , let
Xf ⊂ X be the set of accesses affected by f . For example, if f is a store-load fence,
then Xf = {s ∈ S | s <p f} ∪ {l ∈ L | f <p l}.

Now we are ready to define Relaxed formally. We do so by directly specifying

ΘT,I,Relaxed(M,C) ≡
∀x ∈ X : ∀s ∈ S : (π(x) ∧ π(s) ∧ ax = as ∧ x <p s)⇒ x <M s

∧ ∀l ∈ L : ∀s ∈ S : sees (l, s) ⇒ vl = vs ∨ (∃s′ ∈ S : sees (l, s′) ∧ s <M s′)
∧ ∀f ∈ F : ∀x, y ∈ Xf : (π(f) ∧ π(x) ∧ π(y) ∧ (x <p f <p y)) ⇒ x <M y

where sees (l, s) ≡ π(l) ∧ π(s) ∧ (as = al) ∧ (s <M l ∨ s <p l)

(6)

The second line of (6) specifies the conditions under which the memory order may
not contradict the program order. When compared with the formula (3) for sequential
consistency, we see that this line has been weakened to reflect the ordering relaxations
we described earlier. The third line specifies that a load gets the last value “seen”, that
is, the last value stored to the same address. It is the same as for sequential consistency
(3), but the definition of sees (l, s) on the last line has been modified to allow forward-
ing. The fourth line of (6) defines the effect of memory fences on the valid memory
orderings.

The memory model Relaxed is simpler than most memory models used for ac-
tual hardware because (a) it consistently relaxes the order, for example, even data- or
control-dependent instructions may be reordered, and no special measures are taken to
prevent circular value flow, (b) it uses a single, generic memory ordering fence con-
struct, (c) it does not contain specific synchronization primitives, but allows them to be
expressed as atomic blocks (we omitted atomic blocks from the formalization above,
but they can introduced easily by adding suitable constraints on <M ), and (d) it omits
unneeded details such as the behavior of instruction caches and I/O, special flushing
operations, or unaligned and non-atomic memory accesses.

This (relative) simplicity makes Relaxed a good model for studying the algorithms:
even though it may exhibit executions that are not possible on a specific target archi-
tecture, we are made aware of all issues by verifying our code on Relaxed. Once we
understand which instructions need to stay in order, it is comparatively easy to pick the
right fences for a specific target architecture.
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Specialized algorithms to insert memory fences automatically during compilation
have been proposed [27, 28]. However, these methods are based on a conservative pro-
gram analysis, and they enforce sequential consistency on the instruction level rather
than the operation level. These characteristics make them unattractive for optimized
implementations, because redundant fences imply suboptimal performance [29].

4 Results

We implemented a prototype that encodes SAT instances as described in the previ-
ous chapter, solves them using zChaff [30], and converts satisfying assignments into
human-readable execution traces. We first tested our prototype on some smaller exam-
ples (including the spinlock [16]). Then we hand-translated the pseudo-code (Fig. 1)
into the intermediate language accepted by our back-end prototype. Next, we created a
suite of symbolic tests (Fig. 4) and made an initial guess at the commit points (lines 15
and 31 in Fig. 1).

Running our prototype, we found five problems (numbered 1–5 below). First, we ran
T0 on a sequentially consistent memory model, finding problem 1. Then, we ran T0 on
our relaxed memory model, finding problems 2–4. Next, we ran on T1 on the relaxed
model and found problem 5. After that, no more problems were found. The tests T0 and
T1 alone (neither of which took more than a few seconds) therefore uncovered all the
bugs found.

1. Incorrect commit point specification. We had guessed line 31 to be the commit
point. The tool produced a counterexample revealing a race between the store on
line 15 and the load on line 32. The outcome of this race determines the logical
order of the operations, so we changed the commit point for the dequeue to be line
32 instead of line 31.

2. Incorrect modelling of dynamic memory. Our initial model for dynamic memory
allocation was incorrect for relaxed memory models: the trace showed a load from a
storage location inside a dynamically allocated block that took effect only after the
block was freed, re-allocated by another thread, and then overwritten. This situation
caused the load to get the wrong value. We fixed this problem by inserting fences
into the alloc() and free() calls.

Program name T0 T1 T5-3 T5-4 T5-5 T5-6 Tpc4 Tpc6
Thread 1 sequence e e e e e e e e e e e e e e e e e e e e e e
Thread 2 sequence d e d e e e d d d d d d d d d d
Thread 3 sequence d d d e e
Thread 4 sequence d d d e
Thread 5 sequence d d
Thread 6 sequence d

Fig. 4. A selection of the symbolic tests we used. The letters e and d represent calls to the enqueue
and dequeue operation (with symbolic arguments). All calls operate on the same queue object.
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Program Characteristics SAT encoding Requirements
threads operations instructions loads stores variables clauses memory [kB] time [s]

T0 2 2 65 12 18 551 4,081 332 0.004
T1 4 4 119 23 30 1,514 44,479 4,165 0.87
T5-3 3 6 163 31 44 3,380 160,516 16,246 9.33
T5-4 4 6 163 31 44 3,400 167,456 16,308 21.1
T5-5 5 6 163 31 44 3,413 173,324 16,357 35.4
T5-6 6 6 163 31 44 3,419 179,109 16,401 42.8
Tpc2 2 4 119 23 30 1,504 42,829 4,151 0.139
Tpc3 2 6 173 34 42 3,717 170,116 16,320 5.23
Tpc4 2 8 227 45 54 5,797 430,445 33,372 45.7
Tpc5 2 10 281 56 66 8,315 877,624 100,462 300.0
Tpc6 2 12 335 67 78 11,271 1,549,090 131,087 886.3
Tpc7 2 14 389 78 90 12,394 2,438,721 n/a > 1000

Fig. 5. Some experimental data. All resource requirements are reported by the zChaff solver (ver-
sion 2004/11/15) and refer to unsatisfiable instances using a relaxed memory model. The tests
were run on a 3 GHz Pentium 4 desktop Linux PC.

3. Missing store-store fence. On a relaxed model, the store instruction that updates
the queued value (line 12) may be ordered after the load that is supposed to read it
(line 38). To force the store to take effect by the time the node is linked into the list,
we insert a store-store fence before the store on line 15.

4. Missing load-load fence. Symmetrically, we need to make sure that the load of the
queued value (line 38) does not take effect before the load of its address on line 32.
This may seem automatic — but some weak memory models (such as Alpha [21])
do not enforce in-order execution of loads, even if there is a value dependency [31].
Therefore, we insert a load-load memory fence after the load on line 32.

5. Incorrect modelling of locks. During the translation, we had misplaced one of
the fences within the code for unlock(). It appeared after instead of before
the committing store, where it is useless. Without proper fences in lock() and
unlock(), memory accesses can “escape” from the critical section.

Analysis. The results indicate that our method is efficient at finding errors in highly con-
current programs, but does not scale to long program executions. As expected, zChaff
was much quicker at solving satisfiable instances than at refuting unsatisfiable ones, but
the choice of the memory model seemed to have a negligible effect on the runtime. We
show some statistics about the programs and the resources required (for unsatisfiable
instances and the relaxed memory model) in Fig. 5. The results show that making the
programs longer (Tpc series, see Fig. 4 for definition) is more challenging for the solver
than making them more concurrent (T5 series). This result is not surprising because we
chose an encoding that specializes on highly concurrent executions.

5 Conclusions

Verifying the sequential consistency of a concurrent data type implementation on a
relaxed memory model presents a challenge because of the high degree of concurrency
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at the instruction level and the infinite state space. In this case study, we developed
a new SAT-based method that can solve a bounded formulation of this problem (using
finite symbolic tests and commit point annotations) and demonstrated its practical value
by applying it successfully to Michael and Scott’s two-lock queue implementation.

Future work includes exploring more example data structure implementations, elim-
inating the need for commit point specifications, automating the creation of a symbolic
test suite, improving the scalability with more efficient or incremental SAT encodings,
and developing a front end for the tool that would accept a subset of C as the specifica-
tion of the implementation.
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Abstract. The problem of verifying multi-threaded execution against the mem-
ory consistency model of a processor is known to be an NP hard problem.
However polynomial time algorithms exist that detect almost all failures in such
execution. These are often used in practice for microprocessor verification. We
present a low complexity and fully parallelized algorithm to check program exe-
cution against the processor consistency model. In addition our algorithm is gen-
eral enough to support a number of consistency models without any degradation
in performance. An implementation of this algorithm is currently used in practice
to verify processors in the post silicon stage for multiple architectures.

1 Introduction

Verifying processor execution against its stated memory consistency model is an im-
portant problem in both design and silicon system verification. Verification teams for a
microprocessor are often concerned with the memory consistency model visible to ex-
ternal customers such as system programmers. In the context of multi-threading, both
in terms of Simultaneous Multi Threading(SMT) and Chip Multi Processing(CMP),
Intel R©1 and other CPU manufacturers are increasingly building complex processors
and SMP platforms with a large number of execution threads. In this environment the
memory consistency model of microprocessors will come under close scrutiny, par-
ticularly by developers of multi-threaded applications and operating systems. Allow-
ing any errors in implementing the consistency model to show up as customer visi-
ble is thus unacceptable. The problem we are concerned with is that of matching the
result of executing a random set of load store memory operations distributed across
processors, on a set of shared locations, against a memory consistency model. The al-
gorithm should flag an error if the consistency model does not allow the observed exe-
cution results. This forms the basis for Random Instruction Test(RIT) generators such as
TSOTOOL2 [1] and Intel’s Multi Processor(MP) RIT environment. The Intel MP RIT
Tool incorporates the algorithm in this paper. Formally, we concentrate on variations of
the VSC (Verifying Sequential Consistency) problem [2]. The VSC problem is exactly
the problem described above, when restricted to sequential consistency. The general

1 Intel R©is a trademark or registered trademark of Intel Corporation or its subsidiaries in the
United States and other countries.

2 Other names and brands may be claimed as the property of others.
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VSC problem is NP complete [3]. The general coherence problem has also been shown
to be NP complete [4]. A formulation of VSC for more general memory consistency
models was done in [1] where a polynomial time algorithm was presented for verifying
a memory consistency model at the cost of correctness, although the incorrect execu-
tions missed were shown to be insignificant for the purpose of CPU verification. That
work focused almost exclusively on the Total Store Order(TSO) memory consistency
model and presented a worst case O(n5) algorithm. In this work, we present an effi-
cient implementation of the basic algorithm in [1]. Our key contribution is to reduce the
worst case complexity to O(n4) for any memory consistency model usingΘ(n2) space.
Although the work in [5] has reduced the complexity to O(kn3) where k is the number
of processors, that algorithm assumes the TSO memory consistency model and does
not generalize to other models. Our motivation for generalizing and improving it is In-
tel’s complex verification environment, where microprocessors support as many as five
different consistency models at the same time. The primary objectives of our algorithm
design are simplicity, performance and seamless extendibility in the implementation to
any processor environment, including the Itanium R©3. Another goal is enhanced support
for debugging reported failures, which is crucial to reducing time to market for complex
multi processors.

The algorithm we have developed is currently implemented in Intel’s in house ran-
dom test generator and is used by both the IA-32 and Itanium verification teams. We
also present scalability results and a processor bug that was caught by the tool using
this algorithm.

2 Memory Consistency

Consider a set of processors each of which executes a stream of loads and stores. These
are done to a set of locations shared across the processors. We are concerned with a
global ordering of all the loads and stores, which when executed serially leads to the
same result. The strictest consistency model is the sequential consistency (SC) model
which insists that the only valid orderings are those that do not relax per processor
program order between the memory operations. Relaxing restrictions between oper-
ations such as stores and loads leads to progressively weaker models such as Total
Store Order (TSO) and Release Consistency (RC). All these are surveyed in [6]. We
point out that in these orderings we refer to load executions and store executions. A
load is considered performed(or executed) if no subsequent store to that location(on
any processor) can change the load return value. A store is considered performed(or
executed) if any subsequent load to that location (on any processor) returns its value.
These are definitions from [7]. Any instruction on a modern pipelined processor has
a number of phases and some, such as instruction fetch and retirement, occur in strict
program order without regard to the memory consistency model. We are concerned
only with ordering the load and store execution phases for instructions referring to
memory.

3 Itanium R©is a trademark or registered trademark of Intel Corporation or its subsidiaries in the
United States and other countries.



Fast and Generalized Polynomial Time Memory Consistency Verification 505

2.1 Formalism

The terminology used in this paper is similar to [1]. We use ; to denote program order
and≤ to denote global order. Thus A;B and A ≤ B mean that B follows A in program
order and global order respectively. The fundamental operations in our test consist of
Li

a and Si
a which are loads and stores respectively to location a by processor i. We

also consider [Li
a;Si

a] which is an atomic load store operation. Examples are XCHG in
IA-32 [8] and FETCHADD in Itanium [9]. We use val(Li

a) to denote the load return
value of a load operation and val(Si

a) to denote the value stored by a store operation.
For any location a we define the type of a location to be

Type(a) ∈ {WB,WT,WP,UC,WC}. The type of a location is the memory type
of the location. IA-32 [8] supports all five memory types, Write Back (WB), Write
Through (WT), Write Protect (WP), Write Combining(WC) and Uncacheable. Itanium
[9] supports only three, WB, WC and UC. In addition to cacheability and write through
implications of these memory types, they also affect the consistency model.

2.2 Axioms and Orders

Both ≤ and ; are transitive, reflexive and antisymmetric orders. The program order is
limited to operations on the same processor while the global order covers all operations
across all processors. We also define A < B to mean A ≤ B and A �= B.

We define the following axiom to support atomic operations.

Axiom 1 (Atomic Operations). [Li
a;Si

a] ⇒ (Li
a ≤ Si

a)
∧

(∀Sj
b : (Sj

b ≤ Li
a)
∨

(Si
a ≤

Sj
b ))

As a result of this, we can treat atomic operations as a single operation for verification.
We assume the following two axioms to hold, the bare minimum to be able to use the
basic algorithm proposed in [1].

Axiom 2 (Value Coherence). val[Li
a] ∈ {val[

Max
≤ Sk

a |Sk
a <L

i
a], val[

Max
; Si

a|Si
a;Li

a]}

The value returned by a read is from either the most recent store in program order
or the most recent store in global order. This is intuitive for a cache coherent system.
Note that the most recent store in program order may not be a preceding store in global
order. This is because many architectures including Intel ones can support the notion of
store forwarding, which allows a store to be forwarded to local loads before it is made
globally visible. Also, in the test a load may occur before any store to that location
in which case it returns the initial value of that location. Such cases are handled by
assuming a preliminary set of stores that write initial values to locations. The store
values to a location and initial value of the location are chosen to be unique by the test
generator. This allows the axiom to be applied after the test is completed to link a load
to the store that it reads.

Axiom 3 (Total Store Order). ∀Si
a, S

j
b ((S

i
a ≤ Sj

b )
∨

(Sj
b ≤ Si

a)).
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Unlike [1], we have avoided imposing any additional constraints between operations
on the same processor. Rather, we allow these constraints to be dynamically specified.
This allows us to parameterize the same algorithm to work across CPU architectures
(Itanium and IA-32) and processor generations (Intel NetBurst R©4 and P6 in the case of
IA-32).

Define Ops = {L, S,X} to be the allowed types of an operation. Thus we can define
Type(Li

a) = L, Type(Si
a) = S and Type([Li

a;Si
a]) = X . We also define Loc(Op) to

return the memory location used by the operation. For example Loc(Li
a) = a.

We can then define the constraint function
f : (OpsX{WB,WP,WT,WC,UC})2 → {0, 1}. This is used to impose the dy-
namic set of constraints:

Definition 1 (Local Ordering). [O1;O2and
f((Type(O1),Type(Loc(O1)), (Type(O2),Type(Loc(O2)))) = 1]⇒ O1 ≤ O2
If the LHS of the implication is satisfied we call O1 and O2 as locally ordered memory
operations.

As an example, from [8] we know that Write back stores do not bypass each other.
Hence f((S, WB),(S,WB))=1. However, write combining stores are allowed to bypass
each other and hence f((S, WC), (S,WC))=0. There are other more subtle orderings
which vary between processor generations and in this case we obtain appropriate order-
ing functions from the CPU architects or designers.

3 Algorithm

Our objective is an algorithm that takes in the result of an execution and flags viola-
tion of the memory consistency model. The basic algorithm in [1] that we extend uses
constraint graphs to model the execution. There have been similar approaches in the
past too, such as [10] and an approach to the same problem using Boolean satisfiabil-
ity solvers [11], which models write atomicity accurately, but can handle only much
shorter executions than our method can handle. We model the execution as a directed
graph G=(V, E) where the nodes represent memory operations and the edges represent
the ≤ global order. However, as in [1], we do not put self edges although the relation is
reflexive. Thus if O1 ≤ O2 then we add an edge from the node for O1 to that for O2.
For brevity, we refer to operations and their corresponding nodes by the same name.
A→ B means there is an edge from A to B while A→P B means there is a path from
A to B.

Based on the per processor ordering imposed by our ordering function f , we can
immediately add static edges to the graph.

Rule 1 (Static Edges). For every pair of nodes O1 and O2 such that they are locally
ordered by definition 1, add the edge O1 → O2.

4 Intel NetBurst R©is a trademark or registered trademark of Intel Corporation or its subsidiaries
in the United States and other countries.
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After execution of the test, we determine a function Reads in a preprocessing step
(operating on loads) such that Reads(Li

a) = Sj
a if Li

a reads Sj
a. Otherwise (the case

where the initial value for the location is read), Reads(Li
a) = Sentinel, a special

sentinel node. We add edges from Sentinel to all other store nodes in the graph. This
is the same construction as described in [1]. From the value axiom we know that any
read that returns the value of a remote write must have occurred after the remote write
has been globally observed. This allows us to add observed edges to the graph based
on the values returned by the loads in the test. Note that for the rules below we treat an
atomic operation as both a load and a store.

Rule 2 (Observed Edge). For every load Li
a, if Reads(Li

a) = Sj
a where i �= j, or if

Reads(Li
a) = Sentinel, add the edge Reads(Li

a) → Li
a. Note that since stores to

the same location write unique values and all locations are initialized to hold unique
values, value equivalence means that the load must have read that store.

The next few set of edges are essentially inferred from the value axiom. Hence they are
called inferred edges.

Rule 3 (Inferred Edge 1). If Reads(Li
a) = Sj

a and i �= j then for every Si
a such that

Si
a;Li

a add the edge Si
a → Sj

a. This follows from the value axiom since the alternative
global order would mean the load should read the local store.

Rule 4 (Inferred Edge 2). If Reads(Li
a) = Sj

a then for every Sk
a such that Sk

a →P Li
a

and Sk
a �= Sj

a, add the edge Sk
a → Sj

a. This follows from the value axiom since the
alternative global order would mean that the load should read Sk

a .

Rule 5 (Inferred Edge 3). If Reads(Li
a) = Sj

a then for every Sk
a such that Sj

a →P Sk
a

add the edge Li
a → Sk

a . This follows from the value axiom since the alternative global
order would mean that the load should read Sk

a .

3.1 Basic Algorithm

The basic algorithm described in [1] can now be summarized as follows:

1. Compute the Reads function in a preprocessing step.

2. Apply rule 1 to add all possible edges.

3. Apply rule 2 to add all possible edges.

4. Apply rules 3, 4 and 5.

5. If any edges were added in step 4 go back to step 4 else go to step 6

6. Check the graph for cycles. If any are found, flag an error.

An example of this algorithm applied to an execution is shown in Figure 1. We use the
notation S[X ]#V for write V to location X , and L[X ] = V for read from location X
returns value V .
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P1

P2

Static

Observed

S[A]#10

S[B]#30

L[A]=20

S[A]#20

L[A]=10

Observed

Inferred(Rule3)

Inferred(Rule 3)

Initially A=1 and B=2

Fig. 1. Example of an incorrect execu-
tion with graph edges added

Computing theReads function isO(n2) since
we need to examine all pairs of loads and stores.
Steps 2 and 3 are of costO(n2) since we examine
all pairs of nodes. Step 4 involves determining
the relationship A →P B for O(n) nodes. This
costs O(n2) for each node (assuming a depth
first search, as one of the obvious options) and
hence O(n3) overall. Since the fixed point iter-
ation imposed by steps 4 and 5 may loop for
at most O(n2) adding one edge on each itera-
tion, we have a worst case complexity of O(n5).
The detailed analysis is in [1]. There has been a
subsequent improvement published in [5] that re-
duces the complexity to O(kn3). Its correctness
requires that there are a constant number of or-

dered lists on each processor. This is true because all loads and all stores are ordered
on a processor in the TSO consistency model that they have considered. Unfortunately
this does not hold true for both the IA-32 [8] and Itanium [12] memory models for var-
ious memory types (consider WC stores). Hence the formulation in [5] is not general
enough.

3.2 Graph Closure

The primary contributor to the O(n5) complexity is deciding whether A→P B holds.
All other operations can be efficiently implemented and do not seem to hold any oppor-
tunity for improvement, given our goal of generality. Hence, we decided to focus on the
problem of efficiently determiningA→P B. A solution is to compute the transitive clo-
sure of the graph. We first label all the nodes in the directed graph under consideration,
G = (V,E) by natural numbers using the bijective mapping function g : V → {1..n}
where | V |= n. We can then represent E by the familiar n square adjacency matrix A
such that (U, V ) ∈ E ⇔ A[g(U), g(V )] = 1.

For transitive closure of the graph we seek the closed form of the adjacency matrix
A such that U →P V ⇔ A[g(U), g(V )] = 1. A well known algorithm for com-
puting the transitive closure of a binary adjacency matrix is Warshall’s algorithm[13].
Before giving Warshall’s algorithm, we first define some convenient notation and func-
tions to transform the connectivity matrix. AddEdge(x, y) stands for : set A[x, y] = 1.
Subsume(x, y) is defined as ∀z such thatA[y, z] = 1, AddEdge(x, z). The subsume
function causes all neighbors of node g−1(y) to also become neighbors of node g−1(x)
in the adjacency matrix representation.

Incremental Graph Closure: Although Warshall’s algorithm will compute the closed
form of the adjacency matrix, any edge added by AddEdge will cause the matrix to
lose this property since new paths may be available through the added edge. Hence we
need an algorithm which when given a closed adjacency matrix and some edges added
efficiently recomputes the closure.
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Warshall’s Algorithm:
for all j ∈ {1..N}

for all i ∈ {1..N}
if(A[i, j] = 1)
Subsume(i, j)

end if
end for

end for

Incremental Warshall’s Algorithm:
for all j ∈ {1..N}

for all i ∈ {1..N}
if(A[i, j] = 1 and
(Changed[j] = 1 or Changed[i] = 1))
Subsume(i, j)

end if
end for

end for

We assume that when adding edges to any node U , we mark that node as changed by
setting the corresponding bit in the change vector Changed[g(U)] = 1. We can now
rerun Warshall’s algorithm restricted to only those nodes which have either changed
themselves, or are connected in the current adjacency matrix to a changed node. This is
shown in pseudo-code as incremental Warshall’s algorithm. A correctness proof can be
found in [14].

Complexity: An important observation is that the complexity of the incremental update
is O(mn2) where the number of changed nodes is O(m). This is because the subsume
step takesO(n) and for each node,Subsume can only be called at worstO(m) times, if
it is connected to all the changed nodes. At worst allO(n) nodes satisfy the precondition
for subsume and hence the O(mn2) complexity.

3.3 Final Algorithm

We describe algorithms to implement the rules for adding observed and inferred edges
in Table 1. Recall that our graph is G=(V, E) and the vertices correspond to memory
operations in the test.Also, for ease of specification we have allowed atomic read modify
write operations to be treated as both stores Type(Op) = S and loads Type(Op) = L.

The ordering of for loops is not arbitrary as it may appear but rather has been care-
fully chosen to aid in parallelization as we demonstrate in section 4.

We now state the final algorithm used to verify the execution results.A benefit of our
approach is that checking the graph for cycles is simply checking whether ∃i A[i, i] = 1
since a cycle results in a self loop due to the closure. Additionally, note that we have
merged the preprocessing step that links loads to the stores they read, into the step to
compute observed edges.

1. Apply rule 1 to add all possible edges.
2. Apply rule 2 to add all possible edges.
3. Apply Warshall’s algorithm to obtain the closed adjacency matrix.
4. Apply rules 3, 4 and 5.
5. If any edges were added in step 4 go to step 6 else go to step 8.
6. Apply the incremental Warshall’s algorithm to recompute closure and reset the

changed vector.
7. Go to step 4.
8. Check the graph for cycles. If any are found, flag an error.
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Table 1. Pseudcode of Algorithm for Adding Edges

Algorithm for adding edges:
Static Edges:
for all O1 ∈ V

for all O2 ∈ V such that O1 �= O2

If O1 is locally ordered after O2 as per definition 1then
AddEdge(g(O2), g(O1))

end for
end for
Observed Edges:
for all O1 ∈ V such that type(O1) = L

for all O2 ∈ V such that type(O2) = S
If val(O1) = val(O2)

set Reads(O1) = O2

If O2 is on a different CPU from O1 then AddEdge(g(O2), g(O1))
end If

end for
If no corresponding store is found for this load then
AddEdge(g(Sentinel), g(O1)) and set Reads(O1) = Sentinel

end for
Inferred Edge 1:
for all O1 ∈ V such that type(O1) = L

for all O2 ∈ V such that type(O2) = S and O2; O1 and O2 �= Reads(O1)
If O2 is on a different CPU from O1 then
AddEdge(g(O2), g(Reads(O1))) and set Changed[g(O2)] = 1

end for
end for
Inferred Edge 2:
for all O1 ∈ V such that type(O1) = L

for all O2 ∈ V such that type(O2) = S and A[g(O2), g(O1)] = 1
and O2 �= Reads(O1)
AddEdge(g(O2), g(Reads(O1))) and set Changed[g(O2)] = 1

end for
end for
Inferred Edge 3:
for all O1 ∈ V such that type(O1) = S

for all O2 ∈ V such that type(O2) = L and A[g(Reads(O2)), g(O1)] = 1
AddEdge(g(O2), g(O1)) and set Changed[g(O2)] = 1

end for
end for

3.4 Complexity

The analysis of complexity is straightforward. Each of steps 1 and 2 take O(n2) since
they examine all pairs of nodes. Step 3 takes O(n3) as is shown in [13]. Each iteration
of Step 4 again takes O(n2) because we examine all pairs of nodes. Note that check-
ing A →P B is now O(1) thanks to the closed adjacency matrix. There are at most
O(n2) edges to be added and hence the worst case complexity for Step 4 is O(n4). The
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remaining analysis is step 6. For this we note that the complexity is also O(mn2) when
considered over all invocations. Since m = O(n2) (bounded above by the number of
edges we can possibly add and thereby change nodes), we have O(n4) as the worst case
complexity for step 6. Cycle checking in step 8 is simply O(n) due to the closed form
of the adjacency matrix. Thus the overall complexity is O(n4) which meets our stated
goal. Our overall space requirements are clearly Θ(n2) due to the adjacency matrix.

4 Parallelization

P1

P2

Observed

Observed
Static

Static

Static

Inferred (Rule 5)

Inferred (Rule 5)

S[B]#40

L[B]=20

S[A]#30

S[A]#10

Static

L[A]=10

Atomic

L[B]=20

S[B]#20

Atomic

L[A]=10

Initially A=1 and B=2

Fig. 2. Example of an actual processor
bug

One of the ways to mitigate the expense of an
O(n4) algorithm is parallelization. With a test
size of hundreds of memory operation per CPU,
result validation time can easily overwhelm the
verification process. For example consider a 4
way SMP platform with hyperthreaded proces-
sors with a total of 8 threads and hence 800 oper-
ations. The way we have arranged the algorithm
and data structures allows us to easily do loop
parallelization [15].

The phases of the algorithm are Warshall’s al-
gorithm, incremental graph closure and the rule
algorithms given in section 3.3. The key observa-
tion is that in each case we always have no more
than two nested for loops and there are no data dependences between iterations of the
inner loop. The latter is true because no two iterations change the same node in the
graph and hence never write to the same element in the adjacency matrix. We are not
worried about considering edges added in previous iterations of the inner for loop of
step 4 (of the algorithm in 3.3) because such edges are considered in subsequent itera-
tions, since we iterate to a fix point. Also the same element in theChanged vector is not
accessed by two different inner loop iterations. Hence we can parallelize by distributing
different iterations of the inner for loop in each step across processors. Since each inner
for loop iterates over all nodes in the graph, this leads to a convenient data partitioning.
We allocate each CPU running the verification algorithm a disjoint subset of nodes in
the graph. Each CPU executes the inner for loop in each phase only on nodes that it
owns. Note that each CPU still needs to synchronize with all other CPUs after comple-
tion of the inner for loop in each case (this is similar to the INDEPENDENT FORALL
construct in High Performance Fortran).

5 Implementation

Intel’s verification environment spans both architecture validation (Pre Silicon on RTL
models) as well as extensive testing post silicon with the processor in an actual plat-
form [16]. The algorithm described in this paper has been implemented in an Intel RIT
generator, used by verification teams across multiple Intel architectures (Itanium, IA-32
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Algorithm PrintSomeCycle:
PossibleStart={g−1(i) | A[i, i] = 1}
while PossibleStart is not empty

StartNode=any node in PossibleStart
PossibleStart=PossibleStart -{StartNode}
CurrentList={g−1(i) | A[i, i] = 1} - StartNode
GetCycleEdge(startNode,startNode)

end while
Function GetCycleEdge:
GetCycleEdge(node Start, node Current)
If Algorithm(Current, Start) returns true

print edge (Current, Start)
PossibleStart=PossibleStart -{Current}
return true

end If
for each node nextNode in CurrentList

If Algorithm(Current, nextNode) returns true
CurrentList = CurrentList - {nextNode}
If GetCycleEdge(Start, nextNode) returns true

print edge (Current, nextNode)
PossibleStart=PossibleStart -{Current}
return true

end If
end If

end for
return false

Fig. 3. Debug Algorithm

and 64-bit IA-32). Although in the
architecture validation (pre silicon
on RTL simulators) environment
direct visibility into load and store
execution allows simpler tools to
be built, it has been used in a
limited fashion to generate tests
that are subsequently run on RTL
simulators. The results are then
checked by the algorithm to find
bugs. The greatest success of the
tool has been in the Post Sili-
con Environment, where the exe-
cution speed available (compared
to RTL simulations) allows the
tool to quickly run a large number
of random tests and discover mem-
ory ordering issues on processors.
In figure 2 we show an example
of an incorrect execution corre-
sponding to an actual bug found by
this tool. The problem was subse-
quently traced to incorrect design
in the CPU of the locking primi-
tive for certain corner cases.

In the Post Silicon environ-
ment the tool has been written to
run directly on the Device Under
Test(DUT). This was made possi-

ble by running it as a process on a deviceless Linux kernel which is booted on the target.
The primary advantage of this model is speed and adaptability where the RIT tool di-
rectly detects its underlying hardware, generates and executes the appropriate tests and
then verifies the result with no communication overhead.Another not so apparent but
important advantage is scaling. As we anticipate future processors to increase the num-
ber of available threads, the tool scales seamlessly by not only running tests on the
increased number of threads but also using all available threads to run the checking
algorithm itself. This is also the reason why we have paid so much attention to paral-
lelization in this work. That is to allow the algorithm to bootstrap on future generations
of multi threaded processors. We point out here that the test generation phase is also
parallelized in the tool to make optimal use of resources and achieve the best speedup.

Implementation Environment: The algorithm is implemented in C and architecture
dependent assembly that runs on a scaled down version of the Linux kernel. We have
chosen to use the Linux process model (avoiding other threading models for simplicity)
with shared memory segments for inter process communication. We have hand paral-
lelized the loops using the data distribution concepts described in section 4. This allows
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us to use off the shelf compilers such as those in standard Linux distributions and work
across all the platforms that Linux supports.

Exploiting SIMD: The key kernel used in the iterative phase of our algorithm is
Subsume. This is called at least once for every edge added to the graph and improv-
ing its performance is clearly beneficial. The implementation for Subsume(x, y) is
∀z ∈ {1..n}A[x, z] = A[x, z] ∨ A[y, z]. Another way of looking at it is as the logical
’OR’ of two binary vectors A[x, .] = A[x, .] ∨ A[y, .]. This could have taken as many
as n operations in the most obvious implementation, but we instead chose to use Single
Instruction Multiple Data (SIMD) extensions available in both the IA-32 [8] and Ita-
nium [9] instruction sets. These enable us to perform the subsume operation upto 128
bits at a time providing a 128 times speedup to the implementation of Subsume. This
is also the only place in our tool where we have IA-32 and Itanium specific verification
code. The option to use SIMD to speedup the algorithm is really a consequence of the
carefully selected data structures and the time consuming graph manipulations being
reduced to a single well defined kernel.

Extendibility: We support multiple architectures in our implementation by having as
much architecture independent code as possible. This means we need to only recom-
pile the tool to target different architectures. In addition we have made the tool in-
dependent of the memory consistency model it is verifying by taking as input to the
tool a description of the local ordering rules, as described in definition 1 in a standard
format rulefile. This allows us to verify different consistency models (Itanium and dif-
ferent generations of IA-32) and adapt to changes in the consistency models that may
happen in the future.

Debug Support: A critical requirement in CPU verification is that failures should be
root caused to bugs as soon as possible. Ease of debugging failures is very important in
all of Intel’s verification methodologies. A failure in our case is a cycle in the graph. The
problem with our algorithm formulation is that the final cycle is detected only in terms
of which nodes are participating in the cycle. There is no way to determine from the
closed form adjacency matrix what is the ordering of nodes in the cycle. Also the nature
of the basic algorithm often leads to more than one cycle in long tests. To work around
this problem without sacrificing algorithm efficiency we use a backtracking algorithm
described in Figure 3 that prints all the detected cycles. The only change we need to
make to the algorithm described in section 3.3 is that it takes as parameter an edge e.
Whenever the AddEdge function adds the edge e during execution of the algorithm we
return true indicating that this edge is actually added by one of the rules in the algorithm.
We also return the reason for addition of this edge which allows all edges to be labelled
with the corresponding rule, a good aid to debug. Note that the backtrack though costly
is only run in case of failure which should be rare.

6 Performance and Scaling

We include some performance data to support our claims of efficient algorithm design.
In figure 4(a) we show how the cost of running the algorithm grows with increasing
number of nodes. Clearly the algorithm scales well. In figure 4(b) we show how the
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speedup increases when we use more processors to run the algorithm while keeping
the problem size (number of graph nodes) same. The near to linear speedup (ideal)
indicates that the parallelization decisions have been correctly made and load balance
the problem well among different processors. All the presented scalability data was
taken on an 8 way 1.2 Ghz Intel R©Xeon R©5 processor platform running Linux.
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7 Limitations

Although our algorithm is general enough to cover the memory consistency models we
need to check for at Intel, it has certain limitations and assumptions stated here. We
assume that all stores in the test to the same location write unique values. Thus we
are never in a position where we need to reconcile a load with multiple stores for rule
2. This does not affect our coverage of the logic that is responsible for maintaining
memory ordering, since that logic has no dependency on the actual data values

S[B]#3

S[A]#5

S[B]#4 L[B]=3

S[A]#6

L[B]=4

Fig. 5. A missed edge

The algorithm assumes store atomicity, which
is necessary for Axiom 3. However it supports
slightly relaxed consistency models which allow
a load to observe a local store which precedes it
in program order, before it is globally observed.
Thus we cover all coherence protocols that sup-
port the notion of relaxed write atomicity which
can be defined as : No store is visible to any other
processor before the execution point of the store.
Based on our discussion with Intel microarchi-
tects we determined that all IA-32 and current
generations of Itanium microprocessors support

this due to identifiable and atomic global observation points for any store. This is mostly
due to the shared bus and single chipset. For Itanium we can still adapt to the case where
stores are not atomically observed by other processors by checking only store releases

5 Intel R©Xeon R©is a trademark or registered trademark of Intel Corporation or its subsidiaries in
the United States and other countries.
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[12]. Another approach is to split stores into one for each observing processor and ap-
propriately modify rule 2. This would lead to a worse case degradation of checking
performance by a factor equal to the number of processors.

Last, the algorithm does approximate checking only (since it is a polynomial time
solution to an NP-Hard problem). It does not completely check for Axiom 3, since it
does not attempt to order all stores and thereby find additional inferred edges which
could lead to a cycle. An example taken from [1] is shown in 5. The algorithm is unable
to deduce the ordering from S[A]#6 to S[A]#5 although that is the only possibility
given that the loads to location B read different values. Adding a similar mirrored set
of nodes, 2 stores to location C before S[A]#6 and two loads from location C after
S[A]#5 give an example violation of the TSO model which is missed by this algorithm.
However, we hypothesize that only a small fraction of bugs actually lead to such cases
and these are ultimately found by sufficient random testing which will show them up
in a form the algorithm can detect, another reason why we place so much emphasis on
test tool performance.

8 Conclusion

We have described an algorithm that does efficient polynomial time memory consis-
tency verification. Our algorithm meets its stated goals of efficiency and generality. It is
implemented in a tool that is used across multiple groups in Intel to verify increasingly
complex microprocessors. It has been appreciated across the corporation for finding a
number of bugs that are otherwise hard to find and point to extremely subtle flaws in
implementing the memory consistency model. We hope to work further in decreasing
the cost of the algorithm by by studying the nature of the graphs generated and consid-
ering more fine grained parallelization opportunities.

Acknowledgments. We would like to thank our colleagues Jeffrey Wilson and Sreeni-
vasa Guttal for their contribution to the tool, Mrinal Deo and Harish Kumar for their
assistance with memory consistency models and Hemanthkumar Sivaraj for giving
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Abstract. We address the verification problem of programs manipulating one-
selector linked data structures. We propose a new automated approach for check-
ing safety and termination for these programs. Our approach is based on using
counter automata as accurate abstract models: control states correspond to ab-
stract heap graphs where list segments without sharing are collapsed, and coun-
ters are used to keep track of the number of elements in these segments. This
allows to apply automatic analysis techniques and tools for counter automata in
order to verify list programs. We show the effectiveness of our approach, in par-
ticular by verifying automatically termination of some sorting programs.

1 Introduction

The design of automatic verification methods for programs manipulating dynamic
linked data structures is a challenging problem. Indeed, the analysis of the behaviour
of such programs requires reasoning about complex transformations of data structures
involving both creation and deletion of objects as well as modifications of the links be-
tween them (pointer manipulations). The heap of such programs may have in fact an
arbitrary size and shape (a graph structure). There are several approaches for tackling
this problem addressing different subclasses of programs and using different kinds of
formalisms for representing and reasoning about infinite sets of heap structures, e.g.,
[19,17,21,8].

We consider in this paper the class of programs manipulating linked data structures
with a single data-field selector. It corresponds to programs manipulating linked lists
with the possibility of sharing and circularities. We propose a new approach for the au-
tomatic verification of such programs which is mainly based on using counter automata
as accurate abstract (infinite-state) models. These models can be used for checking both
safety properties and termination of the considered programs using techniques such as
(abstract) symbolic reachability analysis (for safety and invariance checking) and auto-
matic generation of decreasing ranking functions (for termination checking).

Let us present in more details the proposed approach. We start from the observation
that if we do not consider garbage (parts of the heap not reachable from the pointer
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T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 517–531, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



518 A. Bouajjani et al.

variables of the program), the heap graph is always a finite collection of graphs of a
special form close to a tree: it is either a tree (where edges are directed towards the
root) or a set of trees having all their roots connected to a simple cycle. The number of
such graphs is infinite, but it can be proved that for each of them, the number of vertices
where sharing occurs is bounded by the number of pointer variables of the program.

Then, for data-insensitive programs (i.e., programs not accessing nor modifying the
data stored in lists as, e.g., a list reversal program), a natural abstraction consists in map-
ping each sequence of elements between two sharing points into an abstract sequence of
some (fixed) bounded size. However, for each given value of the bound, this abstraction
is obviously not precise in general. In order to define a precise abstraction, we need in
fact to reason about the size of each sequence between two sharing points. This leads to
the idea of using counters in order to keep this information in the abstract model (and
therefore to use counter automata as abstract models).

In fact, considering counter automata-based models has several advantages. Not only
does it allow to define accurate abstractions, it allows us also to handle quantitative
properties depending on the sizes of some parts of the heap. Thus, we can handle pro-
grams with integer variables whose value is somehow related to the contents of the lists
(e.g., to their length). Moreover, it provides a powerful way for checking termination
which typically requires reasoning about decreasing values (e.g., the size of the part of
the list to be treated).

A first contribution of the paper is to define an abstraction mapping from data-
insensitive programs to counter automata for which we prove that the (concrete) pro-
gram and its abstraction are bisimilar. This result is interesting since it means that our
abstraction preserves all properties of the class of data-insensitive programs. The con-
trol states of the built automaton correspond to abstract shapes (heap graphs where
sequences between shared points are reduced to single vertices), and each transition
corresponds to the execution of a program statement. It represents a modification in
the shape together with a modification on the counters (attached to vertices abstracting
sequences between sharing nodes).

The control structure of the built counter automata can be arbitrary in general. How-
ever, it turns out that these automata have an important property: we prove that if we
consider the evolution of the sum of all counters, the effect of executing any control loop
is to increment this sum by a constant which depends on the program. We use this fact
to establish a new decidability result for list programs: for every given (data-insensitive)
list program, if the control structure of the generated counter automaton has no nested
loops, the verification problems of safety properties and termination are both decidable.

Subsequently, we go further by considering the issue of data-sensitivity. We con-
sider the class of programs manipulating objects ranging over a potentially infinite data
domain supplied with an ordering relation, and we assume that the only allowed oper-
ation on these data values is the comparison w.r.t. this ordering relation. This class of
programs includes, for instance, sorting programs. We extend our previous abstraction
principle to the heap graphs of these programs by taking into account (in addition to the
size) some information about the order of the elements in the abstracted sequences
between sharing points, and we provide a construction which associates with each
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program a counter automaton-based abstract model. We show that this abstraction is
sound w.r.t. the choice of ordering predicates.

Finally, we show the application of our approach on three examples of programs (list
reversal, insertion sort, and bubble sort). We have derived systematically their counter
automata models, and then we used (1) our ARMC tool [9] (and some compile-time
techniques) for checking safety properties, and (2) the Terminator tool based on [12]
for termination.

Related Work. Programs manipulating singly-linked lists have gained a lot of attention
within the past two years, as shown by the fairly large number of recent publications on
the subject [4,6,18,3,8]. Interestingly, the idea of abstracting away all the list segments
with no incoming edges is common to many of these works, even though they are
independent and use different approaches and frameworks (e.g., static analysis [18],
predicate abstraction [3] symbolic reachability analysis [4] and proof search [6]). The
fact that the number of sharing points in abstract heap structures is bounded by the
number of variables in the program is also behind the techniques proposed in [18,8].

In [10], the authors use an abstract shape model with counters, but their concerns
are mostly related to the decidability of a specification logic. The approach that is the
closest to ours is [4]. However, it is rather pointed towards showing particular properties
such as absence of segmentation faults and memory leak errors, than checking general
safety properties, and the work does not address the problem of verifying termination.
Moreover, the work reported in [4] offers less automation of the verification than ours.
Recently, the same authors have started independently a work [15] on automatic con-
struction of models based on counter automata similar to our approach. The use of
ordering predicates in order to handle sorting programs is similar to the one considered
in [14,21] based on the shape analysis approach. Termination is tackled by works such
as [22,3]. In all of these works, ranking functions must be given manually, whereas our
approach is fully automated.

2 Programs with Lists

In this section we define a model for programs manipulating dynamic list data struc-
tures. We consider that lists are implemented using reference (pointer) data types with
one selector (next) field, as it is the case in most object-oriented imperative program-
ming languages (e.g., Java, C, C++). For the time being we consider programs without
recursion or concurrency constructs, therefore all variables are assumed to be global. In
addition to the list data structures, the programs can have integer variables. Examples
of such programs include: list reversals, list insertion procedures, sorting procedures,
programs counting the elements in a list, etc.

2.1 Syntactic Definitions

We consider imperative programs working with a set of pointer variables PVar and a
set of integer counter variables IVar. The pointer variables refer to list cells. Point-
ers can be used in assignments such as u := null, u:= w and u := w.next, se-
lector updates u.next := w and u.next := null, and new cell creation u:= new.
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Counters can be incremented i := i + 1, decremented i := i - 1 and reset i :=
0. The control structure is composed of iteration (while) statements and conditionals
(if-then-else). The guards of the control constructs are pointer equality u = w, data
comparisons u.data <= v.data, zero tests for counters i = 0 and boolean combina-
tions of the above. A program is said to be data insensitive if it does not use guards
of the form u.data <= v.data. A program is said to be flat if the body of any of its
while loops does not contain (while) statements nor conditionals (if-then-else).

1: while i �= null do
2: k := i.next;
3: i.next := j;
4: j := i;
5: i := k;
6: od

Fig. 1. List Reversing

An example is the list reversal program in Figure 1.
To simplify the definition of the operational semantics
below, we consider that all programs are precompiled
as follows. Each pointer assignment of the form u: =
new, u := w or u := w.next is immediately preceded
by an assignment of the form u := null. A pointer as-
signment of the form u := u.next is turned into v :=
u; u := null; u := v.next, possibly introducing a
fresh variable v. Each pointer assignment of the form
u.next := w is immediately preceded by u.next := null. In addition, the programs
are allowed to increment, decrement and reset the counter variables that range over in-
tegers. Conditional statements involve two kinds of tests: structural tests u = v and u =
null testing for equality and definedness of pointer variables, comparisons of the data
stored in the lists u.data ≤ v.data, and zero tests i = 0.

2.2 Concrete Operational Semantics

In order to define the concrete semantics of programs with lists, we have to formalize
the notion of heap. In principle, a heap is a graph in which each node has at most
one successor. In addition, some nodes are designated by special labels (variables from
PVar). If all the edges are reversed, one can imagine a heap as a set of disjoint trees, in
which, for each tree there might be an extra edge from an arbitrary node back to the root.

In the rest of the paper, for a set A we denote by A⊥ the set A∪{⊥}. The element⊥
is used to denote that a (partial) function is undefined at a given point, e.g., f (x) = ⊥.
Also, for a function f we denote by f ↓A the projection of f on A i.e. f ∩A×A.

Definition 1. Let 〈D,�〉 be an infinite totally ordered set, and PVar a set of pointer
variables. A heap is a tuple H = 〈N,S,V,D〉, where N is a finite set of nodes, S : N→N⊥
is a successor function, V : PVar→ N⊥ is a function associating nodes with variables,
and D : N →D is a function associating each node with a data element.

The set of all heaps using variables from PVar is denoted by H (PVar). We denote
S(n1) = n2 in H by n1 −→

H
n2, and u −→

H
n : ∃m . V (u) = m ∧ m −→

H
n. H might be

omitted when it is clear from the context. We denote by
∗−→
H

the reflexive and transitive

closure of−→
H

. A node n is said to be a cut point in H, denoted as cutH(n), if either it has

two predecessors or it is pointed to by a variable. Formally, cutH(n) : ∃n1,n2 ∈ N . n1 �=
n2∧S(n1) = S(n2) = n ∨ ∃u ∈Var . V (u) = n.

The state of a program with lists is a triple 〈l, ι,H〉 where l ∈ Lab is the current
program label, ι : IVar → Z is the current valuation of counter variables, and H ∈
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H (PVar) is the current heap configuration. Each assignment modifies the state as fol-

lows: 〈l, ι,H〉 l:s;l′−−→〈l′, ι′,H ′〉, where l′ is the label of the next statement, ι′ is the new val-

uation of counters, computed as usual, and H ′ is a heap configuration such that H
s−→H ′,

in conformance with the rules in Figure 2. Due to lack of space, the missing rules are
deferred to the extended version of the paper [7].

The semantics described here is based on garbage collection. As a result of removing
a node from the heap, other nodes might become unreachable from the pointer variables.
This set of nodes, whose lifetime depends exclusively on n ∈ N, is denoted as depH(n).
After each step, these nodes are removed.

Herr is a special sink heap configuration, attained as the result of a null pointer deref-
erence. A pointer equality test u = v evaluates to true in a heap H = 〈N,S,V 〉 if and
only if V (u) = V (v). Also, u = null is true if and only if V (u) =⊥.

V (u) =⊥

H
u := null−−−−−−→ H

C1

∃w ∈ PVar \{u} . w
∗−→
H

V (u)

H
u := null−−−−−−→ 〈N,S,V [u→⊥],D〉

C2

V (u) = n ∈ N ∀w ∈ PVar \{u} . ¬w
∗−→
H

n N′ = N \depH (n)

H
u := null−−−−−−→ 〈N′,S↓N ′ ,V ↓N ′ ,D↓N ′ 〉

C3

Fig. 2. Concrete Semantics of Heap Updates

3 Counter Automata

A counter automaton with n counters is a tuple A = 〈Q,X ,→〉, where Q is a finite
set of control states, X = {x1, . . . ,xn} are the counter variables and →∈ Q×Φ×Q
are the transitions, where Φ is the set of Presburger formulae [20] with free variables
from {xi,x′i | 1 ≤ i ≤ n}. A configuration of a counter automaton with n counters is a
tuple 〈q,ν〉, where ν is a mapping from X to N. The set of all configurations is de-

noted by C . The transition relation
C−→⊆ C ×C is defined by (q,ν) C−→ (q′,ν′) iff there

exists a transition q
ϕ−→ q′ such that if σ is an assignment of the free variables of ϕ

(FV (ϕ)) where σ(x) = ν(x) and σ(x′) = ν′(x), we have that ϕ(FV (ϕ)σ) holds and
ν(x) = ν′(x), for all variables x with x′ �∈ FV (ϕ). A run of A is a sequence of configu-

rations (q0,ν0),(q1,ν1),(q2,ν2) . . . such that (qi,νi)
C−→ (qi+1,νi+1), for each i≥ 0.

The following definition introduces a novel class of counter automata that is useful
for our purposes:

Definition 2. Let A = 〈Q,X ,→〉 be a counter automaton, where X = {x1, . . . ,xn} are
counter variables that range over non-negative integers. A is said to be linear if all
its transitions are of the form: ϕ(X) ∧ ∧

1≤i≤n x′i = fi(X), where ϕ is a formula of
Presburger arithmetic, and fi = ∑n

j=1 ai jx j + bi, 1 ≤ i ≤ n are linear functions with
integer coefficients. Moreover, A is said to be non-negative if ai j ≥ 0, for all 1≤ i, j≤ n.
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A is also said to be restrictive if, there exists a constant α∈N such that for each control
state q ∈Q, on each run π that visits q, the sum of values taken by the counters, ∑n

i=1 xi,
increases by at most α between any two consecutive times when the control state is q.

The control graph of a counter automaton A is the graph having as vertices the set Q of
control states, and, for any two states q and q′, there is an edge between q and q′ in the

control graph if and only if there exists a transition q
ϕ−→ q′ in A. A counter automaton is

said to be flat if its control graph has no nested loops. We can prove:

Theorem 1. The problems of reachability and termination for flat linear non-negative
restrictive counter automata are decidable.

4 Abstract Semantics of Programs with Lists

A common way of representing heaps compactly, consists in mapping an entire list seg-
ment with no incoming edges into a special (abstract) node. This idea constitutes also
the basis of our abstraction. Let N be a set of abstract nodes and X be a set of counter
variables, one for each node. We shall first define the abstract structure of heaps.

Definition 3. An abstract structure is a tuple H = 〈N,S,V 〉, where:

– N ⊆N is the set of abstract nodes, and
– S : N → N⊥, V : PVar→ N⊥, are the successor and variable mappings,

An abstract structure is moreover said to be in normal form if, for each n ∈ N, there
exists u ∈ PVar such that u

∗−→
H

n, and n is a cut point in H.

Intuitively, each abstract node corresponds to a set of concrete nodes, and the counter
associated with it in X keeps track of the number of nodes in this set. For abstract
structures in normal form, we do not allow sequences of successive abstract node that
are neither pointed by a variable, nor have the indegree greater than one. This condition
is needed in order to ensure that any such abstract structure defined over a finite set of
variables is finite. H (PVar) denotes the set of all abstract structures with variables from
PVar. A result similar to the following has been also proved in [4,18]:

Lemma 1. Let PVar = {u1, . . . ,un} be a set of variables, and H = 〈N,S,V 〉 be an
abstract structure in normal form such that dom(V )⊆ PVar. Then, ||N|| ≤ 2n (cf. [18]).
As a consequence, the number of such heaps is bounded asymptotically by (2n)2n, and
the bound is tight.

Let us define now a first abstraction function, denoted by αs, that maps concrete heaps
into abstract structures. Given a concrete heap H = 〈N,S,V,D〉, let �H ⊆ N×N be a
relation on the set of nodes, defined as: n1 �H n2 : n1−→

H
n2∧¬cut(n2). We denote by∼H

the reflexive, symmetric and transitive closure of �H . The H subscript shall be further
omitted for simplicity. For a node n∈N, we denote by [n] the equivalence class of n with
respect to∼, also referred to as a list segment. The quotient heap H/∼ = 〈N/∼,S/∼,V/∼〉
is defined as follows:
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– N/∼ = {[n] | n ∈ N},
– for all n,m ∈ N, S/∼([n]) = [m] iff ∃n0 ∈ [n] ∃m0 ∈ [m] . S(n0) = m0∧ cutH(m0),
– for all u ∈ PVar, n ∈ N, V/∼(u) = [n] iff V (u) ∈ [n], and
– S/∼ and V/∼ are undefined, otherwise.

Note that S/∼ and V/∼ are well defined partial functions. For assume that for some
n ∈ N, S/∼ maps [n] into two different equivalence classes, call them [m] and [p]. This

would imply the existence of two nodes n1,n2 ∈ [n] such that n1
∗−→m0 and n2

∗−→ p0, for

some m0 ∈ [m] and some p0 ∈ [p]. Since either n1
∗−→ n2, or n2

∗−→ n1, there must exist a

node in [n] with two distinct direct successors, which contradicts the well-formedness
of S. The argument for V/∼ is straightforward.

Definition 4. Let H = 〈N,S,V,D〉 be a concrete heap and H/∼ = 〈N/∼,S/∼,V/∼〉 its
quotient. An abstract structure H = 〈N,S,V 〉 is said to be a structural abstraction of
H if and only if there exists a bijective function β : N/∼ ∪{⊥}→ N ∪{⊥} such that
β(⊥) =⊥, and for all u ∈ PVar: S(β([n])) = β(S/∼([n])) and V (u) = β(V/∼(u)).

Two abstract structures that differ only in the naming of nodes and counter variables
are semantically equivalent, in the sense that they are abstractions of the same set of
concrete heaps. In practice, this increases the number of abstract structures generated
by a symbolic state exploration tool. This problem can be overcome by choosing a
canonical representation of abstract structures, as described in, e.g., [16].

We define the structural abstraction function αs : H (PVar)→H (PVar), αs(H) =
H, iff H is the canonical representative of a structural abstraction of H. Dually, the
concretisation of an abstract structure H is the set of concrete heaps whose structural
abstraction is H, i.e. γs(H) = {H | αs(H) = H}.

Note that according to Definition 4, αs(H) is an abstract structure in normal form.
For reasons that will become clear later, we need to extend the notion of concretisation
to abstract structures not in normal form. Let H = 〈N,S,V 〉 be an abstract structure not
necessarily in normal form, and ν : N → N a mapping of nodes to natural numbers. By
ν(H) we denote the set of concrete heaps obtained by replacing each node n∈N by a list
segment of length ν(n), and data arbitrarily chosen from D. In particular, mapping one
node into zero makes the node disappear in the concretization, and all its predecessors
automatically point to its successor. Then, γs(H) =

⋃{ν(H) | ν : N → N}. Notice that
if H is in normal form, the two definitions coincide.

4.1 Data Insensitive Programs

This section is devoted to the description of counter automata that abstract the behaviour
of the programs with lists. We formalize the correctness of our construction by proving
bisimulation between the semantics of a list program and the semantics of a counter au-
tomaton. This entails the strong preservation of temporal logic properties. In particular,
safety and termination are strongly preserved by the counter automaton, meaning that
one can accept and/or refute them based on the behaviour of the latter.

Consider a list program with k pointer variables and l counter variables, i.e. ||PVar||=
k and ||IVar||= l. We construct a counter automaton A = 〈Q,X , s−→〉 with 2k+ l counters
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as follows. The control states Q of the counter automaton are elements of the set Lab×
(H (PVar)∪{Herr}). Let N =

⋃{N | 〈N,S,V 〉 ∈H (PVar)} be the set of nodes used in
the structural abstraction. The counters are X = {xn | n∈N }∪ IVar, one for each node,
and including the counter variables from the original program. The transitions are given

by the triples q
ϕ−→ q′ with q = 〈l,H〉, q′ = 〈l′,H ′〉 such that there is a statement l : s; l′

in the program and the relation H
ϕ−→
s

H ′ is described by the structural rules in Figure 3.

Due to lack of space, the missing rules are deferred to the extended version of the paper
[7].

In order to simplify the treatment of the different cases, we have introduced two
low-level operations, that perform merging and splitting of abstract nodes (Figure 3).
Intuitively, we need to perform merging of two abstract nodes n and m (µ(H,n,m)) in
order to re-normalize the abstract structure, after a destructive update.

Lemma 2. If H = 〈N,S,V 〉 is an abstract structure, and n,m ∈ N such that S(n) = m
and m is not a cut point in H, then γs(H) = γs(µ(H,n,m)).

∃w ∈Var \{u} V (w) = V (u) �= ⊥

H
true

−−−−→
u:=null

〈N,S,V [u →⊥]〉
A2

V (u) = n ∈ N ∀w ∈ Var \ {u} . V (w) �= n
∃m, p ∈ N \{n} . p �= m ∧ S(m) = S(p) = n

H
true

−−−−→
u:=null

〈N,S,V [u →⊥]〉
A′

2

V (u) = n ∈ N ∀w ∈Var \{u} . V (w) �= n
∃m ∈ N \ {n} . S(m) = n
∀p ∈ N \ {n} . S(p) �= n

H
x′m=xm+xn
−−−−−−→

u:=null
µ(〈N,S,V [u →⊥]〉,m,n)

A′′
2

V (u) = n ∈ N ∀w ∈ Var \ {u} . w �
∗
−→
H

n

S(n) ∈ {⊥,n} N′ = N \{n}

H
true

−−−−→
u:=null

〈N′,S↓N ′ ,V ↓N ′ 〉
A3

V (u) = n ∈ N ∀w ∈ Var \ {u} . w �
∗
−→
H

n

S(n) = m ∈ N \ {n}
∃w ∈Var \{u} . V (w) = m N′ = N \{n}

H
true

−−−−→
u:=null

〈N′,S↓N ′ ,V ↓N ′ 〉
A′

3

V (u) = n ∈ N ∀w ∈ Var \ {u} . w �
∗
−→
H

n

S(n) = m ∈ N \ {n}
∀w ∈ Var \ {u} . V (w) �= m
∃p,q ∈ N \{n} . p �= q∧S(p) = m∧S(q) = m
N′ = N \ {n}

H
true

−−−−→
u:=null

〈N′,S↓N ′ ,V ↓N ′ 〉
A′′

3

V (u) = n ∈ N ∀w ∈ Var \ {u} . w �
∗
−→
H

n

S(n) = m ∈ N \{n}
∀w ∈Var \{u} . V (w) �= m
∃p ∈ N \ {n,m} . S(p) = m
∀q ∈ N \{n, p} . S(q) �= m N′ = N \{n}

H
x′p=xp+xm
−−−−−−→

u:=null
µ(〈N′,S↓N ′ ,V ↓N ′ 〉, p,m)

A′′′
3

V (u) = n ∈ N ∀w ∈ Var \ {u} . w �
∗
−→
H

n

S(n) = m ∈ N \{n}
∀w ∈ Var \ {u} . V (w) �= m
∀p ∈ N \ {n,m} . S(p) �= m
N′ = N \ {n,m}

H
true

−−−−→
u:=null

〈N′,S↓N ′ ,V ↓N ′ 〉
A′′′′

3

Fig. 3. Counter Automaton Semantics Let H
∆= 〈N,S,V 〉. The merging function is µ : H (Var)×

N ×N → H (Var) given by µ(H,n,m) = 〈N′,S ↓N ′ [n → S(m)],V 〉 where N′ = N \ {m}. The
splitting function is σ : H (Var)×N ×N → H (Var) given by σ(H,n,m) = 〈N ∪{m},S′,V 〉
where S′ =

(
S\{(n, p) | n−→

H
p}
)
∪ {(m, p) | n−→

H
p} ∪ {(n,m)}.
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In the case of u := w.next, we need to split (σ(H,n,m)) the abstract node n, into two
nodes n and m, based on whether the value of its corresponding counter is greater than
one or one (xn = 1, xn > 1).

Lemma 3. If H = 〈N,S,V 〉 is an abstract structure, and n ∈ N, m �∈ N, then γs(H) =
γs(σ(H,n,m)).

The semantics of conditional tests (u = v and u = null) is similar to the concrete
case. More details of the translation can be found in the list reversal example in Fig. 4.

Now we can state the main theorem of this section. Given a data insensitive pro-
gram P, let 〈S , c−→〉 be its concrete semantics with set of states S = Lab× (IVar →
Z)×H (PVar) and

c−→ its transition relation. Let S = Q× (X → Z) be the set of all

configurations of the corresponding counter automaton and
s−→ its transition relation.

Theorem 2. 〈S , c−→〉 and 〈S , s−→〉 are bisimilar.
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Fig. 4. Non-circular List Reversal

List Reversal Exam-
ple. Figure 4 shows the
counter automaton for the
list reversal program from
Figure 1, started with a
non-circular list pointed
to by i, as input. The
counter variable corre-
sponding to each abstract
node is depicted inside
the node itself. For space
reasons, only the control
states where branching
occurs are depicted.

4.2 Ordered Data Programs

In this section we complete the definition of abstraction for programs with lists, by
introducing an abstraction for heaps containing data from an ordered domain 〈D,�〉.
More precisely, we need to abstract the order relations that may occur inside a list
segment, and between two list segments.

Definition 5. Let H = 〈N,S,V,D〉 be a concrete heap and H/∼ its quotient w.r.t. �
relation. If R ⊆ N×N is any relation on the set of nodes define, for any [n], [m] ∈ N/∼:

– oR([n]) iff ∀n1,n2 ∈ [n] . n1 �= n2 ∧ n1 � n2 ⇒ n1 R n2
– [n]�R

f f [m] iff hd([n]) R hd([m])
– [n]�R

f a [m] iff ∀n1 ∈ [m] . hd([n]) R n1

– [n]�R
a f [m] iff ∀n1 ∈ [n] . n1 R hd([n])

– [n]�R
aa [m] iff ∀n1 ∈ [n] ∀n2 ∈ [m] . n1 R n2
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For a concrete heap H = 〈N,S,V,D〉, the relation c ⊆ N×N is defined as n1 c n2 :
D(n1)�D(n2). Then, oc([n]) is true for a list segment [n] iff all its elements are ordered
w.r.t. �. Similarly, [n]�c

< [m] for < ∈ { f f , f a,a f ,aa} iff the first (all) element(s) of [n]
is (are) less than the first (all) element(s) of [m].

Definition 6. An abstract heap is a tuple H̃ = 〈H,o,� f f ,� f a,�a f ,�aa〉, where H =
〈N,S,V 〉 is an abstract structure, o⊆N is a unary ordering predicate, and� f f , f a,a f ,aa⊆
N×N are binary ordering predicates.

An abstract heap H̃ = 〈H,o,� f f ,� f a,�a f ,�aa〉 sharing the same structure H =
〈N,S,V 〉 as another abstract heap H̃ ′ = 〈H,o′,�′f f ,�′f a,�′a f ,�′aa〉, is said to be more

precise, denoted as H̃ � H̃ ′, if and only if, for each n,m ∈ N we have o(n)⇐ o′(n) and
n �< m ⇐ n �′< m, for all < ∈ { f f , f a,a f ,aa}. Intuitively, the absence of a predicate
indicates incertitude w.r.t. the concrete ordering configuration. For instance if o(n) does
not hold, this means that in the concrete setting, n “represents” a list segment that may
or may not be ordered.

Given a set S of abstract heaps sharing the same structure, we denote by �S the least
upper bound, and by �S the greatest lower bound of S, with respect to �. Note that �
and � are undefined for sets of abstract heaps that have different structures. The domain

of abstract heaps is denoted by 〈H̃ (PVar),�〉.

Definition 7. Let H = 〈N,S,V,D〉 be a concrete heap with data from the ordered do-
main 〈D,�〉 and H/∼ = 〈N/∼,S/∼,V∼〉 its quotient. An abstract heap H̃ = 〈H,o,� f f

,� f a,�a f ,�aa〉 is said to be an abstraction of H if and only if αs(H) = H and for all
[n], [m] ∈ N/∼, < ∈ { f f , f a,a f ,aa}: o(β([n]))⇒ oc([n]) and β([n])�< β([m])⇒ [n]�c

<
[m] where β is the bijection from Definition 4.

We define α : H (PVar) → H̃ (PVar) as α(H) = �{H̃ | H̃ is an abstraction of H}.
Note that all abstract heaps that are abstractions of H share the same structure, hence

� is defined for this set. The concretization function is γ : H̃ (PVar)→ P (H̃ (PVar)),
defined as γ(H̃) = {H | α(H) � H̃}. Clearly, γ(H̃1) ⊆ γ(H̃2) if H̃1 � H̃2, but the dual
does not necessarily hold.

4.3 Counter Automata Semantics with Ordering Predicates

Taking ordering predicates o,� f f , f a,a f ,aa into account refines our notion of counter au-
tomaton, previously introduced. The counter automaton defined in this section keeps
track of the ordering information, allowing one to verify properties related to the order-
ing of lists, as it is the case for sorting programs, e.g., insertsort, bubblesort, etc.

A counter automaton with ordering predicates is Aa = 〈Qa,X ,
a−→〉. The set of control

states is defined now as Qa = Lab× (H̃ (PVar)∪{Herr}), and the set of configurations
is Sa = Qa× (X → N), with the usual notation. In addition to updating the abstract
structure, the transition relation

a−→ has to also update the ordering predicates. Our goal

is to define the “best transformer” in the sense of [13]. More precisely, our loss of
information is only due to the choice of ordering predicates, the definition of

a−→ does

not introduce further imprecision. Theorem 4 below formalizes this statement.
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Weakening
1. n�aa m ⇒ n�a f m
2. n�aa m ⇒ n� f a m
3. n�a f m ⇒ n� f f m
4. n� f a m ⇒ n� f f m

Reflexivity
9. n� f f n

Transitivity
5. n� f f m ∧ m� f f p ⇒ n� f f p
6. n�a f m ∧ m� f f p ⇒ n�a f p
7. n� f f m ∧ m� f a p ⇒ n� f a p
8. n�a f m ∧ m� f a p ⇒ n�aa p

Order
10. n�aa n ⇒ o(n)
11. o(n) ⇒ n� f a n

Fig. 5. Saturation rules

In order to achieve completeness of the abstract operational semantics, we have de-
signed our abstract state transformer function in two stages. The first stage yields the
actual change of the predicates, and the second one is an operation of “saturation”
whose goal is to add all the predicates that can be derived from the existing ones, on
a given abstract heap, without changing the corresponding set of concrete heaps. For
the remainder of this section, we fix an abstract heap H̃ = 〈H,o,� f f ,� f a,�a f ,�aa〉,
with its abstract structure H = 〈N,S,V 〉, and let H̃ ′ be just like H̃, except that all the
components of the tuples are primed.

Let us begin by the presentation of the second stage. Given an abstract heap H̃, we
define the saturation of H̃ to be the most precise abstract heap whose concretization is
the concretization of H̃. More precisely, H̃0 is the saturation of H̃ if and only if H̃0 =
�{H̃ ′ | γ(H̃) = γ(H̃ ′)}. An abstract heap H̃ is said to be saturated if and only if H̃ =
�{H̃ ′ | γ(H̃) = γ(H̃ ′)}. Unfortunately, this definition does not allow one to effectively
check that H̃ ′ is the saturation of H̃ for arbitrary abstract heaps. The problem is that the
set γ(H̃) is infinite. To overcome this problem, we introduce “syntactical” saturation
rules in Fig. 5. The closure of an abstract heap H̃ w.r.t. these rules is denoted as sat(H̃).

The saturation rules need to be applied with the following premises. Let (H̃,ν) be a
configuration of the counter automaton, and n an abstract node of H̃.

– if ν(xn) = 1, then it must be the case that o(n) and n�< n, < ∈ { f f , f a,a f ,aa} all
hold in H̃. The reason is that list segments of size one are ordered and in all possible
ordering relations with themselves.

– if ν(xn) = 2 and n � f a n, then o(n) must also hold in H̃. In a list segment of size
two, if the first element is less than the second, then the segment must be ordered.

The generated counter automaton will test, at each step, for each node n ∈ N, that xn =
1,2 and update the ordering predicates accordingly.

The next Theorem shows the soundness and completeness of the saturation rules.

Theorem 3. Given an abstract heap H̃, we have sat(H̃) = �{H̃ ′ | γ(H̃ ′) = γ(H̃)}.

We define now how the change of abstract predicates is performed. Most of the rules
affecting only the abstract structure of the state are very similar with the data insensitive
case. To be more precise, all rules from Fig. 3, with the exception of the ones that use the
merging (µ) or the splitting (σ) functions, will just maintain the same predicates between
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the source and destination of the transition. For example, if we had V (u) = V (w) = n
and n � f a m, then the result of applying the statement u := null is V

′ = V [u →⊥]
and n�′f a m. The remaining rules are dealt with by introducing ordered versions of the
merging and splitting functions, called µo and σo, respectively. As a general rule, the
new merging and splitting operations are performed on saturated abstract heaps, and
another saturation is applied to the result in order to maintain the desired precision.

Let n,m ∈ N be such that S(n) = m and m is not a cut point in H. We recall that the
result of µ(H,n,m) in this case is the abstract structure in which n takes the place of both
n and m. Then, µo(H̃,n,m) = 〈µ(H,n,m),o′,�′f f ,�′f a,�′a f ,�′aa〉 where o′,�′f f , f a,a f ,aa

are the (unique) relations on N and N×N satisfying the following constraints, for all
p ∈ N \ {m}, q,r ∈ N \ {n} and < ∈ { f f , f a,a f ,aa}:

o(n) ∧ o(m) ∧ n�aa m⇔ o′(n) o(q)⇔ o′(q) and q�< r⇔ q�′< r
n� f f p⇔ n�′f f p p� f f n⇔ p�′f f n
p� f a n ∧ p� f a m⇔ p�′f a n n� f a q⇔ n�′f a q
n�a f p ∧ m�a f p⇔ n�′a f p q�a f n⇔ q�′a f n
n�aa p ∧ m�aa p⇔ n�′aa p p�aa n ∧ p�aa m⇔ p�′aa n

Lemma 4. Let H̃ = 〈H,o,� f f ,� f a,�a f ,�aa〉 ∈ H̃ (PVar) be a saturated abstract

heap, where H = 〈N,S,V 〉 ∈ H (PVar), and n,m ∈ N such that S(n) = m and m is
not a cut point in H. Then, α(γ(H̃)) = α(γ(µo(H̃,n,m))).

The splitting operation on abstract structures replaces one node n with two nodes n
and m, such that m becomes the successor of n and the previous successor of n be-
comes the successor of m. In addition, the effect of the split operation on the order-
ing predicates is modeled by the rules given in the following. Formally, σo(H̃,n,m) =
〈σ(H,n,m),o′,�′f f ,�′f a,�′a f ,�′aa〉, where o′,�′f f , f a,a f ,aa are the (unique) relations on

N and N×N that satisfy the following constraints, for all p ∈ N \{n}, q,r ∈ N \{p,n},
and all < ∈ { f f , f a,a f ,aa}:

o′(n), n�′< n, < ∈ { f f , f a,a f ,aa}

o(n)⇔ n�′aa m ∧ o′(m) n�aa n⇔ n�′aa m ∧ m�′aa n ∧ m�′aa m
n� f f p⇔ n�′f f p p� f f n⇔ p�′f f n
n� f a p⇔ n�′f a p p� f a n⇔ p �′f a n ∧ p�′f a m
n�a f p⇔ n�′a f p ∧ m�′a f p p�a f n⇔ p �′a f n
n�aa p⇔ n�′aa p ∧ m�′aa p p�aa n⇔ p�′aa n ∧ p�′aa m
o(q)⇔ o′(q) q�< r⇔ q�′< r

The first conditions concerning o′(n) and n �′< n are due to the fact that the actual size
of the list segment represented by n is one, i.e. a split operation separates the head from
the tail of a list segment. The following Lemma formalizes the correctness σo:

Lemma 5. Let H̃ = 〈H,o,� f f ,� f a,�a f ,�aa〉 ∈ H̃ (PVar) be a saturated abstract
heap, where H = 〈N,S,V 〉 ∈ H(PVar), n ∈ N and m �∈ N′. Then, α(γ(H̃)) =
α(γ(σo(H̃,n,m))).
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A conditional test involving data u.data ≤ w.data evaluates true in the abstract heap
H̃ if and only if V (u) � f f V (w) holds on sat(H̃). Otherwise, such tests introduce
non-determinism in the generated counter automaton. Therefore, the semantics of the
counter automaton is a simulation of the semantics of the original program, but not a
bisimulation anymore.

Theorem 4. Let 〈l, ι,H〉 ∈ S be a concrete program state. Then, there exists 〈l′, ι′,H ′〉 ∈
S such that 〈l, ι,H〉 c−→ 〈l′, ι′,H ′〉 if only if there exists an abstract state 〈l,H̃ ′,ν′〉 ∈ Sa

such that 〈l,α(H),ν〉 a−→ 〈l′,H̃ ′,ν′〉 and H ′ ∈ γ(H̃ ′).

The following is a consequence of Theorems 1, 2 and 4.

Corollary 1. For every program with lists, if its counter automaton is flat, then safety
and termination are decidable properties.

Notice that the number of objects created by a single loop iteration in a flat list program
is always bounded by a constant, therefore its counter automaton is restrictive. The
linear and non-negative conditions can be established by inspection of the form of the
transitions in the abstract semantics1. If this automaton is moreover flat, we can apply
Theorem 1. The result does not give us a purely syntactic criterion for decidability
of verification of list manipulating programs but still allows us to decide whether the
program falls into a significant decidable fragment or not.

5 Experimental Results

In order to obtain experimental evidence about how our techniques behave in practice,
we have applied them to several non-trivial procedures manipulating singly-linked lists.
In particular, we have considered a procedure for reversing lists, whose behaviour we
have studied both for an acyclic as well as cyclic input, and then two procedures for
sorting lists, namely InsertSort and BubbleSort.

For all the examples, we generated (by hand—an implementation of the transla-
tion procedure is our future work) the corresponding counter automata. Sizes of the
automata—after some trivial simplifications joining sequences of states with no varia-
tion in the underlying heap graph—varied as follows: (1) 15 states and 3 counters for
reversing acyclic lists (no optimizations were used in this case), (2) 11 states and 3
counters for reversing cyclic lists, (3) 88 states and 6 counters for InsertSort, and (4)
149 states and 7 counters for BubbleSort (we considered the more practical version of
the sort with a pointer remembering the already sorted part of the list). For list reversing,
no ordering predicates were used.

As for the safety properties of the considered programs, we checked that there are no
null pointer assignments, no elements are lost, the shape is preserved, and—in the case
of the sorting algorithms—that the result is sorted. These properties may be checked by
generating a symbolically encoded set of the reachable configurations of the counter au-
tomaton corresponding to the program. Using an implementation of the abstract regular

1 Notice that the only negative coefficients in the transition relations are the base coefficients.
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model checking technique [9] based on LASH automata libraries [1], the verification
took 10 sec for the acyclic list reversion case study and 0.5 sec for cyclic list reversion
on a Pentium 4 machine with a 2.6 GHz processor.

Moreover, let us note that all the above properties may often be checked already at the
counter automaton extraction phase. The checking is mostly straightforward. A slight
complication is just checking that no elements of the list are lost via the u.next :=
w operations. However, even here a simple (fully automatable) heuristic may be used.
When we generate a counter automaton state containing a new abstract heap and we
can grant that some of its nodes have size one (e.g., after a u := w.next statement), we
remember this fact. Later when we again encounter such a heap and we cannot statically
guarantee that the appropriate nodes have size one, we may drop the information. Then,
when we see that an u.next := w operation is performed on a node for which we
remembered that its size is one, we know that we do not loose any list elements. If this
is not the case, we have to analyse the dynamic behaviour of the counter automaton and
check whether it may actually happen that we loose some elements. In all our examples,
however, we were able to perform all the checks (and thus verify the described safety
properties) statically (i.e. at the counter automaton extraction phase).

In addition to checking safety properties, we have also fully-automatically checked
that all the considered programs terminate. For checking termination, we analysed the
generated counter automata using the tool described in [12]. On the same machine as
above, we were able to check termination in 4 sec for reversing acyclic lists, 1.5 sec for
reversing cyclic lists, 90 sec for InsertSort, and 150 sec for BubbleSort.

6 Conclusion

We have presented an approach for automatic verification of programs with 1-selector
dynamic linked structures. It is based on using counter automata as accurate abstract
models for such programs. These infinite-state models can be handled using various
advanced techniques and tools which have been designed recently for their automatic
analysis (e.g., [1,2,5]), and in particular concerning checking termination and liveness
properties (e.g., [12,11]). Indeed, using counters referring to the sizes of parts of the
heap structure (e.g., list segments) of a program is a powerful means for dealing with
quantitative reasoning about programs, and in particular about their termination. Our
future work naturally includes extending this approach to more general linked structures
such as doubly linked lists, tree-like structures, etc.
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Lazy Shape Analysis

Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz

EPFL, Switzerland

Abstract. Many software model checkers are based on predicate ab-
straction. If the verification goal depends on pointer structures, the
approach does not work well, because it is difficult to find adequate
predicate abstractions for the heap. In contrast, shape analysis, which
uses graph-based heap abstractions, can provide a compact representa-
tion of recursive data structures. We integrate shape analysis into the
software model checker Blast. Because shape analysis is expensive, we
do not apply it globally. Instead, we ensure that, like predicates, shape
graphs are computed and stored locally, only where necessary for proving
the verification goal. To achieve this, we extend lazy abstraction refine-
ment, which so far has been used only for predicate abstractions, to
three-valued logical structures. This approach does not only increase the
precision of model checking, but it also increases the efficiency of shape
analysis. We implemented the technique by extending Blast with calls
to Tvla.

1 Introduction

Counterexample-guided abstraction refinement [14,6] has dramatically increased
the performance of software model checkers in the past few years [2,4]. However,
being based on predicate abstractions, current model checkers are not capable
of dealing effectively with recursive data structures. Shape analysis [13,5,19] is
a static data-flow analysis that models the heap contents using graph-based ab-
stractions. However, shape analysis is among the most expensive static analyses.
The contribution of this paper is to show how to increase both the effectiveness
of model checking and the efficiency of shape analysis by combining both tech-
niques. By computing both predicate and shape information, we increase the
precision of model checking, and thus obtain fewer false positives. The efficiency
of shape analysis is improved, because expensive shape computations (such as
abstract postconditions) are performed only at those program locations where
the shape information is necessary to prove the verification goal. To achieve this,
we apply the ‘lazy abstraction’ paradigm [12] to shapes.

Lazy abstraction involves both lazy (on-the-fly) abstraction construction and
lazy (only-where-necessary) abstraction refinement. Lazy abstraction construc-
tion means that an abstract reachability tree (ART) for the program is computed
on-the-fly. Each node of the ART is labeled with both predicate and shape in-
formation. The computation of a branch in the ART is terminated when the
concrete states represented by the leaf are covered by another node in the tree.
Lazy abstraction refinement means that predicate and shape information is re-
fined only along branches of the ART that represent spurious counterexamples,

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 532–546, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Abstraction refinement with heap abstraction

in order to remove these false positives. Additional predicates can be discovered
automatically using Craig interpolation [18]. This method allows the pinpoint-
ing of relevant predicates to individual program locations. In this paper we show
how to use interpolation-based predicate discovery to refine also the granularity
of the shape analysis. Our algorithm decides, individually for each location along
a spurious counterexample, which predicates and pointers to track, and how to
refine the local heap abstraction, so that the infeasible error path is removed.

We refer to the predicates used in the predicate abstraction as ‘nullary’ pred-
icates, because that is how they can be viewed from the shape-analysis perspec-
tive. Our interpolation engine discovers not only new nullary predicates (handled
by Blast), but also new unary predicates, which are interpreted over the nodes
of a shape graph. To enable the addition of richer, derived predicates (called
‘instrumentation’ predicates in shape analysis) during refinement, we introduce
predefined shape-class generators (SCGs). Consistent with our locality principle,
there is an SCG per program location. If an SCG is insufficient for proving the
verification goal, then the system proceeds to a finer SCG, which adds additional
shape-describing predicates to the local heap abstraction.

We implemented this algorithm in the software model checker Blast [11],
using calls to Tvla [16] for shape operations. We evaluated the method by
applying it to several C programs that manipulate list data structures. In these
examples, the model checker needs to discover both nullary predicates (to refine
the predicate abstraction) and unary predicates (to refine the heap abstraction),
in order to automatically prove the program correct.

2 Review

2.1 Software Model Checking by Predicate Abstraction

Counterexample-Guided Abstraction Refinement (CEGAR). The clas-
sical CEGAR algorithm starts with an initial (trivial) predicate abstraction, and
refines the abstraction iteratively. During each iteration, it explores the states of
an abstract boolean program. If the boolean program is safe, then the algorithm
stops with the answer ‘safe.’ If an (abstract) counterexample is found, then the
algorithm checks if the counterexample corresponds to a (concrete) error path in
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the program (which is reported as a bug), or if the counterexample is ‘spurious’
due to the abstraction being too coarse. In the latter case, the counterexample
is analyzed to discover new predicates that need to be added to the boolean pro-
gram in order to eliminate the spurious counterexample. This process is repeated
until either the program is proved safe, or a bug is found [6,2]. It is possible that
the process does not terminate, or that no suitable new predicates are discovered
even though the counterexample is spurious.

Lazy Abstraction Refinement. The classical version of the abstract-check-
refine loop has two drawbacks: first, it is not necessary to represent in the boolean
abstraction the part of the state space that is not reachable, and second, it is not
necessary to refine the portions of the abstract program that have already been
proved safe. Lazy abstraction refinement integrates the steps of the abstract-
check-refine loop into an on-the-fly analysis that refines the predicate abstrac-
tion locally. Instead of repeatedly building and exploring an abstract boolean
program, the lazy algorithm builds an ART. At each node of the ART, the
lazy algorithm adds necessary predicates on demand, by refining the abstraction
only at locations that occur on a spurious counterexample. As a result, the final
abstraction (predicate set) differs from location to location [12].

Craig Interpolation. The crucial measure for the efficiency of the analysis is
the number of predicates in the abstraction. To keep the number of predicates per
location as small as possible, interpolation-based predicate discovery can be used
to produce for each program location the predicates that are needed to eliminate
an infeasible error path in the ART. Given an abstract error path, we construct
a path formula (PF) such that if the PF is unsatisfiable, then the error path is
infeasible. An unsatisfiable PF can be cut, at each location on the path, into
two formulas: a prefix formula that leads the program from the initial location
to the cut location, and a postfix formula that leads the program from the cut
location to the error location. From a Craig interpolant of the two formulas we
can extract a suitable set of predicates to be added at the cut location [11,18].

2.2 Shape Analysis by Three-Valued Logic

Shape analysis is a static analysis that represents unbounded instances of re-
cursive data structures on the heap by finite structures, called ‘shape graphs.’
Following the framework of [19,16], we represent shape graphs as three-valued
logical structures.

Figure 2(b) shows an instance of a list structure consisting of five elements,
four with data value 1 and one with data value 3. The pointers a and p point
to the first list element. Figure 2(c) shows a shape graph that represents all
list instances such that the pointers a and p point to the first list element, all
elements have data value 1, except the last element, which has data value 3. The
concrete list in Fig. 2(b) is an instance of this shape graph. The shape graph
is represented by predicates: the unary predicates pta , ptp , fdh=1, fdh=3, sm,
ra,n, and rp,n, and the binary predicate n. All predicates are interpreted over
nodes of the shape graph. The predicate pta(v) is true if the pointer variable a
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1 typedef struct node {
2 int h; struct node *n;
3 } *List;
4 void foo(int flag) {
5 List a = (List) malloc(...);
6 if (a == NULL) exit(1);
7 List p = a;
8 while (random()) {
9 if (flag) p->h = 1;
10 else p->h = 2;
11 p->n = (List) malloc(...);
12 if (p->n == NULL) exit(1);
13 p = p->n; }
14 p->h = 3;
15 p = a; /* Now check it. */
16 if (flag) while (p->h == 1) p = p->n;
17 else while (p->h == 2) p = p->n;
18 assert(p->h == 3);
19 }

(a) Example C program
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Fig. 2. Example program and two list representations

points to node v (same for ptp); the predicate n(v, u) is true if the next pointer
of node v points to node u; the predicate fdh=1(v) is true if the field h of node v
satisfies the assertion h=1 (same for fdh=3); the predicate ra,n(v) is true if node v
is reachable from pointer a via the next-pointer relation (same for rp,n); and the
predicate sm(v) has the value 1/2 if v is a summary node, and the value false
if v represents a single list element. A summary node (drawn as double-circled)
represents one or more list elements. The next pointer of a list element that is
abstracted by the second node in Fig. 2(c) may point to itself or to the third node
(the value 1/2 of a predicate is indicated by a dotted edge). The reachability
predicates ra,n and rp,n are defined in terms of the other predicates; they are
called ‘instrumentation’ predicates. All other predicates are ‘core’ predicates.

3 Preview

Lazy CEGAR with Shapes. We define a lazy CEGAR algorithm for ab-
stractions that consist of a predicate abstraction and a heap abstraction (cf.
Fig. 1). Moreover, following the lazy abstraction paradigm, both abstractions
are refined locally. The initial predicate abstraction is the single predicate true,
and the initial heap abstraction is the trivial shape graph, which represents every
heap. With each program operation, we update both abstractions independently.
During lazy abstraction refinement, if the PF is unsatisfiable, then the spurious
counterexample is due to the predicate abstraction, and the interpolation pro-
cedure discovers new predicates that are added to the predicate abstraction. In
this case, the heap abstraction is not changed. However, if the PF is satisfiable,
this does not necessarily mean that the error path is feasible. In this case, we
construct a more precise extended path formula (EPF), which takes into account
also information about the heap. If the EPF is unsatisfiable, then the error path
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Operation Constraint

1 : a=malloc() true
2 : assume(a!=0) 〈a, 1〉 �= 0
3 : p=a 〈p, 3〉 = 〈a, 1〉 ∧ 〈〈p, 3〉->h, 3〉 = 〈〈a, 1〉->h, 1〉

∧ 〈〈p, 3〉->n, 3〉 = 〈〈a, 1〉->n, 1〉
4 : assume(flag==0) 〈flag, 0〉 = 0
5 : p->h=2 〈〈p, 3〉->h, 5〉 = 2 ∧ 〈〈a, 1〉->h, 5〉 = 2
6 : p->n=malloc() omitted
7 : assume(p->n!=0) omitted
8 : p=p->n omitted
9 : p->h=3 omitted

10 : p=a 〈p, 10〉 = 〈a, 1〉 ∧ 〈〈p, 10〉->h, 10〉 = 〈〈a, 1〉->h, 5〉
∧ 〈〈p, 10〉->n, 10〉 = 〈〈a, 1〉->n, 1〉

11 : assume(flag==0) 〈flag, 0〉 = 0
12 : assume(p->h!=2) 〈〈p, 10〉->h, 10〉 �= 2
13 : assume(p->h!=3) 〈〈p, 10〉->h, 10〉 �= 3
14 : ERROR

Fig. 3. Extended path formula for the second infeasible error path
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Fig. 4. Shape graphs before and after the second refinement at program line 18

is guaranteed to be infeasible. We apply the interpolation procedure to the EPF,
and use the interpolants to decide how to refine the heap abstraction at the cut
locations. For example, from an interpolant of the form p->h=3, we extract the
new predicates ptp and fdh=3 to refine the shape graph.

Example. The function in Fig. 2(a) first builds a list that contains a sequence
of data values in {1, 2} —depending on the variable flag— and ends with data
value 3. Then the function verifies that property of the list. Pure predicate
abstraction discovers only the nullary predicate npflag , which is insufficient for
proving the program safe. The combination of predicate abstraction and heap
abstraction tracks both predicate and shape information simultaneously, and
automatically discovers the necessary nullary and unary predicates to refine
both abstractions. The first infeasible error path that our system reports skips
the first while loop, sets p->h=3, assumes flag=0, skips the while loop of the
‘else’ branch, and violates the assertion. The list consists of one list element,
〈3〉. Pure predicate abstraction would give a false positive, because the PF is
satisfiable. However, the EPF is unsatisfiable, and from the interpolant p->h=3
we extract the pointer p and the field assertion h=3. Furthermore, alias analysis
indicates that we also need to track the pointer a, which may be aliased to p.
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Therefore we locally add the three unary predicates ptp , pta , and fdh=3 to the
heap abstraction, which removes the infeasible error path.

The second infeasible error path enters the first while loop, assumes flag=0,
sets p->h=2, sets p->h=3, assumes flag=0, skips the while loop of the ‘else’
branch, and violates the assertion. The list now represents the sequence 〈2, 3〉.
The abstract state associated with the program location before the assertion is
represented by the nullary predicate true and the shape graph of Fig. 4(a). The
conjuncts of the EPF that show the infeasibility of this error path are given in
Fig. 3 (the number annotated to an lvalue in a PF corresponds to the number of
the operation that has written this value). The interpolant is p->h=2, and thus
we add the field predicate fdh=2 to the heap abstraction. When Blast explores
this path again after the refinement, the shape graph in Fig. 4(b) is computed.

The third infeasible error path enters the first while loop, assumes flag=1,
sets p->h=1, sets p->h=3, assumes flag=0, skips the while loop of the ‘else’
branch, and violates the assertion. The list represents the sequence 〈1, 3〉. As
the predicate abstraction does not track the predicate flag, this leads to the
infeasible situation that in the first while loop the predicate is assumed to be true,
and in the second part of the program it is assumed to be false. The interpolant
for the unsatisfiable PF is flag, and we add the nullary predicate npflag to the
predicate abstraction. The resulting fourth infeasible error path enters the first
while loop, assumes flag=1, sets p->h=1, sets p->h=3, assumes flag=1, skips
the while loop of the ‘then’ branch, and violates the assertion. The list represents
the sequence 〈1, 3〉. We discover the field predicate fdh=1 from the interpolant
p->h=1 for the unsatisfiable EPF, and add it to the heap abstraction.

The last iteration unfolds the remaining states of the ART or marks them
as covered. The final ART represents a safety certificate (proof of correctness).
The example does not illustrate the ‘laziness’ of our approach: if the example
is only one function of many in a large program, then the generated predicates
and shape graphs are tracked only locally within the given function. Similarly, if
the program contained a second list that is created but never checked, then the
analysis would not track the shape of that list, because the interpolants yield
only predicates that are necessary for eliminating the infeasible error paths. Also,
the example uses only one of the two ways in which the heap abstraction can be
refined: it does not require any instrumentation predicates. To introduce derived
predicates, such as reachability, we will add shape-class generators to the heap
abstraction; these are not discovered automatically, but need to be predefined.

4 Lazy Abstraction Refinement of Shapes

In the following three subsections, we give the details of our algorithm. First,
we explain how we build the ART with abstract states that include both nullary
predicates and shape graphs. Second, we explain how we check whether an ab-
stract error path is feasible (i.e., corresponds to a concrete error path). Third,
we explain how we refine the predicate and heap abstractions.
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4.1 Combining Predicate and Heap Abstractions

Predicate Abstraction. A nullary predicate is a predicate over program vari-
ables. We write npx=3 for the nullary predicate asserting that the value of the
program variable x is 3. We denote the set of nullary predicates by P . A predi-
cate abstraction for a program is a function Π : L→ 2P that maps each program
location in L = {pc1, . . . , pck} to a set of nullary predicates. We follow the defi-
nitions of [11]. For a formula ϕ over program variables, the abstraction w.r.t. a
set P ⊆ P of nullary predicates is the strongest boolean combination ϕ′ of pred-
icates in P such that ϕ implies ϕ′. The semantics of a program path is defined
in terms of the strongest-postcondition operator: if the formula ϕ represents a
set of states, and op is an operation, then the formula SP.ϕ.op represents the
set of successor states. We extend SP to program paths in the natural way. A
path t is SP-infeasible if SP.true.t is unsatisfiable. To check if a given path is
feasible, we construct a path formula (PF), which is the conjunction of several
constraints, one per operation on the path, such that the path is SP-infeasible
if the PF is unsatisfiable. For a path (opm : pcm); . . . ; (opn : pcn), the abstract
semantics SPΠ is the Π-abstraction of the concrete semantics SP, that is, the
formula SPΠ .ϕ.opi is the abstraction w.r.t. Π(pci) of the formula SP.ϕ.opi.

Shape Classes. The precision of heap abstractions is defined by shape classes.
Following [19], a shape class S = (Pcore , Pinstr , Pabs) consists of three sets of
predicates over node variables: (1) a set Pcore of core predicates, (2) a set Pinstr

of instrumentation predicates with Pcore ∩ Pinstr = ∅, where each instrumenta-
tion predicate p ∈ Pinstr has an associated defining formula ϕp over the core
predicates, and (3) a set Pabs ⊆ Pcore ∪ Pinstr of abstraction predicates. We de-
note the set of shape classes by S. A heap abstraction for a program is a function
Ψ : L→ 2S that maps each program location to a set of shape classes (different
shape classes can be used to simultaneously track different data structures).

The set of core predicates must contain the special unary predicate sm , which
has the value false for normal nodes and 1/2 for summary nodes. Moreover,
we distinguish two special subsets of core predicates: the set Ppt ⊆ Pcore of
points-to predicates, and the set Pfd ⊆ Pcore of field predicates. A points-
to predicate ptx (v) is a unary predicate that indicates if a pointer variable x
points to node v. A field predicate fdφ(v) is a unary predicate that indicates
if a field assertion φ holds for node v. Each field assertion has a boolean
value over the fields of a structure element. Therefore, field predicates repre-
sent the data content of a structure, rather than the shape of the structure.
A shape class S refines a shape class S′, written S � S′, if (1) P ′

core ⊆ Pcore ,
(2) P ′

instr ⊆ Pinstr , and (3) P ′
abs ⊆ Pabs . The union of S and S′ is the shape

class (Pcore ∪ P ′
core , Pinstr ∪ P ′

instr , Pabs ∪P ′
abs) (assuming Pcore ∩P ′

instr = ∅ and
Pinstr ∩ P ′

core = ∅).

Shape Graphs. The abstract state of the heap is defined as a set of shape re-
gions. A shape region (S, G) consists of a shape class S and a setG of shape graphs
for S. A shape graph g = (V, val) for a shape class S = (Pcore , Pinstr , Pabs) con-
sists of a set V of nodes and a valuation val in three-valued logic of the predicates
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over V : for a predicate p ∈ Pcore ∪ Pinstr of arity n, val (p) : V n → {0, 1, 1/2}.
Fig. 2(c) shows an example of a shape graph. Let S and S′ be two shape classes
such that S � S′. A shape graph g′ for S′ can be extended to a shape graph g =
ES′	S(g′) for S such that the set of nodes is unchanged (i.e., V = V ′), and for each
predicate p ∈ (Pcore ∪ Pinstr ) \ (P ′

core ∪ P ′
instr ), the value of p is 1/2 everywhere.

We extend the operator E to sets of shape graphs in the natural way. A shape re-
gion (S, G) is covered by a shape region (S′, G′) if ES	(S∪S′)(G) ⊆ ES′	(S∪S′)(G′).
Consider a program path (opm : pcm); . . . ; (opn : pcn) and a heap abstraction Ψ .
The abstract semantics SPΨ is the Ψ -abstraction of the concrete semantics SP,
that is, the formula SPΨ .(S, G).opi is the abstraction w.r.t. Ψ(pci) of the formula
SP.ϕ.opi. The operator SPΨ is defined by SPΨ .(S, G).opi = (S, [[opi]](G)), where
[[·]] is defined as in Tvla [16]. To compute SPΨ , we use Tvla’s focus and coerce
functions to transform a set of shape graphs. We extend the notion of being
covered and the operator SPΨ to sets of shape regions in the natural way.

ART Construction. The abstraction (Π,Ψ) of a program is a pair consisting of
a predicate abstraction Π and a heap abstraction Ψ . Given (Π,Ψ), we construct
an ART following [12], but with each vertex of the ART we store not only a
program location pc ∈ L, a call stack, and a subset of the (nullary) predicates in
Π(pc), but also a set of shape regions, one for each shape class in Ψ(pc). Suc-
cessor vertices in the ART are computed using the SPΠ and SPΨ operators
independently on the two parts (nullary predicates and shape regions) of the
abstract state. We stop expanding the ART at a vertex if (1) both the set of
nullary predicates, and the set of shape regions, are covered by some other ver-
tex; or (2) either the predicate set, or the shape set, represents the empty set of
concrete states. More sophisticated termination criteria are possible, of course.

4.2 Extracting Interpolants from Extended Path Formulas

Programs. Our formalization of programs is similar to [11]. A program is rep-
resented by a set of control flow automata; a path t of length n is a sequence
(op1 : pc1); . . . ; (opn : pcn) of operations, which can be either statements or as-
sume predicates. In this paper, we consider flat programs (i.e., program with a
single function); our approach can be extended to programs with several func-
tions. The program variables are either integer values or pointers to (possibly
recursive) structures with fields that are integers and pointer to structures. We
restrict the lvalues that can occur in a program to ident and ident->field, where
ident denotes a variable identifier and field denotes the name of a structure field.
The function F maps an lvalue to the set of fields of the structure pointed to by
the lvalue if the lvalue has a pointer type, and to the empty set if the lvalue has
an integer type. The operations within a program are limited to the ones listed
in the first column of Fig. 5. The expressions that can occur in statements are
side-effect free C expressions of linear arithmetic, without pointer dereferences.

Extended Path Formulas. The technique for building PFs from [11] cannot be
reused directly, because it does not refer to recursive data structures. However,
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Op. opl New map θ′ and Alloc′ Constraint Γ ′(l)
s = e θ′(s) = l sub.θ′.s = sub.θ.e

s1 = s2
θ′(s1) = l
∀f ∈ F(s1) : θ′(〈s1, l〉->f) = l

eqvar.(s1, θ
′).(s2, θ)

s1 = s2->f
θ′(s1) = l
∀f ∈ F(s1) : θ′(〈s1, l〉->f) = l

sub.θ′.s1 = sub.θ.(s2->f)

∧
∧

c∈may.(l-1)

.(sub.θ.(s2->f))

(
sub.θ.(s2->f) = c
⇒ eqvar.(s1, θ

′).(c, θ)

)

s1->f = s2

θ′(〈s1, θ(s1)〉->f) = l
∀c ∈ may.(l-1).〈〈s1, θ(s1)〉->f, l〉:

∀f ∈ F(c) : θ′(〈c, l〉->f) = l
∀c ∈ may.(l-1).〈s1, θ(s1)〉 :

θ′(c->f) = l

sub.θ′.(s1->f) = sub.θ.s2

∧
∧

c∈may.(l-1)

.(sub.θ′.(s1->f))

 ite.(c = sub.θ′.(s1->f))
.(eqvar.(c, θ′).(s2, θ))
.(eqvar.(c, θ′).(c, θ))



∧
∧

c∈may.(l-1)

.(sub.θ′.s1)

ite.(c = sub.θ′.s1)
.(sub.θ′.(c->f) = sub.θ.s2)
.(sub.θ′.(c->f) = sub.θ.(c->f))



s = alloc()
θ′(s) = l
∀f ∈ F(s) : θ′(〈s, l〉->f) = l
Alloc′ = Alloc ∪ {〈s, l〉}

∧
a∈Alloc

(〈s, l〉 �= a)

assume(p) clos*.θ.true .p

Fig. 5. Definition of FineCon for each operation: (θ′, Γ ′) = FineCon.(θ, Γ ).l.opl

since the number of memory cells possibly involved in a PF is bounded, we
can produce a finite, sound formula called extended PF (EPF). The address of
each heap cell that is accessed on a path must have been previously assigned
to a pointer variable (because we consider a restricted set of possible lvalues).
To refer to these addresses in the EPF, we use SSA-like renamed lvalues. An
lvalue constant is either 〈ident, l〉 (a variable constant), or 〈〈ident, l〉->field, l′〉
with position labels l, l′ ∈ [0..n] and l′ ≥ l. An annotated lvalue is either ident,
or 〈ident, l〉->field. The labels l and l′ identify the positions on the path where
the annotated values may have been modified. An annotated-lvalue map θ is a
function from annotated lvalues to labels. The lvalue-renaming function sub.θ.v
is defined by sub.θ.s = 〈s, θ(s)〉 and sub.θ.(s->f) = 〈(sub.θ.s)->f, θ((sub.θ.s)->f)〉,
where s is a variable and f is a field.

To simplify the EPF using alias information, the function may maps a label
and an lvalue constant to the set of variable constants that may have the same
value (i.e., 〈s, ls〉 ∈ may.l.c if, after the l-th operation of the path, the value of
c may be equal to the value of s1 after the l1-th operation of the path). The
function may is not essential: it is used only to reduce the size of the EPF by
taking into account information that two pointers are guaranteed not to be equal.

The function FineCon maps a pair (θ, Γ ) consisting of an annotated-lvalue
map θ and a constraint map Γ from position labels to first-order logic formulas
over lvalue constants, and an operation opi, to a pair (θ′, Γ ′) consisting of a new
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annotated-lvalue map and a new constraint map. On the given path, we compute
recursively the result of FineCon by computing (θl, Γl) = FineCon.(θl-1, Γl-1).opl,
where l is the position label of opl on the path. The map θ0 is the constant
function 0, and Γ0 is the constant function ∅. The map θl differs from θl-1 only on
the annotated lvalues that may be modified by opl, which are mapped to l by θl.
The map Γl results from extending Γl-1 by mapping l to the constraint derived
from opl. We derive constraints from operations similarly to [11]. An extension
is necessary for assignments to pointers: we cannot ‘unroll’ a recursive data
structure and refer to all reachable memory cells, because this would yield an
infinite formula. Additionally, we need to add aliasing constraints when several
lvalue constants may point to the same memory cell. The formal definition of
the function FineCon is given in Fig. 5. The EPF of the path is obtained by
taking the conjunction of all formulas in the final constraint map. The EPF is
unsatisfiable iff the path is SP-infeasible.

The definition of FineCon uses the following two functions. The function eqvar
returns a constraint that expresses the equality of two variables by considering
their fields (if any):

eqvar.(s1, θ1).(s2, θ2) = (sub.θ1.s1 = sub.θ2.s2)
∧
∧

f∈F(s1)

(sub.θ1.(s1->f) = sub.θ2.(s2->f))

The function clos*.θ.b.p returns, given an assume predicate p, the predicate that
results from replacing all equalities x1 = x2 occurring positively (or negatively,
depending on the value of the boolean value b) by eqvar.(x1, θ).(x2, θ).

Interpolation. We compute the interpolants using the algorithm Extract
from [11]. We parametrize the algorithm either with the function Con [11] for
PFs (written Extract [Con]), or with the new function FineCon for EPFs (writ-
ten Extract [FineCon]). The algorithm Extract takes as input a program path t
and returns a function Π̂ from position labels (i.e., locations on the path) to
sets of nullary predicates. In [11] it was shown that, for a weaker programming
language (without recursive data structures), the path t is SP-infeasible iff t is
SPΠ̂ -infeasible for Π̂ = Extract [Con](t). We can prove the analogous statement
for our richer programming language: the path t is SP-infeasible iff t is SPΠ̂ -
infeasible for Π̂ = Extract [FineCon](t) [3]. Therefore, our method is sound, that
is, we do not report safety when a bug exists.

4.3 Shape-Class Refinement Based on Interpolants

Our refinement procedure first tries to refine the predicate abstraction, by locally
adding to the predicate abstraction nullary predicates from the interpolants. If
the algorithm does not find new predicates to refine the predicate abstraction,
then it tries to refine the heap abstraction, by locally refining the shape classes.
In order to specify heap abstractions, we introduce the following data structures.

Tracking Definitions and Shape-Class Generators. A tracking definition
represents the pointers and field predicates that we track for analyzing the heap.
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A tracking definition D = (T, Ts, Φ) consists of (1) a set T of tracked pointers,
which is the set of variables that may be pointing to some node in a shape graph;
(2) a set Ts ⊆ T of separating pointers, which is the set of variables for which we
want the corresponding predicates (e.g., points-to, reachability) to be abstraction
predicates; and (3) a set Φ of field assertions. A tracking definition D = (T, Ts, Φ)
refines a tracking definition D′ = (T ′, T ′

s, Φ
′), if T ′ ⊆ T , T ′

s ⊆ Ts and Φ′ ⊆ Φ.
We denote the set of all tracking definitions by D.

A shape-class generator (SCG) is a function m : D → S that takes as input a
tracking definition and returns a shape class, which consists of core predicates,
instrumentation predicates, and abstraction predicates. The tracking definition
provides information about which pointers and which field predicates need to
be tracked by the program analysis; it is the SCG that determines which pred-
icates are actually added to the shape class. Useful SCGs produce at least the
summary predicate sm, a points-to predicate ptx for each pointer x ∈ T in the
tracking definition, and a field predicate fdφ for each field assertion φ ∈ Φ in the
tracking definition. While the pointers and field assertions in the tracking defi-
nition are discovered by interpolation (see below), predicates other than sm, pt ,
and fd predicates need to be added by defining appropriate SCGs.1 An SCG m
refines an SCG m′ if m(D) � m′(D) for all tracking definitions D. We require
that the set of SCGs contains at least the greatest element m0, which is a con-
stant function that generates for each tracking definition the shape class (∅, ∅, ∅).
Furthermore, we require each SCG to be monotonic: given an SCG m and two
tracking definitions D and D′, if D � D′, then m(D) � m(D′).

A shape type T = (σ,m,D) consists of a C structure type σ, an SCG
m, and a tracking definition D. For example, consider the C type struct
node {int data; struct node *next;}; and the tracking definition D =
({p, q}, {p}, {data = 0}). To form a shape type for a singly-linked list, we can
choose an SCG that takes a tracking definition D = (T, Ts, Φ) and produces a
shape class S = (Pcore , Pinstr , Pabs) with the following components: the set Pcore

of core predicates contains the default unary predicate sm for distinguishing
summary nodes, a binary predicate next for representing links between nodes
in the list, for each variable in T a unary points-to predicate, and a unary field
predicate for each assertion in Φ. The set Pinstr of instrumentation predicates
contains for each variable in T a reachability predicate. The set Pabs of abstrac-
tion predicates contains all core and instrumentation predicates about separating
pointers from Ts. More precise shape types for singly-linked lists can be defined
by providing a generator that adds more instrumentation predicates.

A heap-abstraction specification is a function Ψ̂ that assigns to each program
location a set of shape types. The specification Ψ̂ defines a heap abstraction in
the following way: a pair (l, {T1, . . . ,Tk}) ∈ Ψ̂ yields a pair (l, {S1, . . . ,Sk}) ∈ Ψ
with Si = Ti.m(Ti.D) for all 1 ≤ i ≤ k. Technically we do not store the heap
abstraction Ψ in our system, but only its specification Ψ̂ . Whenever a shape
class is needed, the algorithm looks it up by applying the current shape type’s

1 Blast uses a predefined set of SCGs, to limit the space of shape classes our algorithm
considers. Technically, in Blast each SCG is given as a code module.
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SCG to the shape type’s tracking definition. The tracking definition contains
information about which pointers and field assertions to track on a syntactic
level. Since SCGs are monotonic, shape types can be refined in two different
ways: either we refine the shape type’s tracking definition, or we refine the shape
type’s SCG. In both cases, the produced shape class is guaranteed to be finer.

Refinement Algorithm. In the abstract-check-refine loop, predicate abstrac-
tion starts with empty set of predicates, and heap abstraction starts with empty
shape classes at all program locations. The input to the refinement algorithm is a
path t to an error location, which is feasible under the current abstraction (Π,Ψ)
(i.e., t is contained in the current ART). Following [11], the algorithm first checks
the PF of t for satisfiability. If the PF is unsatisfiable, then the predicate abstrac-
tion Π is refined by adding interpolants from Extract [Con](t) to the locations
on the path t. Otherwise, we check the EPF of t for satisfiability. If the EPF
is satisfiable, then we report a program bug. Otherwise, we compute new inter-
polants using Extract [FineCon](t), and consider each location pc on the path t
separately. We either refine the tracking definition of pc in Step 1, or the SCG
of pc in Step 2. The algorithm always tries Step 1 first, and only if neither new
pointers nor new field assertions are discovered from the corresponding inter-
polant, it tries Step 2. This interpolation-based analysis identifies the program
locations that require more precision to remove the error path from the ART,
and we refine the heap abstraction only for those locations.

Step 1: [refine the tracking definition of a location] For every pointer variable p
that occurs in the interpolant (e.g., p->h=3), if it matches the C type of the shape
type, then we refine the tracking definition of the shape type as follows. We add p
to the set of tracked pointers and to the set of separating pointers, and we close
the set of tracked pointers under aliasing, by adding also all pointer variables
that may be pointing to the newly tracked data structure. Thus the quality of
the refinement depends on the quality of the available may-alias information:
imprecise information may cause some pt predicates to be added unnecessarily.2

Moreover, if the pointer p is dereferenced in the interpolant, then we add the
corresponding field assertion (e.g., h=3) to the set of tracked field assertions. The
same SCG now produces a finer shape class for the refined tracking definition.

Step 2: [refine the SCG of a location] The choice of a finer SCG from the
predefined set of SCGs is guided by a refinement relation over the SCGs, which
can be used to encode various heuristics that analyze the abstract error path.
The finer SCG produces for the same tracking definition a finer shape class, by
adding new core, instrumentation, and/or abstraction predicates (e.g., sharing,
reachability, cyclicity). If such a finer SCG cannot be found, due to the limitation
to a predefined set of SCGs, then the algorithm reports that refinement has not
succeeded and terminates. The predefined set of SCGs can be extended in a very
flexible way to arbitrary data structures by developers of the model checker, and

2 Blast currently uses a flow-insensitive may-alias algorithm in which all cells allo-
cated at the same site are represented by one abstract cell.
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by experienced users. Given an infeasible program path t and a finite set M of
SCGs, it can be proved that the iterative application of the refinement algorithm
eventually produces an abstraction (Π ′, Ψ ′) that is able to remove t from the
ART, provided that M contains an appropriate SCG [3]. Completeness, in this
sense, hinges on the use of a sufficiently rich set of SCGs.

5 Implementation

The algorithm presented in this paper is implemented in Blast 3.0, which inte-
grates Tvla for shape transformations and the foci library [18] of Blast 2.0 for
predicate interpolation. Blast’s abstract states, which were triples consisting
of program counter, call stack, and (nullary) predicate set, are extended by a
set of shape regions, one for each tracked shape class. Tvla (written in Java) is
integrated into Blast (written in OCaml) as a particular implementation of a
shape-analysis module and can be replaced by other shape-analysis tools. We use
a simple home-brewed may-alias analysis, but this module can also be changed.

We used our system to verify several C programs that manipulate list data
structures containing integers as data elements; the details about the examples
can be found in [3]. None of the programs was successfully verified by Blast’s
predicate abstraction without shape analysis. Our examples can also be proved
by Tvla, giving as input the abstraction that our system constructs automati-
cally. On the examples we analyzed, Blast with integrated shape analysis and
automatic discovery of relevant points-to and field predicates is never more than
25% slower than Tvla with the given final abstraction. On the other hand, since
our system uses different abstractions at different program locations, while Tvla
performs a global analysis, there are examples on which our system significantly
outperforms Tvla. Also, Blast uses more efficient data structures (BDDs) for
updating the nullary-predicate part of the abstract state. Further experiments
are needed to precisely quantify the trade-off between the extra costs caused by
the abstraction refinement loop of Blast versus the global analysis of Tvla.

6 Related Work

Shape analysis based on three-valued logic is a framework that supports a family
of abstractions [19,16,15], and from that standpoint, the predicate-abstraction
component of our system simply contributes a set of nullary predicates to the
shape-abstraction component. Thus our algorithm can be seen as generalizing
(1) interpolation-based predicate discovery from nullary predicates to unary
points-to and field predicates, and (2) lazy abstraction refinement from predicate
abstractions to heap abstractions. We treat field predicates as core predicates,
in contrast to [9], where abstractions of the data-structure contents are treated
as instrumentation predicates. By relying on a given, fixed set of SCGs, we are
still far from a completely automatic lazy implementation of shape analysis,
which would require also the automatic discovery of more general instrumen-
tation predicates. However, there are inherent limitations on what first-order
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theorem provers can deduce about three-valued abstractions that use transitive-
closure predicates such as reachability [20]. Instead, one could use learning-based
techniques from [17], which generate new instrumentation predicates that are not
just boolean combinations of previously used predicates. These could be used in
our system to dynamically add new SCGs.

There have also been proposals to encode shape analysis within predicate-
abstraction frameworks [1,7]. So far they apply only to restricted settings, such
as singly linked lists, or need user help for computing abstractions. Fischer et
al. implemented in Blast a combination of predicate abstraction with a para-
metric lattice-based data-flow analysis [8], but they did not consider any auto-
matic refinement of the data-flow component. Gulavani and Rajamani proposed
a CEGAR method for abstract interpretation and applied it to shape analy-
sis [10], but their refinement is done globally, not lazily.
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Abstract. This paper addresses the problem of proving safety properties of im-
perative programs manipulating dynamically allocated data structures using de-
structive pointer updates. We present a new abstraction for linked data structures
whose underlying graphs do not contain cycles. The abstraction is simple and
allows us to decide reachability between dynamically allocated heap cells.

We present an efficient algorithm that computes the effect of low level heap
mutations in the most precise way. The algorithm does not rely on the usage of
a theorem prover. In particular, the worst case complexity of computing a single
successor abstract state is O(V log V ) where V is the number of program vari-
ables. The overall number of successor abstract states can be exponential in V . A
prototype of the algorithm was implemented and is shown to be fast.

Our method also handles programs with “simple cycles” such as cyclic singly-
linked lists, (cyclic) doubly-linked lists, and trees with parent pointers. Moreover,
we allow programs which temporarily violate these restrictions as long as they are
restored in loop boundaries.

1 Introduction

Automatically establishing safety properties of programs that permit dynamic stor-
age allocation and low-level pointer manipulations is challenging. Dynamic allocation
causes the state space to be infinite; moreover, a program is permitted to mutate a data
structure by destructively updating pointer-valued fields of nodes.

It is well understood that reachability is crucial for reasoning about linked data struc-
tures. In this work we establish a simple abstraction method for reasoning about reach-
ability that is provably efficient and precise. This provides both a practical analysis
method and a theoretical contribution towards the understanding of how precise and
efficient shape analysis can be.

1.1 Main Results

We present a method to conservatively verify reachability properties via abstract inter-
pretation [4]. Specifically, we present a new lightweight method for shape analysis (e.g.,

� Supported by an Adams Fellowship through the Israel Academy of Sciences and Humanities.
�� Supported by NSF grant CCF-0514621.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 547–561, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



548 T. Lev-Ami, N. Immerman, and M. Sagiv

see [10,21]) that applies to programs on “regular tree-like” data structures. The method
is sound, i.e., whenever it reports that a safety property holds, it indeed holds. Further-
more, we compute the best abstract transformer [4] for atomic Java-like statements.
A prototype of the algorithm was implemented and is shown to be fast. The system
can be seen as a specialization of TVLA [16] to a set of data-structures and a set of
properties.

In the rest of the section, we elaborate on the key contributions. Sect. 8 includes more
detailed comparison to related work.

New Abstraction of Heap Shape. In Sect. 3, we present our simple abstraction for
heaps based on contracting segments of the heap into a single summary-node.

In contrast to existing methods, our abstraction admits the precise and efficient recov-
ery of reachability information concerning the modeled concrete states. For example,
every path in the abstraction between “important” nodes is a must-path, i.e., it must
exist between the corresponding nodes in each modeled concrete state. Thus, reason-
ing about reachability between important nodes can be performed efficiently via simple
graph traversal.

We show that the abstraction of graphs with no undirected cycles yields a linear
number of nodes. Therefore, the size of the abstract state space is bounded for such
programs, allowing effective state space exploration. Moreover, this also holds for sim-
ple cycles such as cyclic singly-linked lists, (cyclic) doubly-linked lists and trees with
parent pointers. Furthermore, it is possible to apply our abstraction only in loop bound-
aries and thus allowing programs to temporarily violate the data-structure invariants.
Full proofs for the theorems in the paper can be found in [15].

Efficient Best Transformers. In Sect. 4, we present an efficient O(NS ∗ V ∗ logV )
algorithm for computing the best abstract transformers for Java-like atomic program
statements including destructive pointer manipulation.V is the number of program vari-
ables. NS is the number successor abstract states (can be exponential in the number of
program variables).

Most existing methods for shape analysis including TVLA do not implement the
best transformers and may require exponential time to produce a single abstract state.
Also, in contrast to existing methods for generating the best abstract transformers
(e.g. [7,22,2]), our method does not employ a theorem prover. Precise reachability in-
formation is maintained using our abstraction.

Efficient algorithms for computing the best transformers for predicate abstraction in
singly-linked lists were developed in [18]. This paper can be considered as a continua-
tion of [18] that handles more complex data-structures.

Information Extraction. It is important to extract information from an abstract state
about the concrete states that it models. For example, we sometimes need to verify dis-
jointness of data structures. For safety properties we check that user-specified assertions
hold in every execution leading to a given program point.

In Sect. 5, we provide a conservative and efficient method that extracts such infor-
mation by evaluating a first-order formula with transitive closure on a given abstract
state. Our method is more precise than standard Kleene evaluation (e.g., [21]), although
less precise than supervaluational semantics [3,19]. We show that our method is exact
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for “atomic” reachability properties between important nodes. Our limited experiments
indicate that one of our evaluation methods is precise enough in practice.

2 Preliminaries

We call an allocated object on the heap a heap node. Shape analysis tracks reference
program variables and reference fields, i.e., to which heap node each reference variable
points to and for each heap node where each of its reference fields point to. In this paper
we assume a fixed set of (reference) program variables denoted by PVar and a fixed
set of reference fields denoted by PRef .

A state (shape graph [10]) is a triple C
def= (UC , envC , refC). The universe, UC , is

the set of allocated heap nodes; the environment, envC ⊆ PVar×UC , is a partial func-
tion from program variables to the heap nodes that they point to; and refC : PRef →
P(UC × UC) is a function from each field name f to a relation which pairs each node
with the node its f field points to. Since these relations induce a graph on the heap
nodes, we will use the term f -edge for a pair of nodes in the relation refC(f) and call
f its edge type. In languages such as Java where the program cannot use the memory
address of an object directly, the specific names of the nodes in UC are immaterial.
Thus, we define equality between states as isomorphism between them.

2.1 Notations

Fig. 1 lists some notation used throughout. We shorten E{{x}} to E{x}.

Symbol Definition Meaning
E∗ Reflexive Transitive Closure of E
succ(X, E) {(n, n′) ∈ E | n ∈ X} Restriction of first component
pred(X,E) {(n, n′) ∈ E | n′ ∈ X} Restriction of second component
E1 ◦ E2 {(n, n′′) | (n, n′) ∈ E2, (n

′, n′′) ∈ E1} Relation composition
E{X} {n′ | (n, n′) ∈ succ(X, E)} Relation image
upb→a λn. if (n = b) then a else n Updating b to be a
fldC ⋃

f∈PRef refC(f) Edges of C

disj(v1, v2, v3) v1 �= v2 ∧ v1 �= v3 ∧ v2 �= v3 The variables are disjoint

Fig. 1. Notations used in the paper

We define var(S) def= envS{PVar} to be the set of nodes in S pointed to by program
variables and shared(S) to be that set of nodes in S that are pointed to by two or
more different heap nodes (ignoring self-loops). We say such a node is heap-shared.
Formally, shared(S) def= {v | (w1, v) ∈ fldS, (w2, v) ∈ fldS, disj(w1, w2, v)}

3 Abstraction

A state, C, is concrete if none of its edges are self loops and if each refC(f) is a
partial function. The main idea of the abstraction is to keep a set of distinct nodes
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which are not abstracted and abstract the rest of the graph in such a way that keeps all
reachability information for these nodes explicit. The set of distinct nodes we use are
those nodes that are either pointed to by variables or heap shared, i.e., distinct(S) def=
var(S) ∪ shared(S).

We contract an edge (a, b) by replacing each occurrence of b by a,
contract(S, a, b) def= (US − {b}, envS, λf.{(upb→a(n1), upb→a(n2) | (n1, n2) ∈
refS(f)}) (note that envS is not updated because we never contract a node pointed
to by a variable). We now define a method B(S,D) that given a state and a set of nodes
D s.t. distinct(S) ⊆ D ⊆ US , returns the abstract state generated by repeatedly apply-
ing contraction on all edges that are not incident to nodes in D until the unique fixpoint
is reached. An equivalent way to define B(S,D) is by collapsing every maximal con-
nected subgraph Tn of S that does not contain nodes in D (the subgraph is a rooted
tree) to a single node n (its root). The edge types of the self-loops of n are exactly the
types of edges within Tn.
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Fig. 2. (a) A concrete state C1, (b) S1 = B(C, distinct(C1))

We call the function, M , that maps each node to the node it was collapsed into by B
the embedding function (after [21]). When multiple nodes have been embedded into a
single node n (i.e., |M−1(n)| > 1) we call n a summary node. Fig. 2 gives an example
of a concrete state C1 and the result of B(C1, distinct(C1)). We mark summary nodes
with a double-circle for emphasis.

The abstraction relation, β
def= { (S,B(S, distinct(S))) | S a state}, maps each state,

S, to a state in which every edge not incident to a distinct node has been contracted.

3.1 Data Structures

We limit the class of data structures handled to graphs with no undirected cycles (i.e.,
when we remove the direction of the edges we get an undirected forest) and no garbage
(i.e. all nodes are reachable from program variables). We call such states admissible
states. This class includes linked lists, trees, and trees with limited amount of sharing
(i.e., each pair of nodes has at most one simple path between them and each pair of
variables meets at most once). Extensions to support cyclic linked lists, doubly linked
lists and trees with parent pointers are described in Sect. 6.

We use a standard relational abstract domain with set-union as join (in Sect. 6 we
define a more concise partial-join operator). The concretization relation is defined as
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γ
def= {(S,C)|(C, S) ∈ β andC is an admissible concrete state}. We say that an abstract

state, S, is feasible if γ{S} �= ∅, i.e. S models some admissible concrete state.

3.2 Properties of the Abstraction

We start with some important definitions:

– We say that (n1, n2) ∈ refS(f) is an f must edge when
∀C ∈ γ{S}, n′

1 ∈M−1(n1), n′
2 ∈M−1(n2) . (n′

1, n
′
2) ∈ refC(f)

– We say that (n1, n2) ∈ refS(f) is an f may edge when
∀C ∈ γ{S} . ∃n′

1 ∈M−1(n1), n′
2 ∈M−1(n2) . (n′

1, n
′
2) ∈ refC(f)

– We say that (n1, n2) ∈ refS(f) is an f unique may edge when
∀C ∈ γ{S} . ∃! n′

1 ∈M−1(n1), n′
2 ∈M−1(n2) . (n′

1, n
′
2) ∈ refC(f)

– We say there is a must path between n1 and n2 when
∀C ∈ γ{S}, n′

1 ∈M−1(n1), n′
2 ∈M−1(n2) . (n′

1, n
′
2) ∈ (fldC)∗

– We say there is a may path between n1 and n2 when
∀C ∈ γ{S} . ∃n′

1 ∈M−1(n1), n′
2 ∈M−1(n2) . (n′

1, n
′
2) ∈ (fldC)∗
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Fig. 3. An ab-
stract state S2

The abstract state S2 in Fig. 3 models all singly-linked lists of length
4 or more s.t. x points to their head and y to their tail. Note that there
are cases in which there is a must path between two nodes (e.g. from
0 to 2) although the path in the abstract state contains may edges (the
edges from 0 to 1 and from 1 to 2).

Thm. 1 summarizes some important properties of our abstraction.

Theorem 1. For every feasible abstract state S the following hold:
1. Every f edge in S is an f may edge.
2. Every non self-loop f edge is an f unique may edge.
3. Every f edge between non-summary nodes is an f must edge.
4. A node in S is a summary node iff it has self-loops.
5. For every summary node n the subgraph induced by M−1(n) is a tree and has a
unique incoming edge which leads to its root.
6. Let n1 �= n2 where n1 has no self-loops or a single self-loop of the same type as its
outgoing edge. A path from n1 to n2 is a must path.

Proof: (sketch)
1. Immediate from definition of contraction.
2. Analysis of possible contractions reveals that the only case in which two edges are

merged by a contraction is if an undirected cycle appeared in the original state.
3. Immediate from 4 and definition of contraction.
4. Contraction always creates a self-loop. Self-loops are preserved by contraction

and contraction is the only way to create self-loops.
5. Let Tn be the subgraph induced by M−1(n). Since contraction is done on edges,

the nodes in Tn are weakly connected. Shared nodes are never contracted, thus there is
no sharing in Tn. Since the original state had no garbage any cycle either has a variable
pointing to it, or has a shared node. In any case, an entire cycle cannot be contracted to
the same summary node. Thus, Tn is a tree. Furthermore, to avoid sharing and garbage,
the one and only incoming edge must be to its root.
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6. By 5 and 1, every summary node represents a tree and every edge is a may-edge.
Thus, paths between non-summary nodes are must paths. Since a summary node is a
tree, all the nodes in it are reachable from the root and so if the target node is a summary
node, the path is still a must path. If the source node has a single self-loop it is a singly-
linked list. The only outgoing edge from a singly-linked list of the same type as the
self-loop is from its last node, thus reachable from all nodes. �

The last property is of particular importance since it means that the reachability infor-
mation in the abstract state is explicit. This property is not standard in shape analysis
abstractions (e.g., in TVLA it in not always the case). The reason for the limitation on
n1 is that if n1 has 2 or more self-loops it embeds a tree, thus n2 is not reachable from
some nodes embedded to n1 (e.g. in Fig. 2 the path in S1 from node 3 to node 4 is not
a must path, since for example in C1 there is no path from node 5 to node 4).

Lem. 1 defines when an abstract state S is feasible and Lem. 2 bounds its size. Note
that the set of admissible concrete states is exactly the set of feasible abstract states with
no self-loops.

Lemma 1. (Feasibility) Abstract state S is feasible iff the following hold:
1. There are no edges between two different non-distinct nodes.
2. Distinct nodes are never summary nodes.
3. A node that has two outgoing f edges has a self-loop of a different edge type.
4. Deleting all self-loops from S makes it admissible.

Proof: (sketch)
(Only If) 1. An edge between two different non-distinct nodes can be contracted,

which contradicts that S is in the image of β.
The rest of the properties hold in concrete admissible states and are preserved by

contraction.
2. Immediate from definition of contraction.
3. A counterexample would be a node with zero or one self-loops and two outgoing
edges of the same type. Since in the original concrete state each edge is a partial func-
tion, a node without self-loops cannot have two outgoing edges of the same type. A
node with a single self-loop is a linked list, thus the only outgoing edge from it can be
from its tail, thus a single edge.
4. It is easy to see that contractions do not introduce garbage or undirected cycles (ex-
cept for self-loops).

(If) It can be shown that a state that satisfies these properties can always be expanded
to a concrete state of finite size. �

Lemma 2. (MaxSize) For every feasible abstract state S we have |US | ≤ MaxSize,
where MaxSize

def= (|PRef |+ 1) ∗ (2 ∗ |PVar | − 1)

Proof: Let C be an admissible concrete state, D a set s.t. var(C) ⊆ D ⊆ UC , and
S = B(C,D). S has the property that every node is either in D or has a parent in D.
Thus, the number of nodes in |US| ≤ |D| ∗ (|PRef | + 1). Since C has no garbage
and no undirected cycles, |distinct(C)| ≤ |PVar | ∗ 2 − 1. Thus, if (C, S) ∈ β then
|US | ≤MaxSize. �
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4 Best Transformers

Concrete Semantics. Fig. 4 defines the concrete semantics for simple atomic state-
ments in Java-like programs. Most preconditions were added to simplify the presenta-
tion. In practice we use temporaries to translate each program statement to a sequence
of operations while maintaining the preconditions. Some preconditions such as no null-
dereference cannot be removed by a sequence of operations. The analysis detects vio-
lations of these preconditions and gives a warning.

The gc operation performs garbage collection by removing all nodes not reachable
from any variable. Garbage collection can by executed either after every x = null op-
eration, periodically, or we can run garbage detection instead of garbage collection to
detect memory leaks. The semantics of the other operations are straightforward formal-
izations of standard Java-like operational semantics.

Operation Precondition Semantics

gc let R = fld∗(var(S)) in
(R, env, λf.succ(R, ref(f)))

x = null (U, succ(PVar − {x}, env), ref)

x = y env{x} = ∅ (U, env ∪ {(x, n)|(y, n) ∈ env}, ref)

x.f = null env{x} �= ∅∧ (U, env,
ref(f) ◦ env{x} ⊆ var(S) ref [f := succ(U − env{x}, ref(f))])

x.f = y env{x} �= ∅∧ (U, env, ref [f := ref(f) ∪ {(nx, ny)|
ref(f) ◦ env{x} = ∅ (x,nx) ∈ env, (y, ny) ∈ env}])

x = y.f env{x} = ∅∧ (U, env ∪ {(x, n)|(y, n) ∈ ref(f) ◦ env},
env{y} �= ∅ ref)

x = malloc env{x} = ∅ ∧ nmalloc �∈ U (U ∪ {nmalloc}, env ∪ {(x, nmalloc)}, ref)

x == null env{x} = ∅
x == y env{x} = env{y}

Fig. 4. The operations supported and their concrete semantics

4.1 Abstract Transformers

We now show how to compute the best abstract transformers (see [4]) for the our ab-
straction and concrete semantics defined in Fig. 4. The best transformer of an operation
st is defined as stbest def= β◦st◦γ (i.e, for each concrete state in γ{S} apply the concrete
semantics and abstract). This definition is not constructive since the number of states
in γ{S} is unbounded and potentially infinite. The main idea is to define a relation
focus[st] whose image is a bounded set of states and if (S, S′) ∈ focus[st] there is
a representative state C ∈ γ{S} s.t. β{st(S′)} = β{st(C)} and vice versa. Thus, we
define the abstract transformer to be st�

def= β ◦ st ◦ focus[st]. Note that the transformer
defined in the concrete semantics can be applied to abstract states as well.

The focus operation is similar to the one defined in [21], i.e., it is a partial concretiza-
tion intended to restore enough information to compute the transformer precisely. Let
D(st, C) def= distinct(C) ∪ distinct(st(C)). We define focus to be:
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Definition 1. focus[st] def=
{
(S,B(C,D(st, C)))

∣∣ C ∈ γ{S}
}

Focus takes all the states in γ{S} and keeps both the distinct nodes of the state and the
nodes that will become distinct after the statement is executed. In Sect. 4.2 we define
an algorithm that computes the image of focus.

Lem. 3 gives some important properties for the interaction of β and st. Note that the
existence of commutative diagrams is not true in general shape abstraction. Thm. 2 uses
Lem. 3 to prove that st� is the best abstract transformer.

Lemma 3. For every (S,C) ∈ γ, let D = D(st, C) and S′ = B(C,D). Then:
Idempotence. β{S′} = β{S},
Commutative Diagrams. B(st(C), D) = B(st(S′), D), and
Equivalence under β. (β ◦ st){C} = (β ◦ st){S′}

Proof: (sketch)
Idempotence. It can be shown that contraction induces a confluent derivation relation

commutative in the choice of D. Since B can be seen as the fixed-point of that
relation, the statement follows.

Commutative Diagrams. This can be verified by checking the algebraic operations
defining the transformer, for each operation in Fig. 4.

Equivalence under β. By commutative diagrams we haveB(st(C), D)=B(st(S′), D).
By Idempotence we have β{B(st(C), D)} = β{st(C)} and β{B(st(S′), D)} =
β{st(S′)}. Thus, β{st(C)} = β{st(S′)}. �

Theorem 2. st� is the best abstract transformer, i.e., st� = stbest.

Proof: Let (S, S�) ∈ st�. There is S′ s.t. (S, S′) ∈ focus[st] and (S′, S�) ∈ β ◦
st. By Def. 1 there is a concrete and admissible state C s.t. (S,C) ∈ γ and S′ =
B(C,D(st, C)), and by Lem. 3 (C, S�) ∈ (β ◦ st) thus (S, S�) ∈ stbest.

Conversely, let (S, S�) ∈ stbest. There is C s.t. (S,C) ∈ γ and (C, S�) ∈ (β ◦ st).
Let S′ = B(C,D(st, C)). By Def. 1 we have (S, S′) ∈ focus[st], and by Lem. 3
(S′, S�) ∈ β ◦ st thus (S, S�) ∈ st�. �

4.2 Algorithms

In order to compute the best abstract transformer, st�, we must give efficient algorithms
for state equality, focus, and β. The total complexity of computing the abstract trans-
former is O(NS ∗ V ∗ logV ) where NS is the number of successor abstract states
(which may be exponential in the number of program variables).

Focus. In Sect. 4.1, we defined focus non-constructively. We now present an algo-
rithm, Focus(S, st), that computes focus[st]{S}. The first observation is that for all
statements, st, except x = y.f , focus[st] is the identity relation. This is clear for
x = malloc, and true for the rest because distinct(st(S)) ⊆ distinct(S),

For st
def= x = y.f , Focus(S, st) enumerates on all states that can be contracted to

S by a minimal number of contractions and still have distinct(st(S)) ⊆ distinct(S)
as non-summary nodes. Let nf be the node pointed to by y.f in S. If it is a non-
summary node Focus(S, st) = {S}. Otherwise, let G be the self-loops of nf in S.
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Let (S, S′) ∈ focus[x = y.f ], S′ can be contracted into S by at most one contraction
for each edge type in G. Let N ′

f be the subgraph of S′ that was contracted into nf .
Since all edges are may-edges, the edges within N ′

f are exactly the self-loops of nf .
Furthermore, since all the edges between different nodes are unique may-edges, the
edges between N ′

f and the rest of the graph are exactly the edges between nf and the
rest of the graph. Finally, since S′ is the result of B on an admissible concrete state the
property that a node that has two outgoing g edges has a self-loop of different reference
field, is maintained. This gives us an enumeration algorithm to compute Focus(S, st).
Lem. 4 summarizes the properties of Focus(S, st).

Lemma 4. focus[x = y.f ]{S} = Focus(S, x = y.f)

Beta. To compute the image of β we perform two tasks, 1) check that the state is ad-
missible and 2) return a state in which all the possible contractions have been made.

Admissibility. Since an admissible state is one without garbage and with no undirected
cycles, the check is done by DFS from all nodes pointed to by variables to make sure
that there is no garbage. To compute undirected connectivity, we maintain a Union-Find
data structure during the DFS, thus detecting undirected cycles. We start with singleton
groups for each node and for every edge we encounter we union the groups the two
incident nodes belong to. Thus the sets maintain weak reachability. If we find the two
incident nodes already belong to the same group we found an undirected cycle and we
abort. The complexity for this check is O(nα(n)), where n is the size of the input state
and α is the inverse Ackerman function.

To compute β{S} we observe that the edges contracted are exactly the edges be-
tween non-distinct nodes. Thus, the algorithm performs two DFS traversals. The first
computes distinct(S) by marking nodes that are either pointed to by variables or have
an in-degree greater than one (note that self-loops do not contribute to the in-degree).
The second traversal simply contracts every non self-loop edge s.t., both its incident
nodes are not distinct. The complexity of this algorithm is O(n).

State Equality. We defined state equality as isomorphism between the states. We give
an algorithm that computes canonical names for each state. The canonical names of two
states are identical iff the two states are isomorphic.

Canonical names are given to nodes by traversing the graph in DFS from program
variables (in fixed order) traversing the reference fields in fixed order as well. The name
of a node n is composed of the names of the variables pointing to n, n’s self loops
and for each of n’s parents, the parent name and the type of the edge leading from the
parent to n. To ensure the traversal order is unique, we only leave a node to its children
after all its parents have been visited. Hash-cons is used to store the canonical names,
allowing for O(1) amortized time equality checks. The name of a state is the hash-cons
of its set of nodes ordered by some fixed order (e.g. memory address of the hash-cons).
Thus, the total complexity of the algorithm is O(V logV ).

5 Evaluation

We use a subset of first-order logic with transitive closure as a query logic to extract
information from states. Let [[ϕ]]S denote the boolean value of formula ϕ in state S.
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Definition 2. (Sound) An evaluation function of a formula is sound iff for every feasi-
ble abstract state S, ¬[[ϕ]]S ⇒ ∀C ∈ γ{S} .¬[[ϕ]]C

(Complete) An evaluation function of a formula is complete iff for every feasible
abstract state S, ¬[[ϕ]]S ⇐⇒ ∀C ∈ γ{S} .¬[[ϕ]]C

To compute assert(ϕ, S), i.e., to verify that all the states in γ{S} satisfy ϕ, we will
apply a sound evaluation function on ¬ϕ and verify that the result is false.

5.1 Query Logic

The query logic is first order logic in Negation Normal Form (NNF) over the following
vocabulary:

– For every x ∈ PVar a unary predicate symbol; x(n) iff x points to n
– For every f ∈ PRef a binary predicate symbol; f(n1, n2) iff the f field of the n1

points to the n2
– Binary predicate symbol TC; TC(n1, n2) iff there is any non-empty path from n1

to n2
– Equality; n1 = n2 iff n1 and n2 are the same heap node
Examples:

∀v . ∃w.x(w) ∧ (v = w ∨ TC(w, v)) (1)

∀v, w .¬y(w) ∨ ¬left(v, w) (2)

Formula (1) states that all the nodes in the heap are either pointed to by x or reachable
from the node pointed to by x. Formula (2) states that the any node pointed to by y has
no incoming left edge.

We will restrict our attention to closed formulas (no free variables). We say that a
formula is guarded if every quantifier is of the form (∀v . x(v) ⇒ ψ) or (∃v . x(v)∧ψ)
where x is some program variable.

To evaluate formula ϕ in state S we translate S to a standard logical structure Ŝ and
ϕ to a FO formula, TR(ϕ), in the vocabulary of Ŝ. Let [[ϕ]]S def= [[TR(ϕ)]]Ŝ where the
right hand side is standard FO Tarskian semantics. Thm. 3 ensures the soundness of the
evaluation and guarantees completeness for the guarded fragment of the query logic.

Theorem 3. For every formula ϕ, λS.[[TR(ϕ)]]Ŝ is a sound evaluation function. If ϕ is
guarded, it is also a complete evaluation function.

5.2 Translation

The universe of Ŝ is the universe of S. The vocabulary and its interpretation are given
in Fig. 5(a). The translation defines for each edge f two predicates, f∀ and f∃. If
f∀(n1, n2) then there is an f must edge from n1 to n2. If f∃(n1, n2) then there is
an f may edge from n1 to n2. Similarly we use TC∀(n1, n2) to define a must path
from n1 to n2, and TC∃(n1, n2) to define a may path from n1 to n2. The translation is
a formalization of Thm. 1. Fig. 5(b) gives the translation of S2 defined in Fig. 3. The
translation rules for the literals in the query formula are given in Fig. 5(c).
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Vocabulary Interpretation
x(n) (x, n) ∈ envS

f∃(n1, n2) (n1, n2) ∈ refS(f)
f∀(n1, n2) f∃(n1, n2) ∧ ¬sm(n1) ∧ ¬sm(n2)
TC∃(n1, n2) A (possibly empty) directed path

from n1 to n2

TC∀(n1, n2) TC∃(n1, n2), n1 �= n2 and the
path satisfies case 6 of Thm. 1

sm(n)
∨

f∈PRef (n, n) ∈ refS(f)

Predicate Tuples
x 〈0〉
y 〈2〉
left∃ 〈0, 1〉, 〈1, 1〉, 〈1, 2〉
left∀

TC∃ 〈0, 1〉, 〈0, 2〉,
〈1, 1〉, 〈1, 2〉

TC∀ 〈0, 1〉, 〈0, 2〉, 〈1, 2〉
sm 〈1〉

(a) (b)
ϕ TR(ϕ) ϕ TR(ϕ)
x(v) x(v) TC(v1, v2) TC∃(v1, v2)
¬x(v) ¬x(v) ¬TC(v1, v2) ¬TC∀(v1, v2)
f(v1, v2) f∃(v1, v2) n1 = n2 n1 = n2
¬f(v1, v2) ¬f∀(v1, v2) ¬n1 = n2 ¬n1 = n2 ∨ sm(n1)

(c)

Fig. 5. (a) Translation of an abstract state to a logical structure. (b) Ŝ2 - the translation of S2 from
Fig. 3 (c) Rules for translating a query formula to the vocabulary of Ŝ.

Theorem 3 Proof: (sketch)
The evaluation of TR(ϕ) on Ŝ simulates the evaluation of a ϕ on any concrete state C
s.t. (S,C) ∈ γ. Assume an assignment vi .→ ni satisfies a literal L(v1, ..., vk) in S′,
we shall see that vi .→ M(ni) satisfies TR(L)(v1, ..., vk). Most cases are immediate
from the definition of Ŝ and the properties of the abstraction (Sect. 3.2). The only case
requiring further explanation is L ≡ ¬v1 = v2. Here we may chose n1 �= n2 s.t.
M(n1) = M(n2), but in this case sm(M(n1)) thus TR(L)(v1, v2) still evaluates
to true. Since an NNF formula has no negation outside of literals this is enough for
soundness. �

Examples: The translation of (1) is ∀v.∃w.x(w)∧(v = w∨TC∃(w, v)) which evaluates
to true in Ŝ2 as expected. The translation of (2) is ∀v, w.¬y(w) ∨ ¬left∀(v, w) unfor-
tunately this formula also evaluates to true. In some cases, including this one, we can
overcome this imprecision by an improved formula translation TR′(ϕ), as described
in [15].

6 Extensions

6.1 Loop Boundaries

Some programs temporarily violate the data structure invariants (including admissibil-
ity) and restore all within the boundary of a single loop iteration. We can handle such
programs with the same level of precision by only performing β on loop boundaries.

6.2 Partial Join

Partial Join [17] replaces union as the join operator of the abstract domain with an
operator that merges matching states. We build a variant of the partial join operator
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by ignoring the self-loops when giving canonical names to states. Matching states are
merged by performing union on the self-loops on nodes with the same canonical names.
The concretization function is modified to consider that some of the self-loops may not
represent concrete edges.

The focus operation needs to be updated according to the changes in the concretiza-
tion function. There are two changes in the algorithm: 1) There is no need to enumerate
the self-loops in the subgraph contracted to the summary node. 2) The case in which
the summary node represents a single node needs to be considered.

The experimental results (Sect. 7) show that Partial Join is important for perfor-
mance, while maintaining precision.

6.3 Cycles

The abstract domain can be extended to support cycles in the following limited way.
A directed cycle is admissible if there is a path from a variable that contains the entire
cycle and all the outgoing edges from all the nodes of this path are of the same edge type
(i.e. the cycle is a part of a singly-linked list). A state is admissible if all its undirected
cycles are actually admissible directed cycles. All the properties of the abstraction such
as the bounded abstract state size remain true for this extended class.

Focus and β can be easily modified to support these cycles since an entire cycle can
never be contracted (since there has to be a node on each cycle that is either pointed to
by a variable or heap-shared). The subtleties come from two sources. One is the fact the
a self loop can now represent a concrete self-loop and not a summary node. This can be
easily solved by adding an extra bit per node indicating whether it is a summary node
or not and maintaining it in all the operations.

The second subtlety is in computation of canonical names, since without breaking
the cycles we may never be able to give a name to a node before traversing its children.
The solution is to mark the back-edges during the first DFS and ignore them in the
second DFS. At the end, we add their names to their incoming nodes.

6.4 Parent Pointers

The abstract domain can be extended to allow parent pointers (i.e., doubly linked lists
and trees with parent pointers) in the following limited way. Each node can use only a
single field as a parent pointer (specified by the user). Parent pointers are not considered
for contraction, heap-sharing or garbage (thus every node has to be reachable using
non parent-pointer fields). This means that exactly the same nodes will be contracted
whether parent pointers exist or not. Either all the nodes contracted to a summary have
the same parent pointer (in this case we say that the summary node has that parent
pointer) or none of them have it. If two nodes are contracted, all the parent pointers
incoming or outgoing from these nodes have to be the inverse of “real” reference fields
and the two nodes and the edge between them have to agree on the parent pointer (either
none have parent pointers, or all of them have the same parent pointer).

These limitations still allow us to handle doubly-linked lists and trees with parent
pointers as long as every node is reachable using “real” reference fields (i.e. there is a
pointer from the head of the doubly linked list or from the root of the tree). Specifically
we can handle all the doubly-linked list examples of [21].
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To support this extension we make the following changes:

Focus. The only problem in the current focus is the fact that we can now traverse a
parent pointer into a summary node and, in this case, it does not necessarily lead to the
root of the sub-graph contracted to the summary node. The parent pointers within the
sub-graph are easy to handle since they are either the inverse of all the reference fields
in the sub-graph or none of them.

Beta. Since the contractions ignore the parent pointers we only need to make sure that
the state is admissible. We update the current admissibility check to consider the parent
pointer limitation described above.

Updating the canonical names algorithm is simple as well.

7 Implementation

We have implemented the abstract transformer detailed above including the extensions
of Sect. 6. Focus was implemented only for linked lists and binary trees (i.e., up to two
self-loops). The implementation is written in Java and is integrated with the Soot Java
Optimization Framework [20] as a front end. The empirical results of running our anal-
ysis on some examples are given in Fig. 6. In all cases the analysis also proved absence
of memory leaks, acyclicity (where applicable) and absence of null-dereferences. N/A
states that the information for the example is not available for that tool and O/S means
that it is out of scope for the tool. Max states is the maximum number of states in each
program point. The columns marked with ”[R]” use the relational join as described
in Sect. 4. The columns marked with ”[P]” use the partial join extension described in
Sect. 6. The TVLA times given for tree manipulating algorithms use partial join as well.
The tests were made on an Intel Pentium M, 1.6 GHz with 1.00 GB of RAM.

Programs Time[R] Max states[R] Time[P] Max states[P] [2] TVLA [18]
deleteSortedTree 2359.70 192355 3.22 520 O/S 47.48 O/S
insertSortedTree 20.85 9365 0.55 264 O/S 1.8 O/S
lindstromScan 1459.63 79673 8.36 1337 O/S 65.86 O/S
insertRedBlack > 24 hours 38.15 4853 O/S N/A O/S
reverse 0.05 15 0.11 8 0.1 0.531 5
reverseCycle 0.24 159 0.26 62 0.1 N/A 2
merge 0.20 96 0.15 36 17.8 4.006 15
delete 0.02 20 0.01 12 0.9 1.242 7
bubbleSort 0.03 36 0.03 21 N/A 11.887 N/A
bubbleSort2 0.08 76 0.08 33 11.4 N/A N/A
insertSort 0.06 100 0.05 48 N/A 20.219 N/A

Fig. 6. The empirical results from running the abstract transformer implementation

The programs are explained in [15]. The “bubbleSort” and “bubbleSort2” are
two variants of an in-place bubble sort for linked lists analyzed by TVLA and [2]
respectively.
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We can see that our analysis is indeed fast and in some cases up to 100 times
faster than the other analyses depicted. We should point out that most examples
are small, thus the differences in running times can be partially attributed to engi-
neering issues. Checking the properties detailed above for these examples is done
automatically by the system. To check other properties we need a way to extract
information from the abstract states. This is done by formula evaluation and is detailed
in Sect. 5.

8 Related Work

Shape and heap analysis is a subject of active research with many interesting algo-
rithms including [10,21,13]. The TVLA system generalizes these algorithms and can
be utilized to implement our algorithm. Indeed, in this paper we followed the line of
research similar to the one in [8,13,12,18] of developing a specialized shape analysis
for commonly used data structures.

We are very pleased with the ability of our method to compute the best transformers
in an efficient way. In contrast, TVLA can spend a lot of time in order to determine if an
abstract state is feasible. Indeed it can spend an exponential time even when there are no
resultant abstract states. The abstraction in this paper is tailored for an interesting set of
properties. A mechanism to support other properties (such as TVLA’s Instrumentation
Predicates) remains an interesting open problem.

Connection analysis [6] keeps reachability information between program variables.
Our work is more precise as it can perform strong updates for heap manipulation. Gram-
mar based abstraction [13] uses a restricted grammar to annotate summary nodes with
their possible shapes. The abstractions are incomparable since the grammar based ab-
straction can express invariants (such as binomial heap) that cannot be expressed in our
abstraction. On the other hand, the grammar based abstraction can deal with only a lim-
ited amount of sharing. For example, it cannot represent a tree with parent pointers and
a pointer arbitrarily deep into the tree.

The shape analysis of [5] is very similar to [18] both in the properties of the abstrac-
tion and in the programs handled.

Decision Procedures for Linked Data Structures. An orthogonal line of research is
the development of decision procedures and theorem provers which support transitive
closure [1,9,14,2]. Such techniques can be utilized with arbitrary abstractions.

In this paper, we developed direct methods for a specific abstraction. We are en-
couraged by the fact that our asymptotic complexity is lower than the above mentioned
procedures by orders of magnitudes. Moreover, our implementation is also faster by a
factor of 100 than the one reported in [2]1. The MONA System [11] can be used to
implement the operations in this paper. However, it has non-elementary complexity and
is in our experience infeasible for program with trees.

Acknowledgements. We thank Noam Rinetzky and the anonymous CAV referees for
many helpful comments.

1 Our method also allows trees which are beyond the scope of [2].
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Bardin, Sébastien 63
Barnat, Jǐŕı 278
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