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Preface

This volume contains the proceedings of the International Conference on Com-
puter Aided Verification (CAV), held in Seattle, Washington, USA, July 16-20,
2006. CAV 2006 was the 18th in a series of conferences dedicated to the ad-
vancement of the theory and practice of computer-assisted formal analysis meth-
ods for software and hardware systems. The conference covers the spectrum
from theoretical results to concrete applications, with an emphasis on practical
verification tools and the algorithms and techniques that are needed for their
implementation.

We received 121 regular paper submissions and 23 tool paper submissions.
Of these, the Program Committee selected 35 regular papers and 10 tool papers.
Each submission was reviewed by three members of the Program Committee. In
addition, each regular paper was reviewed by at least one expert external to the
Program Committee.

The CAV 2006 program included five invited talks:

— Manuvir Das (Microsoft) on “Formal Specifications on Industrial-Strength
Code—From Myth to Reality”

— David Dill (Stanford University) on “I Think I Voted: E-voting vs. Democ-
racy”

— David Harel (Weizmann Institute) on “Playing with Verification, Planning
and Aspects: Unusual Methods for Running Scenario-Based Programs”

— Tony Hoare (Microsoft) on “The Ideal of Verified Software”

— Joe Stoy (Bluespec) on “Verification? Getting it Right the First Time”

The traditional CAV tutorial was replaced by a special symposium, “25 Years
of Model Checking,” organized by Orna Grumberg (Technion) and Helmut Veith
(Technical University of Munich). The symposium consisted of 12 invited lectures
delivered by leading researchers in the field of model checking.

This year, CAV was part of the Federated Logic Conference (FLoC 2006), and
was jointly organized with ICLP (International Conference on Logic Program-
ming), IJCAR (International Joint Conference on Automated Reasoning), LICS
(Logic in Computer Science), RTA (Rewriting Techniques and Applications),
and SAT (Theory and Applications of Satisfiability Testing). In particular, the
invited talk by David Dill was a FLoC plenary talk, and the invited talk by
David Harel was a FLoC keynote talk.

CAV 2006 had nine affiliated workshops:

— ACL2: 6th International Workshop on the ACL2 Theorem Prover and Its
Applications (joint with IJCAR)

— BMC: 4th International Workshop on Bounded Model Checking

— CFV: Workshop on Constraints in Formal Verification

— FATES/FV: Formal Approaches to Testing and Runtime Verification (joint
with IJCAR)



VI Preface

— GDV: Third Workshop on Games in Design and Verification

— SMT-COMP: Second Satisfiability Modulo Theories Competition

— TV: First Workshop on Multithreading in Hardware and Software: Formal
Approaches to Design and Verification

— V&D: First International Workshop on Verification and Debugging

— VSTTE: Workshop on Verified Software: Theory, Tools, and Experiments

We gratefully acknowledge financial support for CAV 2006 from Cadence
Design Systems, IBM, Intel Corporation, Microsoft Research, and NEC.

We thank the Program Committee members and the sub-referees for their
work in evaluating the submissions. We appreciate the efforts of the Program
Committee to attend the first physical PC meeting in the history of CAV. We
thank Rance Cleveland and the University of Maryland for hosting the CAV PC
meeting. We also thank the Steering Committee and the Chairs of CAV 2005
for their help and advice. Finally, we thank Andrei Voronkov for creating and
supporting the outstanding EasyChair conference management system.

June 2006 Thomas Ball
Robert B. Jones
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Formal Specifications on Industrial-Strength
Code—From Myth to Reality
(Invited Talk)

Manuvir Das

Center for Software Excellence
Microsoft Corporation
manuvir@microsoft.com

Abstract. The research community has long understood the value of
formal specifications in building robust software. However, the adoption
of any specifications beyond run-time assertions in industrial software
has been limited. All of this has changed at Microsoft in the last few
years. Today, formal specifications are a mandated part of the software
development process in the largest Microsoft product groups. Millions of
specifications have been added, and tens of thousands of bugs have been
exposed and fixed in future versions of products under development. In
addition, Windows public interfaces are formally specified and the Visual
Studio compiler understands and enforces these specifications, meaning
that programmers anywhere can now use formal specifications to make
their software more robust.

How did this happen? The key ingredients of success were picking
a critical programming error that costs software companies real money
(buffer overruns), and building an incremental solution in which pro-
grammers obtain value proportional to their specification effort. The key
technical aspects of this incremental approach include SAL, a lightweight
specification language for describing memory access behaviour of C/C++
programs; espX, a heavyweight modular checker that enforces consis-
tency between the code and the specification and validates memory ac-
cesses; and SALinfer, a lightweight global analysis that infers and inserts
a large fraction of the memory specifications automatically.

The goal of this talk is to share the technical story of the insights
that enabled SAL, espX and SALinfer, as well as the social and practical
story of how we were able to move organizations with thousands of pro-
grammers to an environment where the use of specifications is routine.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, p. 1, 2006.
© Springer-Verlag Berlin Heidelberg 2006



I Think I Voted: E-Voting vs. Democracy
(FLoC Plenary Talk)

David Dill

Stanford University
dill@cs.stanford.edu

Abstract. Touch-screen voting machines store records of cast votes in
internal memory, where the voter cannot check them. Because of our
system of secret ballots, once the voter leaves the polls there is no way
anyone can determine whether the vote captured was what the voter
intended. Why should voters trust these machines?

In January 2003, I drafted a “Resolution on Electronic Voting” stating
that every voting system should have a “voter verifiable audit trail,”
which is a permanent record of the vote that can be checked for accuracy
by the voter, and which is saved for a recount if it is required. I posted
the page with endorsements from many prominent computer scientists.
At that point, I became embroiled in a nationwide battle for voting
transparency that has continued now for three years.

In this talk, I'll explain the basic problems and solutions in electronic
voting.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, p. 2, 2006.
© Springer-Verlag Berlin Heidelberg 2006



Playing with Verification, Planning and Aspects:
Unusual Methods for Running Scenario-Based
Programs
(Abstract of FLoC Keynote Talk)

David Harel

The Weizmann Institute of Science
dharel@weizmann.ac.il

The talk first describes briefly the inter-object, scenario-based approach to pro-
gramming that I've been working on with colleagues and students for the last
eight years. It starts with the 1998 advent of the language of live sequence charts,
or LSCs, jointly with Werner Damm. LSCs extend message sequence charts, or
sequence diagrams with modalities, and thus can express possible, mandatory,
forbidden and fragmented scenarios of behavior. Following this, together with
my ex-PhD student Rami Marelly, we extended the language quite significantly,
adding time, symbolic instances, forbidden elements and more. We also devel-
oped a convenient method for programming LSCs directly from a GUI, called
play-in. The highlight of the work with Marelly, however, is play-out, a method
for executing LSC specifications, and it is play-out that serves to turn the entire
approach into a means for actually programming a system, and not just one for
eliciting requirements. The entire approach we then implemented in a tool called
the Play-Engine.

There is something very declarative about LSCs, and something akin to the
execution mechanisms of constraint programming and logic programming in the
play-out method, but for various reasons it is more subtle and therefore was
considerably difficult to work out. Still, the basic play-out mechanism deals with
the nondeterminism inherent in the LSC language in a naive way, just like the
way most software development tools that execute models deal with racing con-
ditions: it simply chooses one of the possible next things to do and does it. Of
course, this may lead to violations of the constraints present in the LSC specifi-
cation. Had another path been taken this could perhaps have been avoided.

The present talk discusses three more sophisticated ways to run LSCs, or,
more generally, to execute scenario based models and programs. Interestingly,
and somewhat unusually, the three methods use ideas from three quite separate
fields of computer science: verification, Al and programming methods.

The first method, smart play-out, which was developed with ex-PhD student
Hillel Kugler, translates the problem of finding a full non-violating superstep
(i.e., a sequence of actions that the system takes in response to an external
event) into a verification problem, and then employs model-checking to solve it.
The resulting superstep is then promptly executed in a way that is transparent to

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 3-4, 2006.
© Springer-Verlag Berlin Heidelberg 2006



4 D. Harel

the user. We thus, surprisingly, use hard-core verification not to prove properties
of programs or check consistency, etc., but to run programs.

The second method, planned play-out, under development with MSc student
Itai Segall, uses Al-style planning algorithms (we use one called Graphplan) to
do essentially the same. The advantage over smart play-out is in the fact that
we can find more than one possible superstep, and we have set-up a sort of user-
guided exploration mechanism to allow the user to navigate among possibilities
during execution.

While both these methods follow the original play-out mechanism in being an
interpreter approach to execution, the third method is a compilation one. With
PhD student Shahar Maoz, we exploit the similarities between aspect-oriented
programming and the inter-object nature of LSCs, and have worked out a scheme
for compiling LSCs directly into AspectJ. We use what we call scenario aspects
to coordinate the simultaneous monitoring and direct execution of the LSCs.

All three methods still require lots of work. None work yet on the full extended
LSC language, with time and symbolic instances being the main features that
cause difficulties. There is also a lot of research still to be done in refining and
strengthening the methods to scale up to large systems, and of course the jury is
still not in on which of these will serve to be the best, and on whether there are
other ideas for executing inter-object scenario-based programs. However, given
our own excitement about the general approach, and the feedback we have been
receiving, the topic seems to be deserving of the efforts needed.



The Ideal of Verified Software
(Invited Talk)

Tony Hoare

Microsoft Research
thoare@microsoft.com

Abstract. The ideal of verified software has long been the goal of re-
search in Computer Science. This paper argues that the time is ripe to
embark on a Grand Challenge project to construct a program verifier,
based on a sound and complete theory of programming, and evaluated by
experimental application to a large and representative sample of useful
computer software.

1 Introduction

Computer Science owes its existence to the invention of the stored-program dig-
ital computer. It derives continuously renewed inspiration from the constant
stream of new computer applications, which are still being opened up by half
a century of continuous reduction in the cost of computer chips, and by spec-
tacular increases in their reliability, performance and capacity. The Science of
Programming has made comparable advances by the discovery of faster and
more general algorithms, and by the development of a wide range of specific ap-
plication programs, spreading previously unimaginable benefits into almost all
aspects of human life.

These amazing advances in computer application can distract attention from
the fact that Computer Science also has a central core of fundamental discoveries
which are particular to itself as an independent intellectual discipline. Comput-
ing Research is driven, like research in other mature branches of pure science,
by natural curiosity, exploring the basic foundations and limitations of the pro-
grammable computer, independent of any particular area of application. Because
of its effective combination of pure knowledge and applied invention, Computer
Science can reasonably be classified as a branch of Engineering Science.

Like all scientists, we are faced with the problem of complexity, both of com-
puters and of the programs that control them. Many software systems in wide-
spread and productive use today have grown and evolved over several decades.
Although they are human artefacts, they are now comparable in complexity with
the most complex known natural phenomena, for example the Human Genome,
whose raw binary code (nearly a gigabyte) has recently been laboriously decoded
and published. Geneticists are now engaged in the even more challenging task
of understanding the complexity of this code. They too are driven by curiosity
about the fundamental questions about the role of the genome as a blueprint

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 5-16, 2006.
© Springer-Verlag Berlin Heidelberg 2006



6 T. Hoare

for an entire human being. They want to find out firstly what the genes do, and
secondly how they do it. They want to discover the basic chemical principles
which govern genetic activity, and so to understand not only how but why the
genome works as it does. And finally, they wish to support all their discoveries
and generalisations by accumulation of sound scientific evidence. Even when the
scientist has accomplished all these objectives, it remains for the engineer and
the industrialist to find out how to exploit enlarged scientific understanding for
commercial profit.

The challenge facing Computer Science is very similar to that facing genet-
ics. Our first and entirely non-trivial task is to understand what a computer
program does. As for other engineering artefacts, the externally visible aspects
of program behaviour can be codified as a formal engineering specification, ex-
pressed in the relevant technical terminology. An explanation of how a program
works can be formally expressed in terms of types, assertions, and other re-
dundant annotations. They serve as internal specifications, attached at all the
major and minor program interfaces. The correctness of the explanation can in
principle be checked by a program analysis tool known as a program verifier. It
uses automated logical and mathematical proof techniques to check consistency
between a program and its internal and external specifications. A program ver-
ifier can play the same role in Software Engineering research as the automatic
tools that are now essential or even obligatory in other branches of Engineering,
to check the soundness and safety of engineering designs, long before they start
construction. An adequately specified and annotated program, which has passed
the scrutiny of an automatic program verifier, is said to be a verified program.
It offers highly credible evidence that the program will work in accordance with
its specification.

The ideal of verified software has been a long-standing inspiration to research
in basic Computer Science, and has driven the development of a number of
advanced tools performing many of the functions of a program verifier. The most
widely used tools concentrate on the detection of programming errors, widely
known as bugs. Foremost among these are modern compilers for strongly typed
languages, which give warnings of potential anomalies in a program, insofar
as those bugs that can be diagnosed without any knowledge of the program’s
specification. More advanced program analysers begin to take specifications into
account. These have been applied by the computer hardware industry to verify
programs that simulate the behaviour of computer chips, and they have averted
expensive hardware design errors. Other program analysers are routinely used
in the software industry to detect security risks and other errors in large-scale
legacy code and in modifications to it.

It is expected that normal commercially motivated development of these tools
will increase their power to detect more and more errors. This could be an
unending task. There is evidence that in large-scale software there will always
be more errors to detect, especially since correction of each error is itself prone
to error. Eventually only the rarest errors will remain: each one that occurs
in practice is extremely unlikely ever to occur again. Such errors are often not
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worth correcting, unless there is a risk that the error can be exploited by viruses,
bugs, or worms. Unfortunately the analysis of each error is both expensive and
error-prone. Like insects that carry disease, the least efficient way of eradicating
program bugs is by squashing them one by one. A completely different approach
is needed. The only sure safeguard against attack is to pursue the ideal of not
making the errors in the first place.

That is the goal of more advanced program verification tools. They have been
used in the design of critical embedded software applications, often to assist
human reasoning in achievement of correctness by construction. They have also
been used in support of academic teaching of the principles of programming. But
program verification tools of the present day are a long way from the original
vision of a program verifier described by Jim King in his Doctoral thesis in 1969.
The more practical analysers in use today have made significant compromises,
affecting the soundness of their guarantee of correctness as well as the expressive
power of the language in which specifications and programs are written. The
more idealistic tools are restricted in application by problems of scale, both in
the size of the programs treated and in the complexity of the programming
language accepted for analysis.

I suggest that the construction of a program verifier, with capabilities close
to the original ideal, may be achieved in the foreseeable future by a co-ordinated
long-term program of multi-national research, with three strands:

1. Theories: development and unification of the relevant general theories of
programming, to cover programming languages in use today. It would have
to include features of object orientation, inheritance, concurrency, etc.

2. Tools: incorporation of the theories into a coherent and co-ordinated toolset
for program analysis, with evolving capabilities for program verification by
a variety of techniques of constraint solving, model checking, and automatic
theorem proving.

3. Experiments: evaluation of the tools by experimental application to a large
and representative collection of real computer programs and their specifica-
tions, which are accumulated together with their specifications and proofs
in a scientific repository. As a long-term target, we may hope to accumulate
a million lines of verified code.

The project would employ computer scientists with varied specialist skills
and experience drawn from around the world. We must combine long-term co-
operation on strategic development with short-term scientific competition on
methods and tactics. We must co-ordinate long-term planning of the eventual
product with the setting of a hierarchy of intermediate goals. We must organise
a division of labour to construct each of the tools of the verification toolset,
and to verify each program in the expanding repository. We must ensure that
intermediate results are accumulated in the repository, so that experiments can
be repeated, and further research can build on their results. The broad scale,
the long duration, and the high scientific ideals of this project are comparable
to those of the Human Genome project; and maybe we too would be justified in
appropriating the title of a Grand Challenge.
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The methodology of the project derives its inspiration from the traditional
practices of pure scientific research—the construction of theories, the exploration
of their applicability by experiment, and (increasingly in the present day) the
development and use of computer tools to confirm the match between theory
and experimental result. The scientific understanding and technological advances
arising from successful completion of the project will afford the opportunity for
significant reduction in the direct and indirect costs currently associated with
programming error.

2 The Ideals of Pure Science

Traditionally, the pure science of Physics claims the crown as the most advanced
of the natural sciences. It satisfies a basic human curiosity by exploring the fun-
damental components and the structures of the material universe, and by giving
an account of its origin and history and even its future. The most sophisticated
mathematical concepts and theories have been developed, not just to describe
but also to explain the behaviour and mutual interactions of all material objects,
ranging is scale from quarks and elementary particles to clusters of galaxies and
super-clusters. Like other branches of pure science, Physics invents its own lan-
guage to ask its own abstruse questions, it sets its own agenda of investigation,
and it engages in massive long-term collaborative projects to confirm its most
general theories; a current example is the construction of high-energy particle
accelerators, by which it is hoped to confirm existence of the theoretically pre-
dicted Higgs boson.

Computer Science is better known as an applied science, having more in com-
mon with other branches of Engineering Science than with a pure science like
Physics. Its value has been fully demonstrated by the enormous contributions
that have been made by computers and their software to almost every aspect of
the modern technological world. And new opportunities for beneficial application
are still repeatedly opened up by continuing improvements in the versatility and
power and ubiquity and cheapness of computer hardware, reinforced by increases
in the speed of computer-mediated communications. The success of any particu-
lar software product or project requires an understanding not only of computers
and of their general-purpose software, but also of the domain in which they are to
be applied. In this respect, applied Computer Science, like applied Mathematics
and Statistics, is an inherently multi-disciplinary discipline.

Again like Mathematics and Statistics, Computer Science has a pure branch,
in which research is motivated by curiosity and high scientific idealism. We pur-
sue scientific ideals in the same way that Physicists to pursue the utmost ac-
curacy of measurement, or chemists seek the utmost purity of their materials.
For the computer scientist, the total correctness of computer programs is just
such an ideal. Scientists seek such ideals for their own sake, going far beyond the
current needs of the practicing engineer. The main daily concern of the engineer
is to accommodate unavoidable impurities in materials and inaccuracies in mea-
surement, just as computer users have to find workarounds for discovered errors
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in computer programs. Practical engineering is all about compromises that take
into account the particular circumstances and timescales of the current project,
and the particular interests of the current customer. For the engineer, good
enough is always good enough; and fixed budgets and delivery dates are always
an adequate excuse for imperfection. The scientist knows that only perfection
will protect his work from being superseded by later work of other scientists.

In contrast to the particularities exploited by the good engineer, the pure
scientist pursues generality of theory for its own sake. Although the success of
any particular experiment may demand skilful compromise, the long-term goals
are to transcend the particular circumstances of the current experiment, and to
extend the boundaries of application of the current theory. The ultimate accolade
goes to those who discover the most general concepts, explaining by the laws of
a unified theory such highly disparate phenomena as the fall of an apple and the
motion of the planets and moon.

Another ideal pursued by the scientist is certainty of knowledge, gained by
accumulation of scientific evidence from widely varied sources. For the engineer,
certainty is an irrelevance. His main concern is to make good decisions in the
face of prevailing uncertainties that would take far too much time and money to
remove.

Nevertheless, the scientist pursuing more abstract ideals, and accumulating
knowledge in collaboration with the scientific community, will often make totally
unexpected and unplanned contributions to the later success of the engineer and
even to the monetary profits sought by the commercial entrepreneur. One day,
the engineer realises that the purity and accuracy, which the pure scientist has
shown to be achievable in the laboratory, can be exploited on an industrial scale
in a deliverable product of a completely new kind. For example the silicon chip
is now manufactured in a fabrication line that achieves levels of environmen-
tal purity that were only dreamed of in the scientific laboratories of twenty
years ago. One day, the entrepreneur realises that a completely new market
can be found for the product, and money can be made from it. Amazingly, the
roles of scientist, engineer and entrepreneur are sometimes concentrated in a
single person. But only because that person recognises how different the roles
actually are.

The extra generality of theory sought by the pure scientist also offers long-term
benefits for the engineer. It is a more general theory that allows the practical
experience gained by the engineer on one project to be transferred to a later
project which is not identical to it. It is generality of theory that allows the
engineer to explore a range of product designs, and select the one that most
fully satisfies the needs of a broad market of potential customers. Experience of
modern technology reveals again and again the benefits of an understanding of
general theories: initially, they seem to go far beyond the needs of any partic-
ular case, but in the long run they lead to continuous stream of new products
which are more functional, more economic, and more reliable than anything that
preceded them.
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In summary, in the advancement of Engineering Science, the engineer and the
pure scientist play distinct but closely related roles; their contributions are com-
plementary to each other, and equally necessary. The role of the software engineer
in extending the benefits of computer application can be immediately recognised
and financially rewarded. But Computer Science also has a pure branch, which
deserves equal recognition. It seeks answers to the same basic questions that
inspire all branches of engineering science, no matter what their particular area
of application.

3 The Five Basic Questions of an Engineering Science

There are five basic questions that are common to all branches of Engineering
Science, whether the objects of study are ships, bridges, motor cars, genes or
computer software. In summary, they are

What does it do?

How does it work?

Why does it work?

How do we know?

How can we exploit the knowledge to improve the product?

Cu =

The third and fourth questions are primarily the domain of pure science,
and the rest have more to do with engineering. The first engineering question is
“Precisely what is the product for, and exactly what does it do to meet its goals?”
The answer to this question is given in the form of an engineering specification
of the product. Such a specification is usually drafted as a guide to design as well
as the use of the product; it is therefore formulated at a high level of precision
and detail.

Secondly, the engineer wants to understand exactly how the product works.
This is described at varying levels of granularity and detail by the specifications
of the internal interfaces of the product. These explain the functions of each
component of the product, and how they interact. Often, the interface specifica-
tions are sufficiently complete and precise to permit mathematical calculations,
guaranteeing that the joint working of all the components will lead to the cor-
rect operation of the product as a whole. In a mature branch of engineering,
these calculations are implemented in a computer program, whose use is often
obligated by standards of professional practice, and in some cases even by law.

The pure scientist asks two further questions, perhaps even more basic, about
an engineering product. The first is the question “Why does the product work?”
The explanation must appeal to general scientific principles that apply not just
to a particular product, but to a general range of similar products, actual or
hypothetical. The answers are found in the basic laws and fundamental theory
of the relevant branches of pure Science. And finally, the scientist asks the most
important question of all: “How do we know that the answers to the previous
questions are actually right? How do we know that the theory corresponds to
reality in general, as well as in each particular case?”
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The answer is given by the experimental method, as recommended by Francis
Bacon; it is on experiment that our confidence in the whole of modern Science is
based. The desired connection between the theory and the observable experimen-
tal results often involves a long chain of mathematical reasoning and calculation.
In earlier times, these calculations were performed by hand; but now the essence
of the scientific theories is built into computer programs which analyse high
volumes of experimental data, and check its conformity with theory.

The last engineering question, on how to exploit the accumulated knowledge
for commercial advantage, is one which the scientist, pursuing knowledge for
its own sake, should not be required to answer in advance. Pure knowledge
is independent of application. That is why it is so valuable. There is plenty
of experience that the first and most important application of new knowledge
will be to meet needs that are entirely unpredicted when the research starts.
Knowledge is what prepares us to meet the problems of an unknown future. So
the fifth question is one that should not be answered until after the knowledge
has been accumulated.

The general scientific questions described above are applied by Computer
Scientists, to computer programs. The first question is “What does the program
do?”; it is answered by a functional specification of the system, expressed as
a formal description of the observable properties of its intended behaviour in
action. The second question “How does it work?” is answered by specifications
of the internal interfaces between components of the system, often expressed by
technically redundant declarations and assertions sprinkled in the text of the
program. The third question “Why does the program work?” is answered by
the theory of programming, which formalises the semantics of the programming
language in which the program is written: this provides a basis for the rules
which define the correctness or conformity relation between a program and its
accompanying documentation.

And the final question is “How do we know that the program is in fact
correct?” The theory of programming tells us that this final assurance can in
principle be given by mathematical reasoning and proof, guaranteeing that the
specifications are a logical consequence of the text of the program. This theory
has already been put into practice. Since the earliest times, proofs for small
and critical programs have been constructed manually, and checked by human
eye. In some cases, the proofs have been constructed as part of the development
process for the software. More recently, the reliability and effectiveness of the
verification has been increased by automation of the construction or the check-
ing of the proofs. In analogy with other branches of science, consider the text of
the program as the experimental data; consider the specifications of the external
and internal interfaces of the program as a theory of how and why the program
works. Now an automatic tool for program verification is one that checks the
consistency of the theory with the actual text of the program, just like the anal-
ysis tools of other branches of science and engineering. Its application greatly
increased confidence that the verified program when executed will conform to
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specification. That is the dream that has for over thirty years driven research in
basic Computing Science.

The tool that realises this dream is called a program verifier. Unfortunately
it does not yet exist.

4 Proposal for a Grand Challenge Project

A project to construct a program verifier will require the general support from
the entire computer science research community, and especially from those who
have the background, the skills and the experience to make a substantial con-
tribution to its progress. The relevant topics of research include programming
language semantics, programming principles, type theory, compiler construction,
program analysis and optimisation, test case generation, mathematical mod-
elling, programming methodology, design patterns, dependability, software evo-
lution, and construction of programmer productivity tools. In addition there are
various approaches to mechanical theorem proving, which include proof search,
decision procedures, SAT solving, first-order induction, higher order logic, alge-
braic reduction, resolution, constraint solving, model checking, invariant abstrac-
tion, and abstract interpretation. These lists are not intended to be complete;
new ideas are very necessary, and will be welcomed from any quarter.

The main challenge of a verification project will be to bring this wide range of
skills to bear on the evolution of a coherent toolset. At least an equal effort must
be devoted to exercise and evaluate the prototype tools on a realistic selection
of actual computer programs and their specifications. The history of computing
gives examples of amazing progress that can be made in the evolution of tools by
their repeated application to a series of agreed challenges. And the success of the
project would have an amazing impact on professional practice of programming,
on the justified confidence which Society places in computers, and on the further
progress of scientific research in consolidating and extending these benefits.

It is hoped that the majority of specialists in all these fields will welcome the
prospect that a program verifier will exploit the results of their research, for
the ultimate benefit of all programmers and users of computers. But most of
them will not wish to commit their own efforts to such a long-term and labori-
ous collaborative project. And rightly so. Most of scientific progress, and nearly
all breakthroughs, are made by individual scientists, working by themselves or
in a small local team; they need to preserve their freedom to pursue their own
bright ideas in their own directions, and to communicate their research results by
publication in the research literature. Other excellent engineering scientists may
be discouraged by the long timescales of the project. They will prefer to grasp
ever expanding opportunities for transfer of software verification technology into
direct industrial and commercial exploitation, and they will enjoy the more sig-
nificant and immediate benefits that can be achieved. The transfer of verification
technology to the computer chip industry took just such a course. A balance be-
tween short-term opportunistic researches and a long-term co-ordinated research
programme is essential. There should be a fruitful interchange of research skills,
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prototype tools and theoretical understanding between one style of research and
another. Indeed, even after completion of the long-term project, the practical
exploitation of a program verifier will be critically dependent on the continuing
progress of research in such areas as system dependability and software evolu-
tion, programming methodology and software engineering.

In conclusion, we should not expect more than a small percentage of the
relevant research communities to be engaged in a Grand Challenge project at
any one time. Success of the project is far from a foregone conclusion, and to
commit more than a small proportion of the world’s scarce resources of scientific
talent in any particular specialist area would be simply too great a risk.

The success of a Grand Challenge project depends on the agreement of a
substantial community of the world’s scientists, not only that the project is
worth while, but also that the time is ripe to start it now. The project can
hardly start without a measure of agreement on the following points:

1. Selection of an initial set of complementary tools, and allocation of respon-
sibility for their development.

2. Establishment of a repository of representative programs and specifications,
together with assertions, test cases, development histories, and other relevant
formal material.

3. Planning for adaptation of the tools and representative programs, so that
each tool applies to all programs.

4. Division of responsibility for supply of missing specifications, incomplete
assertions or missing code for specifications and programs in the repository.

5. Experimental application of tools to the material in the repository.

6. Accumulation of the results of experiment for exploitation in subsequent
research and development.

7. Identification of opportunities for improvement in the tools, and a planned
programme for their implementation.

8. Design of internal interfaces behind which specialised tools can be combined,
while preserving their freedom to evolve independently.

9. Election of an international guidance committee to oversee the progress and
direction of the research.

In later phases, the project would develop by expanding the range and ambi-
tion of the representative programs in the repository, by implementation of new
tools that combine technologies previously found successful on separate tests.

There is plenty of experience of large-scale, long-term collaborative projects in
other branches of science. For example, in Astronomy and in Nuclear Physics, all
new particle accelerators, satellites and telescopes are planned as long-term na-
tional or international collaborations. But such projects have so far been rare in
Computer Science, and this may be a symptom of the immaturity of our subject.
To embark on such a project now will need a fairly radical change to the culture
and the daily practice of our research. We will have to accept that a worthy
method of publication of new theoretical results will be to incorporate them in
a set of tools that has been designed by others. We will have to accept that the
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best progress will be made by combining the technologies currently promoted
in rival tools, each of which has hitherto aimed at universal applicability. And
above all, we will have to give the highest scientific rewards to those who apply
other peoples’ theories and other peoples’ toolsets to programs that have been
written by yet some-one else. It is the users of telescopes and particle accelerators
that win the Nobel prizes, not their builders. A broad division of labour among
specialists is commonplace in all mature branches of science: no-one expected
Einstein to test his own theories, and no-one expected Eddington to devise his
own theories for experiment. But in our subject such division of labour would
be a novelty. It is likely that successful conduct of a Grand Challenge project
may require radical changes in current modes of refereeing, publication prac-
tices, administration of research funding, and even the criteria for promotion of
academic researchers.

5 Costs and Benefits

Although the main goal of a Grand Challenge project is the advancement of
Science, it would be unrealistic to embark on the project without some consid-
eration of the costs and benefits for society as a whole.

The costs may be roughly estimated as between one and two thousand man-
years of scientific effort, expended throughout the world over a period of ten to
twenty years. This could be approaching ten percent of the world-wide availabil-
ity of research skills of those currently engaged in the relevant areas of formally
based research in Computer Science.

The benefits of program verification will be delivered in the form of reduc-
tion of the phenomenon of programming error, and a consequential increase of
confidence in the dependability of software systems in widespread use. Fortu-
nately, an estimate of the cost of programming errors is already available from
an independent source, which attributes them to an inadequate infrastructure
for program testing. Here is an extract from a recent report.

Based on the software developer and user surveys, the national [US]
annual costs of an inadequate infrastructure for software testing is esti-
mated to range from $22.2 to $59.5 billion. Over half of these costs are
borne by software users in the form of error avoidance and mitigation
activities. The remaining costs are borne by software developers [The
Economic Impacts of Inadequate Infrastructure for Software Testing,
US Dept. of Commerce Planning Report 02-03, May 2002].

This figure should probably be doubled to cover the world-wide costs of pro-
gramming error, and doubled again, if nothing is done about it, to cover the
growth in computer usage in the next decade. The prospect of saving just one
percent of this waste of resource for just one year would justify the allocation of
more funds to a Grand Challenge project in program verification than it could
ever find productive ways of spending. The limitation on the rate of progress will
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be the availability of researchers with the necessary background, skills and en-
thusiasm. Each year’s delay in the delivery and exploitation of the results of the
research will cost far more than the entire cost of the research project. Howevert,
the project is a risky one and there is no guarantee of return on investment.

Of course, full exploitation of the ultimate benefits arising from the project
will require more than simply the availability of a scientific prototype of a pro-
gram verifier. It will require that software engineers as a profession must adopt
a more scientific approach to the whole task of program development and evolu-
tion, from the elucidation of requirements and formalisation of specifications, to
the design and testing of program changes to be installed in running software. It
will require the development of re-usable libraries of useful concepts and speci-
fications, covering all the major application areas for computers. It will require
that the technology of verification developed in the project (though probably not
the prototype verifier itself) should be incorporated into commercially marketed
tool-sets. It will require the training and motivation of software engineers in the
use of the tools; and when the technology is widely available, its use may be
mandated, as in other branches of engineering, by official codes of engineering
practice, reinforced perhaps by professional, legal or commercial sanctions. It
is not the role of the scientist to predict or recommend such changes in law or
society—only to make them possible. And without a program verifier, they will
not be possible. In summary, the cost of technology transfer will be at least ten
times the cost of the basic research. Fortunately, success in the original research
project will greatly reduce the risk of this later and larger investment.

6 Public Esteem

In the present day, it must be admitted that the general public holds the profes-
sion of programming in rather low esteem. The newspapers delight in reporting
examples of major projects that are over budget, late, and sometimes even can-
celled before delivery. One of the many causes for these failures is the inadequacy,
the instability, or even the total absence of timely specifications, agreed in ad-
vance with the informed consent of the customer. And even after delivery, the
programs are full of annoying bugs, in some cases affecting many millions of
users throughout the world. Sometimes these bugs provide a target for the entry
and spread of viruses and worms in the computer network, which cause billions
of dollars of damage to those whose business relies on the web.

The low esteem of the programming profession is confirmed by an examination
of our normal every-day mode of working. Surely we are the only profession in
the world that expends half of its working life detecting and removing mistakes
committed in the other half. Our excuse is that without massive debugging
efforts, the software delivered to customers would be even less reliable. But other
professions have learnt that it pays to devote their main efforts to preventing
the errors from occurring in the first place. If a program verifier can help us to
do that, perhaps we can begin to earn the trust and respect of the public, and
even our own self-respect. In the recognised professions such as medicine and



16 T. Hoare

law, as well as in established branches of engineering, professional practitioners
strengthen their claim to the trust of the public, because they owe allegiance
to principles and ideals that transcend considerations of personal, political, or
financial advantage. It is important that Computer Scientists should insist on
their right to pursue similar impersonal ideals.

One of the beneficial side-effects of the announcement of a Grand Challenge
project is to raise public awareness and interest in the progress, the methods
and the results of scientific research. Astronomy has gained enormous visibility
from the spectacular achievements of the manned space programme, and the
human genome project has attracted many clever and enthusiastic students into
a scientific career in branches of biology. In general, young people are attracted
to science and engineering by their idealism and their innate curiosity about the
real world, or the workings of the products of engineering. A Grand Challenge in
verified software may not have the same glamour as those in Genetics or Physics,
but it makes the same kind of appeal to students who really want to understand
how things work and why.

7 Conclusion

The long-term benefits of an improved understanding of the relationship between
programs and their specifications are expressible as a vision of a future world in
which

1. The education and training of software engineers is based on scientific prin-
ciples.

2. Software engineers can be relied on to deliver new products on time, on
budget, and to specification.

3. No design or implementation errors are found in delivered software.

4. Changes and improvements to working software are undertaken with equal
confidence in their serviceability.

5. Computer software is always the most reliable component in any system
which it controls.

These goals will be achieved by basic advances in our understanding of Com-
puter Science. The advances are made by the normal scientific method of de-
velopment of a comprehensive theory, the conduct of experiment to confirm its
range of application, and the development of sophisticated computer programs
to check the match between experiment and theory.
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Abstract. We propose and evaluate a new algorithm for checking the
universality of nondeterministic finite automata. In contrast to the stan-
dard algorithm, which uses the subset construction to explicitly deter-
minize the automaton, we keep the determinization step implicit. Our
algorithm computes the least fixed point of a monotone function on the
lattice of antichains of state sets. We evaluate the performance of our
algorithm experimentally using the random automaton model recently
proposed by Tabakov and Vardi. We show that on the difficult instances
of this probabilistic model, the antichain algorithm outperforms the stan-
dard one by several orders of magnitude. We also show how variations
of the antichain method can be used for solving the language-inclusion
problem for nondeterministic finite automata, and the emptiness prob-
lem for alternating finite automata.

1 Introduction

The universality problem asks, given a nondeterministic finite automaton A over
the alphabet X, if the language of A contains all finite words over X', that is,
if Lang(A) = X*. This problem is fundamental in automata theory, and several
important problems in verification reduce polynomially to this problem. The
standard algorithm for universality is to first determinize the automaton using
the subset construction, and then check for the reachability of a set containing
only nonaccepting states. The subset construction may construct a deterministic
automaton that is exponentially larger than the original automaton. This explo-
sion is in some sense unavoidable, as the universality problem is known to be
PSpACE-complete [MS72]. Explicit determinization via the subset construction
is also useful to solve a wide range of other problems, such as checking the empti-
ness of alternating finite automata [CKS81, KV01], checking language inclusion
and language equivalence for two nondeterministic finite automata [HMUO1],
and solving two-player safety games of incomplete information [Rei84].
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Recently, we showed that explicit determinization via the subset construction
can be avoided when solving two-player safety games of incomplete information.
To avoid the subset construction, we proposed in [DDRO6] a lattice-theoretic so-
lution that comes in the form of a monotone function on the lattice of antichains
of state sets (an antichain is a set of C-incomparable sets). The greatest fixed
point of this monotone function contains the solution to the strategy synthesis
problem. The three main advantages of the antichain method over the subset
construction are as follows. First, the new algorithm keeps determinization im-
plicit. Second, the antichain algorithm takes into account the safety objective of
the game and computes only what is necessary to establish the existence of a win-
ning strategy for that particular objective. Third, antichains of state sets allow
us to store only maximal subsets of states for which a winning strategy exists.
This is because if Player I has a strategy to keep the game in safe states starting
from a set s of states, then she also has such a strategy for all starting sets
s’ C s. We show in this paper that the idea of keeping determinization implicit
using antichains can also be applied to important problems of automata theory,
such as universality and language inclusion for nondeterministic automata, and
emptiness for alternating automata.

First, we show that the universality problem for nondeterministic finite au-
tomata can be solved on the lattice of antichains of state sets using a variation
of the monotone function proposed in our previous work. We reduce the uni-
versality problem to a two-player reachability game of incomplete information,
which can be solved by computing the least fixed point of this monotone func-
tion. We implemented this solution using NUSMV [CCGR99] and the CUDD
library [Som98]. To compare the performance of the antichain algorithm to the
performance of various implementations of subset-construction based algorithms,
we used a large set of examples generated in the probabilistic framework by
Tabakov and Vardi [TV05]. This framework was proposed with the express pur-
pose of comparing the performances of algorithms on finite automata. In their
experiments, the authors conclude that explicit determinization as implemented
in [Mg04] outperforms the algorithm of Brzozowski [BL80] as well as newer im-
plementations, which use symbolic methods for the subset construction. Our
experimental results show that our implementation of the antichain algorithm is
considerably faster, on the entire parameter space of the probabilistic framework,
than the most efficient implementation of the standard algorithm. In particular,
on the most difficult instances of the probabilistic framework, the antichain al-
gorithm outperforms [Mg04] by two orders of magnitude. For this comparison,
we are limited to automata with approximately 175 states, which is the limit
that the explicit-determinization approach can handle on the most expensive in-
stances of the probabilistic framework. On these difficult instances, the antichain
approach scales much better: we are able to successfully check universality for
automata with several thousands of states in less than 10 seconds.

Second, to show the generality of the antichain approach, we also give
new algorithmic solutions to the language-inclusion problem for nondeterminis-
tic automata, and to the emptiness problem for alternating automata. Again, no
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explicit determinization is performed. To solve the emptiness problem for alter-
nating automata, we use the same lattice as for universality and only change the
monotone function that operates on the lattice. To solve the language-inclusion
problem for nondeterministic automata, we need a slightly richer lattice.

Structure of the Paper. In Section 2, we review some basic notions about finite
automata. In Section 3, we introduce the lattice of antichains of state sets, and we
present the antichain algorithm for the universality problem for nondeterministic
automata. In Section 4, we report on two different symbolic implementations of
the antichain algorithm, and we compare their performances with the classical al-
gorithm that uses explicit determinization. In Section 5, we give antichain-based
solutions for nondeterministic language inclusion and alternating emptiness.

2 Finite Automata

Definitions. A (nondeterministic) finite automaton, NFA for short, is a tu-
ple A = (Loc, Init, Fin, X, 6), where Loc is a finite set of states (or locations),
Init C Loc is the set of initial states, Fin C Loc is the set of accepting (or
final) states, X' is a finite alphabet, and 6 C Loc x X x Loc is a (nondeter-
ministic) transition relation. A deterministic finite automaton, DFA for short,
is an NFA A = (Loc, Init,Fin, 2, §) such that for all states ¢ € Loc and all let-
ters o € X, there exists a unique state ¢ € Loc such that 6(¢,0,¢'). A run of
the NFA A = (Loc, Init, Fin, X, 6) over a finite word w = oy .. .0, is a sequence
r = Loly...L, of states such that (1) £y € Init and (2) 6(¢;, 0441, livr1) for all
0 < i < n. The run r is accepting iff ¢,, € Fin. The language Lang(A) accepted
by A is the set of words w € X* such that A has an accepting run over w.

Notations. Given a finite word w = o7y . . . 0y, of size |w| = n, we write w(i) = o;
for the i-th letter of w, and w(0) = ¢ for the empty word. Given an NFA
A = (Loc, Init, Fin, X, §), a state set s C Loc, and a letter 0 € X, we define
post?(s) = {¢' € Loc | 3¢ € s : §(¢,0,0")}, prel(s) = {¢ € Loc | I’ € s :
5(¢,0,0")}, and cpre(s) = {¢ € Loc | V' € Loc: §(¢,0,¢') — ¢’ € s}. Note that
Loc \ cpre?(s) = pre(Loc \ s).

Operations. Given two NFAs A and B, we denote by A ® B the synchronous
product of the two automata, and by A @& B the sum of the automata. The
language accepted by the product is Lang(A ® B) = Lang(A) N Lang(B) and
the language accepted by the sum is Lang(A @ B) = Lang(A) U Lang(B). Given
a DFA A, we denote by A the complement of A, which accepts the language

Lang(A) = X* \ Lang(A).

Problems. The emptiness problem for NFAs is to decide, given an NFA A,
if Lang(A) = ). This problem is solvable in time linear in the size of A. The
universality problem for NFAs is to decide, given an NFA A, if Lang(A) = X*.
This problem is much harder than emptiness: it is complete for PSPACE [MS72].
The classical algorithm for deciding universality first determinizes A, and then
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checks emptiness of the complement. The difficult step is the determinization, as
it may cause an exponential blow-up in the number of states of the automaton.
The language-inclusion problem for NFAs is to decide, given two NFAs A and B,
if Lang(A) C Lang(B). This problem is also complete for PSPACE. The classical
algorithm for deciding language inclusion checks emptiness of the product of A
with the complement of B. In the next section, we propose a new approach to
solve the universality problem, which does not involve explicit determinization,
and later we extend the approach to solve also language inclusion.

3 A Fixed Point to Solve Universality

Two Lattices of Antichains. Let Loc be a set (in our case, a set of states of
some automaton). An antichain over Loc is a set ¢ C 25°¢ such that Vs, s’ € q :
s ¢ s'. Thus ¢ is a set of pairwise incomparable subsets of Loc (with regard to set
inclusion). We denote by L the set of antichains over Loc. We define the following
partial orders: for two antichains ¢,¢' € L, let ¢ C ¢/ iff Vs € ¢-3s' € ¢/ : s C &,
and let ¢ C ¢ iff Vs’ € ¢/ -3s € ¢ : s C §'. The two partial orders C and C
yield complete lattices on the set L of antichains. This can be seen as follows.
Given a set ¢ C 2'°¢ (not necessarily an antichain), a set s € ¢ is mazimal
inqiff Vs/ € ¢ : s ¢ s'. Similarly, s € ¢ is minimal in ¢ iff Vs’ € q : s’ ¢ s.
We write [¢] (resp. |g|) for the set of maximal (resp. minimal) elements of g.
Given two antichains ¢,q' € L, the C-lub (least upper bound) of ¢ and ¢’ is
the antichain ¢ U ¢’ = [{s|s € q V s € ¢'}|; the C-glb (greatest lower bound)
is the antichain ¢M¢ = [{sNs'|s€q A s €¢'}]. Similarly, the C-lub is ¢ U
¢ =|{sUs'|seqAs €q}], and the C-glbisqM ¢ = |[{s|scqV secq}|
These definitions can be extended to lub’s and glb’s of arbitrary (nonbinary)
sets in the obvious way, yielding the operators | |, [ ], ||, and [ ]. Adding suitable
bottom and top elements, we obtain the following lemma.

Lemma 1. (L,C,||,[7.0,{Loc}) and (L,C,|,[,{0},0) are complete lattices.

We call these two lattices the lattice of antichains and the dual lattice of an-
tichains, respectively. We show how to solve the universality problem for nonde-
terministic finite automata using either lattice.

Game Interpretation of Universality. Consider the following game played
by a protagonist and an antagonist. The protagonist wants to establish that a
given NFA A does not accept the language X*. The protagonist has to provide a
finite word w such that, no matter which run of A over w the antagonist chooses,
the run does not end in an accepting state. This game is a one-shot game.
However, to obtain a fixed point solution to the universality problem, we can
consider a multi-round game interpretation of this problem: in each round of the
game, the protagonist provides a single letter o, and the antagonist decides how
to update the state of A on input o according to the nondeterministic transition
relation. To be equivalent to the one-shot game, the protagonist must not be able
to observe the state of the automaton, which is chosen by the antagonist. So,
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we have to consider a game where the protagonist cannot distinguish between
states of the automaton: this is a game of imperfect information. We can solve
the universality problem by looking for the existence of winning strategies in such
games. In a recent paper, we showed that safety games of imperfect information
can be solved by computing the greatest fixed point of a monotone function
on the lattice of antichains [DDRO6]. We show here that reachability games of
imperfect information can be solved by computing a least fixed point on this
lattice. This gives a new algorithm for checking universality.

Using the Lattice of Antichains to Solve Universality. Given an NFA
A = (Loc, Init, Fin, X, §), we define the following monotone function on the lattice
L of antichains over Loc. For an antichain g € L, let

CPre(q) = [{s |35’ € q-Fo € X : s = cpre’ (s')}].

So, a set s of states belongs to the antichain CPre® (q) iff it is maximal and there
exist a state set s’ € ¢ and a letter o € X' such that for all states £ € s, the set
of states ¢/ with 6(¢,0,¢') is in s’. This monotone function can be used to solve
the universality problem for NFAs. This is formalized in the next theorem.

Theorem 2. Let A = (Loc, Init, Fin, X,8) be an NFA, and let F = [{q | ¢ =
CPre?(q) U {Fin}}. Then Lang(A) # * iff {Init} C F.

Proof. First, assume that Lang(A) is not universal. Let w € X* \ Lang(A) be
a word of size |w| = n. Consider the sequence sg, s1,...,s, of state sets such
that (1) so = Init, (2) s; = postfj(i)(si,l) for all 1 < i < n, and (3) s, C Fin
(recall that A has no accepting run over w). We prove by induction on & that
{sp_r} C F. For k = 0, since s, C Fin, we obtain immediately {s,} C F.
For the inductive case, assume that {s,_r} C F for all 0 < k < ¢, and let us
show that {s,_;} T F. Observe that by definition, for 0 = w(n — i+ 1) we
have post?(s,_;) = $,_i4+1. Therefore {$n—i} C CPreA({an_i}), and by the
monotonicity of CPre”! and the induction hypothesis, we get {s,,_;} C CPre”(F)
and {s,_;} C CPre’*(F) U {Fin}, which is equivalent to {s, ;} C F, as F is a
fixed point. In particular, we have {so} C F, that is, {Init} C F.

Second, assume that {Init} C F. We construct a word w ¢ Lang(A). Consider
the infinite sequence qo, 1, g2, - - - of antichains defined by (1) ¢o = 0 and (2) ¢; =
CPre(¢;_1) LU{Fin} for all i > 1. By Tarski’s fixed point theorem, we know that
F = gy for some n € N. We construct an integer k < n, a sequence Sg, 1, . .., Sk
of k + 1 state sets, and a word w of size k such that {s;} C CPre?(¢,_;_1) and
postg(iﬂ)(si) C si11 for all 0 < i < k. We start with so = Init so that {so} C gy.
Then, we have either {so} = {Fin} or {so} T CPre®(g,_1) (because {so} is a
singleton). In the first case, we stop the construction with ¥ =0 and w =¢. In
the second case, we continue the construction inductively. Assume that we have
constructed {s;_1} C CPre?*(g,_;) for some i > 1. By the definition of CPre”*, we
know that there are o; € Y and s; € ¢,,—; such that postfi (si—1) C s;. We choose
w(i) = o;. Then {s;} C ¢,_;, and thus either {s;} C {Fin} and we stop with
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k=iand w=o0y...04 or {s;} C CPreA(qn_i_l). This construction stops for

some k < n, as ¢; = {Fin} and {s;} C {Fin}. The sequence sg, 51, .., s shows
that A has no accepting run over w, because (1) so = Init, (2) postg(i)(si_l) Cs
for all 1 <4 < k, and (3) s C Fin. Hence w ¢ Lang(A). |

The algorithm that consists in computing the least fixed point F from Theorem 2
through the successive approximation sequence go C ¢1 £ g2 C - -+ (as defined in
the proof) is called the backward antichain algorithm. The computation is similar
to the subset construction used in the backward determinization of A, with the
essential difference that it maintains only sets of states that are mazimal in the
subset-inclusion order.

Using the Dual Lattice of Antichains to Solve Universality. In the
previous algorithm, the automaton is traversed backward starting from the set
of nonaccepting states. Using the dual lattice of antichains, we can formulate
a solution that traverses the automaton forward starting from the set of initial
states. Given an NFA A = (Loc, Init, Fin, X', §) and an antichain ¢ € L, let

Post®(q) = [{s |35’ € ¢-Fo € ¥ : s = post(s')}].

This function is monotone on the dual lattice of antichains. We can solve the
universality problem for NFAs by iterating Post as follows, defining a forward
antichain algorithm.

Theorem 3. Let A = (Loc, Init, Fin, X, 6) be an NFA, and let F :|:| {alq=
Post™(g) 1 {Init}}. Then Lang(A) # X* iff F C {Fin}.

The computation of the least fixed point F is similar to the standard, forward
subset construction used in the determinization of A, with the essential difference
that it maintains only minimal sets of states.

Relationship Between Forward and Backward Algorithms. Given an
NFA A = (Loc, Init, Fin, X, §), the reverse of A is the NFA B = (Loc, Fin, Init, X,
8"y, where for all states £,¢' € Loc and all letters o € X, we have §'(¢,0,0') iff
5(¢',0,¢). Note that for all ¢ € ¥ and all s C Loc, we have preZ(s) = postZ(s).
For a set s C Loc, let 5 be the complement of s relative to Loc, that is, s = Loc)\ s.
For a set ¢ C 2'°¢, let § = {3 | s € ¢q}. Note that § is an antichain iff ¢ is an
antichain, and |¢] = [¢].

Lemma 4. Let A = (Loc, Init, Fin, X, 6) be an NFA, let B be ils reverse, and let
q be an antichain over Loc. Then ¢' = CPre”(q) iff § = Post®(§).

From this lemma, it follows that the forward and backward approaches are equiv-
alent in the following sense: for every instance A of the universality problem that
is difficult for the forward antichain algorithm, there is an equally difficult in-
stance (namely, the reverse of A) for the backward antichain algorithm, and



Antichains: A New Algorithm for Checking Universality 23

Fig. 1. A family of NFAs Ay, k > 2, for Theorem 5

vice versa. Indeed, let ¢qo C ¢1 C ¢2 C --- be the sequence of antichains that
are constructed when computing the least fixed point F from Theorem 2 (as
defined in the proof of the theorem); and let ¢ C ¢} C ¢4 = --- be the se-
quence of antichains that are constructed when computing the least fixed point F
from Theorem 3, defined as follows: (1) ¢, = 0 and (2) ¢/ = Post®(¢/_,) 71 {Fin}
for all 7 > 1. Using Lemma 4 and induction, we can prove that ¢; = ¢, for all
i>0.

Comparison with Explicit Determinization. We call the classical algo-
rithm for solving the universality problem for NFAs the subset algorithm: it
first determinizes the NFA using a subset construction, and then checks if every
reachable state in the resulting DFA is accepting. The determinization is stopped
whenever a rejecting state is encountered. Usually, the DFA is constructed in a
breadth-first forward search, but it can also be done in a backward fashion.

Theorem 5. For checking universality, there exists an infinite family of NFAs
Ay, with k > 2 states, for which the forward subset algorithm is exponential,
and the (forward and backward) antichain algorithms are polynomial. There also
exists an infinite family of NFAs By for which the backward subset algorithm is
exponential, and the antichain algorithms are polynomial.

Proof. Consider the family of NFAs Ay, k > 2, over the alphabet X = {0, 1}
shown in Fig. 1. The automaton Ay has k + 1 states, £, ..., l, all accepting
except f;. There is only one initial state: Init = {{p}. Every Ay is universal,
as the initial state has a self-loop labeled with Y. The forward determinization
of Ay has 2" states. Hence the forward subset algorithm is exponential on the
family A, k& > 2. However, the backward antichain algorithm terminates in
polynomial time, as the sequence go = {{¢x}}, and ¢;+1 = CPre™*(¢;) L {{¢1}}
for ¢ > 0, stabilizes after k iterations with ¢; = {{lx—i,...,lk}} for i < k, and
gk = qr—1. The test {Init} C ¢; requires linear time. The forward antichain
algorithm terminates after a single iteration with F = {Init}, and the test F C
{{lr}} is done in constant time.

A similar proof holds for the second part of the theorem: for the family By,
k > 2, choose each By to be the reverse of Ay. [ |
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Algorithm 1. Backward antichain algorithm for testing universality

Data : a nondeterministic finite automaton A = (Loc, Init, Fin, X, 6).
begin

Start < {Init};

F « {Fin};

Frontier < F’;

while (Frontier # 0) A (Start [Z Frontier) do

B W N

5]

Frontier «— {q € CPre”(Frontier) | ¢ Z F};
F — F U Frontier ;

7 return (Start [Z Frontier);

o

end

4 Implementation and Practical Evaluation

Two Symbolic Implementations of Antichains. We implemented our new
algorithm for testing universality on top of NUSMV [CCGR99] and the BDD
library CUDD [Som98]. We considered two encodings of NFAs in NUSMV, and
correspondingly, two encodings of antichains of state sets using BDDs.

Fully Symbolic Encoding. In the first encoding, we associate a boolean variable
with each state of an NFA. A valuation of the variables corresponds to a state
set, and a BDD represents a set of state sets. Two valuations vy and vs for a set
X of variables are incomparable iff there exist x,y € X such that vy (z) > vo(2)
and v1(y) < v2(y). If the BDD contains only valuations that are incomparable,
then it symbolically represents an antichain of state sets. We call this encoding
Sfully symbolic.

Semi-symbolic Encoding. In the second encoding, we associate an integer with
each state of the automaton. Then a single integer counter is used to encode the
current state. A BDD represents a set of integer values and so a set of states.
An antichain of state sets is represented by a set of BDDs that are incomparable
for valuation inclusion. We call this encoding semi-symbolic.

Algorithm. For both encodings, we use the backward Algorithm 1 to check uni-
versality. To avoid computing CPre twice for the same set, the algorithm com-
putes iteratively CPre only on the frontier sets, which are the sets that were
added to the approximation F' of the least fixed point F in the previous it-
eration. When the automaton is not universal, then F is not fully computed,
because we stop the computation as soon as one of the sets in F' contains all
initial states.

The Randomized Model. To evaluate the antichain algorithm and compare
with the subset algorithm, we use a random model to generate NFAs. This
model was recently proposed by Tabakov and Vardi to compare the efficiency
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of some algorithms for automata [TV05]. In the model, the input alphabet is
fixed to X = {0,1}, and for each letter 0 € X', a number k, of different state
pairs (£, ¢') € Locx Loc are chosen uniformly at random before the corresponding
transitions (¢, o, ¢') are added to the automaton. The ratio r, = |£€Tac| is called the
transition density for o. This ratio represents the average outdegree of each state
for 0. In all experiments, we choose g = r1, and denote the transition density
by r. The model contains a second parameter: the density f of accepting states.
There is only one initial state, and the number m of accepting states is linear
in the total number of states, as determined by f = ﬁ The accepting states
themselves are chosen uniformly at random. Observe that since the transition
relation is not always total, automata with f = 1 are not necessarily universal.

Tabakov and Vardi have studied the space of parameter values for this model
and argue that “interesting” automata are generated by the model as the two
parameters r and f vary. They have run large tests to evaluate the probability
for an automaton to be universal as a function of the parameters. We reproduced
those experiments for a greater space of parameter values and obtained a similar
distribution (Fig. 2). To generate each sample point, we checked the universality

of 200 random automata with 30 states.

Performance Comparison. We compare the performance of the backward
antichain algorithm with the tool dk.brics.automaton developed by Mgller
[M@04], which implements the forward subset algorithm and stops determiniza-
tion whenever a rejecting state is encountered. According to the experiments
of Tabakov and Vardi, this tool, which uses explicit state representation, is the
most efficient one for checking universality [TV05]. For the comparison, we use
the semi-symbolic encoding of antichains, as that turns out to be much more
efficient than the fully symbolic encoding. The comparison is carried out on
the whole parameter space of the randomized model. All experiments are con-
ducted on a biprocessor Linux station (two 3.06Ghz Intel Xeons with 4GB of
RAM). We only measure the execution times for the universality test in both
approaches, not the time for parsing the input files and constructing the initial
data structures.

In Fig. 3, Fig. 4, and Fig. 5, we present the execution times for checking
universality by the explicit subset algorithm and the semi-symbolic antichain
algorithm. To generate each sample point, we check the universality of 100 ran-
dom automata with |Loc| = 175 (this is roughly the largest size that the subset
algorithm is able to handle on the entire parameter space with the available
memory). In Fig. 3, we present the median execution times for testing universal-
ity by the subset approach as a function of r (transition density) and f (density
of accepting states). The figure shows that the universality test is most difficult
when » = 2 and f = 1. For the same instances, the median execution time of
our algorithm is always less than the time unit of the system clock (1ms).

In Fig. 4 and Fig. 5, we present the average execution times for testing univer-
sality by the subset approach and the semi-symbolic antichain approach, respec-
tively. Both figures exhibit similar peaks, showing that the difficult instances are
roughly the same for both approaches. However, the antichain algorithm is much
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faster. For the most difficult parameter values (r = 2 and f = 1), the antichain
algorithm is 165 times faster than the subset algorithm. Intuitively, these in-
stances are difficult for both algorithms for the following two reasons. First, the
probability to be universal for these parameter values is around 50 percent, and
we believe that most of these instances are neither trivially universal nor trivially
nonuniversal. Second, when an automaton is universal, the subset method has
to build the entire deterministic automaton, and the antichain method has to
complete the computation of the least fixed point.

In Fig. 6 we present the ratio of the average time for the subset approach and
the average time for the antichain approach as a function of the densities. The
comparison for r < 1.4 and f < 0.2 is not very significant, because the execution
times are very close to the precision of the system clock (1ms). For the rest
of the parameter space, the antichain algorithm performs always better (up to
200 times better). Finally, in Fig. 7, we show that the semi-symbolic antichain
approach scales well when the size of the automaton increases, in contrast to
the subset approach. For the experiments we generated randomly 100 automata
per sample point for automaton sizes under 200 states, and 30 automata per
sample point for sizes over 200 states. The densities are again » = 2 and f = 1.
The antichain algorithm is able to handle random automata with 4000 states
in the average time of 12s. The average size of the final antichain (for universal
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automata) is 217 state sets for automata with 4000 states. We did not pursue
experiments with larger automata, because we would have had to modify the
automaton generator, as it is not designed for such large automaton sizes. The
subset algorithm quickly exceeds the memory limit when the number of states
nears 200, so the curve is quite short in the left corner of Fig. 7.

As mentioned above, the semi-symbolic antichain encoding gives far better
performances on the random model than the fully symbolic encoding, as shown
in Table 1 for the difficult instances (r = 2 and f = 1). It also turns out that
the fully symbolic encoding does not scale well when the size of the automaton
increases. Each sample point is computed on a set of 50 random automata with
less than 100 states. For 175 states, the sample size is 100, and for more states,
the sample size is 30. The number of boolean variables of the BDDs that encode
antichains seems to be the reason for the difference in performances: the number
of boolean variables grows linearly with the number of states in the fully sym-
bolic encoding, but logarithmically in the semi-symbolic encoding. We have also
implemented the forward antichain algorithm with the semi-symbolic encoding.
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Fig. 8. Average execution time for the forward semi-symbolic antichain algorithm
(JLoc|=175)
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Table 1. Average execution times (ms) for checking universality with r =2 and f =1

| number of states [20]40] 60 [ 80 [100] 175 [500]1000]1500]2000]2500]3000[3500] 4000 |
subset algorithm |23|50|141|309|583|2257| - - - - - - - -
fully symb. antich.| 3 [14] 70 [175[421]6400] _ | _ | _ [ - [ - [ - | - [ -
semi-symb. antich.[ 122 [ 3 [ 5 | 14 [76] 400 | 973 [1741]2886|5341[9063] 13160

On the random model, this approach is roughly twice as slow as the backward
antichain algorithm, which is still better by several orders of magnitude than
the subset algorithm. See Fig. 8 for the experimental results.

5 Beyond Universality

Language Inclusion. We show that language inclusion can be checked using
an antichain algorithm based on a slightly richer lattice. Consider two NFAs
A = (Loca,Initg,Fina, X, 64) and B = (Locg, Initg, Fing, X, 65) over the same
alphabet. We wish to check whether Lang(A) C Lang(B). An antichain over
Locy x 2M°¢5 is a set ¢ € 9Locax2B ek that for all (l1,51), (L2, s2) € g with
{1 = 0y and s; # s9, we have neither s; C s9 nor so C s1. Given a set ¢ €
Locax2™ "an element (¢,s) € q is mazimal iff for every s’ with ' D s, we
have (¢,s") & q. We denote by [q] the set of maximal elements of ¢q. Given two
antichains ¢ and ¢’, we define

qC ¢ itV s)eq-3(,s)eq :sC s
quiq = [{(ts) | ({,;s) €qV (€s) €'}
aMi g =[{{l;sns) [ (6s)eq A (Ls)eq}H].

Let CPre;(q) = [{(¢,s) |Jo € X -3(¢',s') € q: I' € 6a4(L,0) A postZ(s) C s'}].

Theorem 6. Let A and B be two finite automata, and let Fi = [|{q | ¢ =
CPre;(¢) U (Fing x {Fing})}. Then Lang(A) € Lang(B) iff there exists a state
¢ € Inita such that {(¢,Initg)} C; Fi.

Typically, A is an “implementation” automaton, and B a “specification” au-
tomaton. Often A is given as a synchronous product of automata, that is,
A=A ® - ® A, Then we can apply our method with antichains over
Loca, x --- x Loca, x 2'°¢2. However, in the common case where the imple-
mentation components A; are deterministic (but the specification B is nonde-
terministic), an alternative approach is possible, and likely more efficient. The
following lemma shows that in this case, the language-inclusion problem can be
reduced in polynomial time to the universality problem. This reduction has the
advantage of avoiding the construction of the product of the implementation
components.

Lemma 7. For a set Ay,..., A, of DFAs and an NFA B, we define the sum
C=A1® - DA, ®B. Then Lang(A;)N...NLang(A4,,) C Lang(B) iff Lang(C) =
2.
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Emptiness of Alternating Automata. The antichain algorithm for checking
the universality of NFAs can be generalized to checking the emptiness of alter-
nating automata, using the same lattice with a slight modification of the function
CPre. In alternating automata, the transitions are given by boolean formulas.
For example, p(¢,0) = ¢1V (2 Al3) means that in state ¢, a word of the form o-w
is accepted if either w is accepted in ¢1, or w is accepted in both ¢5 and ¢3. Our
formal definitions follow [KV01]. Let B*(Loc) be the set of monotone boolean
formulas over Loc, defined by the grammar ¢ :=true | £ | ¢ A ¢ | ¢ V ¢, where
¢ € Loc. A set s C Loc of states satisfies a formula ¢ € BT (Loc) (denoted s = ¢)
iff o is equivalent to true when the states in s are replaced by true, and the states
in Loc\ s by false.

An alternating finite automaton, or AFA, is a tuple A = (Loc, Init, Fin, X, p),
where Loc, Init, Fin, and X are as for NFAs, and p: Loc x ¥ — BT (Loc) is
a transition function. The NFAs can be seen as a subclass of the AFAs: the
transition relation § of an NFA can be translated into the transition function p
of AFA such that p(¢,0) = ¢1V.. VL, for {{1,....0,} = {¢' € Loc | ({,0,0') € 6}.
A run of the AFA A over a finite word w is a tree T' = (N, =), whose nodes
are a prefix-closed set N C Loc' of nonempty sequences of states. The level
of a node x = #1...4, in N is its size |z| = n, and the last element of x is
last(x) = ¢,,. The set N contains a single node at level 1, the root, which is a
state in Init. We require that for all + € N, we have |z| < |w| 4+ 1. The child
relation = C N x N satisfies the following condition: for all nodes x € N, we
have (1) if x = a’, then 2/ = 2 - £ for some ¢ € Loc, and (2) if |z| < |w|, then the
set s = {last(z’) | © = 2’} is such that s |= p(last(x),w(|z])). A leaf of T is a
node x of level |z| = |w| 4+ 1. A run T is accepting iff last(z) € Fin for all leaves
x of T. The language Lang(A) accepted by A is the set of words w € X* such
that A has an accepting run over w.

The emptiness problem for AFAs is to decide, given an AFA A, whether
Lang(A) = 0. Since complementation of AFAs is easy (by dualizing the tran-
sition function and complementing the set of accepting states), the universality
problem for AFAs (to decide, given an AFA A, if Lang(A4) = X*) is polynomi-
ally equivalent to emptiness. Given an AFA A = (Loc, Init, Fin, X, p), consider
the following monotone function on the lattice L of antichains over Loc: for an
antichain ¢ € L, let

CPreq(q) =[{s|3s' €q-FJoe X -Vles:s E=pl,o)}.

This monotone function on L can be used to decide the emptiness problem for
AFAs, as shown in the following theorem.

Theorem 8. Let A = (Loc, Init, Fin, X, 6) be an AFA, and let F, = [_]{q | ¢ =
CPre,(q) U {Fin}}. Then Lang(A) # 0 iff {Init} C F,.
6 Conclusions

We showed that explicit determinization can be avoided when solving several
problems related to NFAs on finite words. Our new solutions to the universality
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and language-inclusion problems for NFAs, and to the emptiness problem for
AFAs, evaluate the least fixed point of simple monotone functions on lattices of
antichains. They are goal-directed and leave determinization implicit. We imple-
mented the new algorithm for the universality problem and compared its perfor-
mance to that of the classical algorithm (which uses explicit determinization).
Our method outperforms the classical one dramatically on the entire parame-
ter space of a randomized model. On the difficult instances of the randomized
model, our algorithm is several orders of magnitude faster than the classical one.

We plan to pursue several future directions. First, as the performance of the
new algorithm on the randomized model is very encouraging, we want to apply
antichain algorithms to practical problems. Second, the antichain method does
not extend trivially to automata over infinite words. We need further research
to see if our results can be extended to such cases.

Acknowledgements. We thank Deian Tabakov for his code and helpful answers
about the randomized model.
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Abstract. In automated synthesis, we transform a specification into a system
that is guaranteed to satisfy the specification. In spite of the rich theory devel-
oped for system synthesis, little of this theory has been reduced to practice. This
is in contrast with model-checking theory, which has led to industrial develop-
ment and use of formal verification tools. We see two main reasons for the lack
of practical impact of synthesis. The first is algorithmic: synthesis involves de-
terminization of automata on infinite words, and a solution of parity games with
highly complex state spaces; both problems have been notoriously resistant to ef-
ficient implementation. The second is methodological: current theory of synthesis
assumes a single comprehensive specification. In practice, however, the specifi-
cation is composed of a set of properties, which is typically evolving — properties
may be added, deleted, or modified.

In this work we address both issues. We extend the Safraless synthesis al-
gorithm of Kupferman and Vardi so that it handles LTL formulas by translating
them to nondeterministic generalized Biichi automata. This leads to an exponen-
tial improvement in the complexity of the algorithm. Technically, our algorithm
reduces the synthesis problem to the emptiness problem of a nondeterministic
Biichi tree automaton .A. The generation of .4 avoids determinization, avoids the
parity acceptance condition, and is based on an analysis of runs of universal gen-
eralized co-Biichi tree automata. The clean and simple structure of A enables
optimizations and a symbolic implementation. In addition, it makes it possible to
use information gathered during the synthesis process of properties in the process
of synthesizing their conjunction.

1 Introduction

One of the most significant developments in the area of program verification over the
last two decades has been the development of algorithmic methods for verifying tem-
poral specifications of finite-state programs; see [5]. A frequent criticism against this
approach, however, is that verification is done after significant resources have already
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been invested in the development of the program. Since programs invariably contain er-
rors, verification simply becomes part of the debugging process. The critics argue that
the desired goal is to use the specification in the program development process in order
to guarantee the design of correct programs. This is called program synthesis.

In the late 1980s, several researchers realized that the classical approach to program
synthesis, where a program is extracted from a proof that the specification is satisfiable,
is well suited to closed systems, but not to open (also called reactive) systems [1,6,23].
In reactive systems, the program interacts with the environment, and a correct program
should then satisfy the specification with respect to all environments. These researchers
argued that the right way to approach synthesis of reactive systems is to consider the
situation as a (possibly infinite) game between the environment and the program. A
correct program can be then viewed as a winning strategy in this game. It turns out that
satisfiability of the specification is not sufficient to guarantee the existence of such a
strategy. Abadi et al. called specifications for which a winning strategy exists realizable.
Thus, a strategy for a program with inputs in / and outputs in O maps finite sequences
of inputs (words in (27)* — the actions of the environment so far) to an output in 2° —a
suggested action for the program. A strategy can then be viewed as a labeling of a tree
with directions in 27 by labels in 2¢. The traditional algorithm for finding a winning
strategy transforms the specification into a parity automaton over such trees such that
a program is realizable precisely when this tree automaton is nonempty, i.e., it accepts
some infinite tree [23]. A finite generator of an infinite tree accepted by this automaton
can be viewed as a finite-state program realizing the specification. This is closely related
to the approach taken, e.g., in [25], to solve Church’s solvability problem [4]. Several
works during the 1990s showed how this approach to program synthesis can be carried
out in a variety of settings.

In spite of the rich theory developed for program synthesis, little of this theory has
been reduced to practice. In fact, the main approaches to tackle synthesis are either
to use heuristic approaches (e.g., [12]) or to restrict the kind of allowed specification
(e.g., [22]). Some people argue that this is because the realizability problem for linear-
temporal logic (LTL) specifications is 2EXPTIME-complete [23,26], but this argument
is not compelling. First, experience with verification shows that even nonelementary al-
gorithms can be practical, since the worst-case complexity does not arise often (cf., the
model-checking tool MONA [7]). Furthermore, in some sense, synthesis is not harder
than verification. This may seem to contradict the known fact that while verification is
“easy” (linear in the size of the model and at most exponential in the size of the spec-
ification [16]), synthesis is hard (2EXPTIME-complete). There is, however, something
misleading in this fact: while the complexity of synthesis is given with respect to the
specification only, the complexity of verification is given with respect to the specifica-
tion and the program, which can be much larger than the specification. In particular, it
is shown in [26] that there are temporal specifications for which every realizing pro-
gram must be at least doubly exponentially larger than the specifications. Clearly, the
verification of such programs is doubly exponential in the specification, just as the cost
of synthesis.

We believe that there are two reasons for the lack of practical impact of synthe-
sis theory. The first is algorithmic and the second is methodological. Consider first
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the algorithmic problem. First, constructing tree automata for realizing strategies uses
determinization of Biichi automata. Safra’s determinization construction has been no-
toriously resistant to efficient implementations [2,29] (An alternative construction is
equally hard [2]. Piterman’s improvement of Safra includes the tree structures that
proved hard to implement [21].) Second, determinization results in automata with a very
complicated state space. The best-known algorithms for parity-tree-automata emptiness
[13] are nontrivial already when applied to simple state spaces. Implementing them on
top of the messy state space that results from determinization is awfully complex, and
is not amenable to optimizations and a symbolic implementation.

Another major issue is methodological. The current theory of program synthesis
assumes that one gets a comprehensive set of temporal assertions as a starting point.
This cannot be realistic in practice. A more realistic approach would be to assume an
evolving formal specification: temporal assertions can be added, deleted, or modified.
Since it is rare to have a complete set of assertions at the very start of the design process,
there is a need to develop compositional synthesis algorithms. Such algorithms can, for
example, refine designs when provided with additional temporal properties.

In this paper we address both issues. We focus on the case where forbidden behav-
iors are described by nondeterministic generalized Biichi automata on infinite words,
which are Biichi automata with multiple acceptance sets (corresponding to the impar-
tiality fairness condition of [17]). Our interest in specifying forbidden behaviors and in
using the generalized Biichi condition is motivated by the fact that LTL formulas (and
their negation) can be conveniently translated to nondeterministic generalized Biichi
automata [9]. Equivalently, one can specify allowed behavior by universal generalized
co-Biichi automata. Following [15], we offer an alternative to the standard automata-
theoretic approach. The crux of our approach is avoiding the use of determinization
constructions and of nondeterministic parity tree automata. In the approach described
here, one checks whether the specification 1 is realizable using the following steps: (1)
construct a universal generalized co-Biichi tree automaton 4, that accepts all realizing
strategies for 1, (2) reduce! Ay to an alternating weak tree automaton .A;z}’, (3) translate
A} to a nondeterministic Biichi tree automaton A7}, and (4) check that the language of

»» is nonempty. The key is avoiding determinization, by using universal generalized
co-Biichi automata instead of deterministic parity automata.’

The difference between our approach here and the approach in [15] is that here we
use generalized co-Biichi automata, unlike the co-Biichi automata used there. This leads
to an exponential improvement in the complexity of our algorithm, as we describe be-
low. Extending the framework of [15] to generalized co-Biichi automata requires two
key technical steps. First, as our Safraless approach used a “Safraful” bound on the size

' We use “reduce A; to A”, rather than “translate A; to Ao” to indicate that A accepts a subset
of the language of A, yet the language of A, is empty iff the language of A2 is empty.

2 A note to readers who are discouraged by the fact our method goes via several intermediate
automata: it is possible to combine the reductions into one construction, and in fact we describe
here also a direct translation of universal generalized co-Biichi automata into nondeterministic
Biichi automata. In practice, however, it is beneficial to have many intermediate automata,
as each intermediate automaton undergoes optimization constructions that are suitable for its
particular type, cf. [11].
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of the realizing strategies, we need to extend Safra’s construction to nondeterministic
generalized Biichi automata, obtaining an exponential improvement (with respect to an
approach that first translates the generalized Biichi automaton to a Biichi automaton) in
that construction. Second, we need to show how the co-Biichi ranks devised in [14] for
the analysis of runs of universal automata on words can be applied to the analysis of
runs of universal automata on finitely generated trees.

Beyond the improvement in complexity, the advantage of the Safraless approach is
that we get tree automata with cleanly described state spaces, which enables the appli-
cation of symbolic algorithms for Biichi tree automata emptiness. Further, we can now
obtain a compositional algorithm. Given a specification 1), we first check its realizabil-
ity. Suppose now that we get an additional specification ¢)’. We can, of course, simply
check the realizability of 1) A ¢/’ from scratch. Instead, we suggest to first check also
the realizability of 1)’. We then show how, thanks to the simple structure of the tree au-
tomata, much of the work used in checking the realizability of %) and 7/’ in isolation can
be reused in checking the realizability of i) A ¢’. The compositional algorithm we sug-
gest can be combined with an incremental algorithm, in which we iteratively increase
the bound on the size of the realizing strategy. As demonstrated in [11] for the linear
setting, the bound that is needed in practice is usually much smaller than the worst-case
bound. In addition, we explain how the incremental and compositional algorithm can
be implemented symbolically.

2 Preliminaries

We assume familiarity with the basic notions of alternating automata on infinite trees,
cf. [10].

Given an alphabet X and a set D of directions, a X'-labeled D-tree is a pair (T, ),
where 7' C D* is a tree over D and 7 : T° — X maps each node of T to a letter
in Y. A transducer is a labeled finite graph with a designated start node, where the
edges are labeled by D and the nodes are labeled by 2. A Y'-labeled D-tree is regular
if it is the unwinding of some transducer. More formally, a transducer is a tuple 7 =
(D, XS, $in,m, L), where D is a finite set of directions, X' is a finite alphabet, S is
a finite set of states, s;, € S is an initial state, n : S x D — S is a deterministic
transition function, and L : S — X is a labeling function. We define np : D* — S in the
standard way: 1(¢) = s;p, and for x € D* and d € D, we have n(z - d) = n(n(x), d).
Intuitively, A X-labeled D-tree (D*,7) is regular if there exists a transducer 7 =
(D, XS, $in,n, L) such that for every x € D*, we have 7(z) = L(n(x)). We then
say that the size of the regular tree (D*, 1), denoted ||7||, is |.S], the number of states
of 7.

We denote an alternating tree automaton by a tuple A = (¥, D, Q, gin, 6, ), where
2/ is the input alphabet, D is a set of directions, () is a finite set of states, 6 : @ X X —
BT(D x Q) is a transition function, ¢;, € @ is an initial state, and « specifies the
acceptance condition A run of A is accepting if all its infinite paths satisfy the accep-
tance condition. For a path 7, we denote the set of automaton states visited infinitely
often along this path by in f (7). We consider here four acceptance conditions defined
as follows
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- A path 7 satisfies a generalized Biichi condition o = {Fy, Fs, ..., Fy} C 2 iff
forall 1 <4 < k we have inf(m) N F; # (). The number & of sets in « is called the
index of the automaton. If || = 1 we call « a Biichi condition.

— A path 7 satisfies a generalized co-Biichi condition o = {F}, I,..., Fy} C 29
iff for some 1 < ¢ < k we have inf(7) N F; = (. The number k of sets in « is
called the index of the automaton. If |o| = 1 we call « a co-Biichi condition.

— A path 7 satisfies a parity condition « = (Fy, ..., F}) where Fy, ... F} form a
partition of Q iff for some even 7 we have inf(w) N F; # () and forall i' < i we
have inf(7) N Fy = (. We call k the number of priorities of c.

For the three conditions, an automaton accepts a tree iff there exists a run that accepts
it. We denote by L(.A) the set of all X-labeled trees that .4 accepts. We also refer to a
fourth condition, which is a special case of the Biichi condition, and is referred to as the
weak condition [20].

Below we discuss some special cases of alternating automata. The alternating au-
tomaton A is nondeterministic if for all the formulas that appear in 8, if (di,¢1) and
(d2, g2) are conjunctively related, then dq # da. (i.e., if the transition is rewritten in
disjunctive normal form, there is at most one element of {d} x @), for each d € D,
in each disjunct). The automaton A is universal if all the formulas that appear in ¢ are
conjunctions of atoms in D x @, and A is deterministic if it is both nondeterministic
and universal. The automaton A is a word automaton if |D| = 1. Then, we can omit
D from the specification of the automaton and denote the transition function of A as
6 :Q x XY — BT(Q). If the word automaton is nondeterministic or universal, then
6:Q x X — 29

We denote each of the different types of automata by an acronymin {D, N, U, A} x
{B,GB,C,GC, P} x {W, T}, where the first letter describes the branching mode of
the automaton (deterministic, nondeterministic, universal, or alternating), the second
letter describes the acceptance condition (Biichi, generalized Biichi, co-Biichi, gener-
alized co-Biichi, or parity), and the third letter describes the object over which the au-
tomaton runs (words or trees). For example, APT are alternating parity tree automata
and UGCT are universal generalized co-Biichi tree automata.

3 Synthesis

Consider an UGCW S over the alphabet 279, for sets I and O of input and output
signals. The realizability problem for S [23] is to decide whether there is a strategy
f:(21)* — 29, generated by a transducer? such that all the computations of the system
generated by f are in L(S). We call such a strategy, a good strategy. A computation
p € (21V9) is generated by f if p = (ig U 0p), (i1 U 01), (ia U 02), ... and for all
j > ]., we have 05 = f(lo . il s 7;];1).

In practice, the UGCW S originates from an LTL formula 1) that specifies the desired
properties of the program we synthesize. In order to get S, we first translate —) to an
NGBW A, and then dualize A, by viewing it asa UGCW. By [31,9], A, and thus

3 As S recognizes an w-regular language, if some transducer that generates f exists, then there
is also a finite-state transducer.
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also S, have 2°0(%D) states and index O(|1|). Alternatively, one can define properties
directly using UGCW, as done, for example, in the framework of Generalized Symbolic
Trajectory Evaluation [32], by means of fair assertion graphs.

Theorem 1. The realizability problem for a UGCW can be reduced to the nonemptiness
problem of a UGCT with the same state space and index.

Proof: A strategy f : (2/)* — 29 can be viewed as a 2©-labeled 2-tree. Given a
UGCW S, we define a UGCT S’ such that S’ accepts a 2©-labeled 2!-tree (T, 7) iff 7
is a good strategy for S.

Let S = (27Y9 Q. ¢in, 6, ). Then, S’ = (29,21, Q, qin, &', @), where for every ¢ €
Qando € 29, wehave §'(q,0) = \,cor Ny es(q,iv0) (i ¢'). Thus, from state ¢, reading
the output assignment o € 29, the automaton S’ branches to each direction i € 2!, with
all the states ¢’ to which § branches when it reads ¢ U o in state g. It is not hard to see that
S’ accepts a 20-labeled 2! -tree (T, 7) iff for all the paths {e, i, iq - 1,70 - i1 - 72, . .-}
of T', the infinite word (ig U 7(¢g)), (41 U T(i0)), (i2 U T (4o - 41)), . . . is accepted by the
UGCW S as required. H

We now describe an emptiness preserving translation of UGCT to NBT. The correctness
proof of the construction is given in Sections 4.1 and 4.2. There, we also suggest to use
ABT as an intermediate step in the construction. While this adds a step to our chain of
reductions, it enables further optimizations of the result.

For an integer c, let [¢] denote the set {0, 1, ..., c}, and let [¢]°?? and [c]¢V*" denote
the set of odd and even members of [c], respectively. Also, let Ri(c) = [2¢]°V*" U
([2¢)°% x {1,...,k}), and < be the lexicographical order on the elements of Ry(c).
We refer to the members of Ry (c) in [2¢]¢"*™ as even ranks and refer to the members
of Ri(c) in [2¢]°% x {j} as odd ranks with index j. Note that the size of Ry(c) is
¢(k + 1) 4 1. Our construction refers to a function Det(n, k), which, as we show later,
is bounded from above by n?" 2k,

Theorem 2. Let A be a UGCT with n states and index k. There is an NBT A’ over the
same alphabet such that all the following hold.

- L(A) C L(A),

- L(A) # 0 implies L(A") # 0, and

. . 2 .
— the number of states in A’ is 207 (logntloghk))

Proof: Let A= (X, D,Q,qn,6,{F1,...,F}),and letc = Det(n, k). Note that ¢ is
20(n(logntlogk)) [et Ry (c) be the set of functions f : Q — Ry(c) in which f(q), for
all ¢ € F}, is not odd with index j. For g € Ri/(c), let odd(g) = {q : g(q) is odd}. We
define A" = (¥, D,Q’', q,,, 8, '), where
- Q' = 39 x Ry(c). For technical convenience, we refer to the states of Q' as triples
(5,0, f) withO € S C Qand f € Ry(c).
- ¢}, = {qin}, 0, go), where go maps all states to 2c.
- Forqe Q,0 € X,andd € D,leté(q,0,d) ={q' | (d,q') € 6(q,0)}.For S C Q,
o € X, and d € D we define §(S, 0, d) in the natural way. For two functions g and
g’ in R(c), aletter o, and direction d € D, we say that g’ covers (g, o, d) if for all
gand ¢ in Q,if ¢ € 6(q,0,d), then ¢'(¢') < g(q). Let ¢’ < (g, 0,d) denote that
g’ covers (g, o,d). Then, for all (S,0,g) € Q" and o € X, we define § as follows.
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o If O # (), then

6’(<S,O,g>,a) = /\ \/ (d’ <6(S’ g, d),é(0,0’, d) \ Odd<gd)7gd>)

deD gq=(g,0,d)
e If O = (), then
8(8,0,9),0)= N\ \/ (d,(8(5,0,d),6(S,0,d) \ odd(ga), ga))

deD g4={g,0,d)

- o/ =29 x {0} x Ry(c).
In Section 4 we sketch the proof that this automaton indeed satisfies the conditions of
the theorem. Cl

In fact, A" accepts every regular tree in the language of A that is produced by a “small”
transducer. We show that whenever A accepts some regular tree, there exists some
“small” regular tree that is accepted by A’. Thus, if A accepts some regular tree, it
accepts a regular tree produced by a small transducer, and this regular tree is also ac-
cepted by A’

Corollary 1. The realizability problem for an NGBW withzn states and index k can be
reduced to the nonemptiness problem of an NBT with 207" (logn+10g k) grq1e5,

These bounds are exponentially better than those established in [15]. There, the
NGBW is converted to an NBW with nk states and the overall resulting complexity
is 20((nk)2 (log k+logn)) 4

The synthesis problem for S is to find a transducer that generates a strategy real-
izing S. Known algorithms for the nonemptiness problem can be easily extended to
return a transducer [24]. The algorithm we present here also enjoys this property, thus
it can be used to solve not only the realizability problem but also the synthesis problem.
(For a comparison of the Safraless and the Safraful approaches to synthesis from the
perspective of program size, see [15].)

4 From UGCT to NBT

Recall that runs of alternating tree automata are labeled trees. By merging nodes that are
roots of identical subtrees, it is possible to maintain runs in graphs. In Section 4.2, we
prove a bounded-size run graph property for UGCT. In Section 4.2, we show how the
bounded-size property enables a simple translation of UGCT to ABT, which we then
translate to an NBT. Combining the translations results in the UGCT to NBT construc-
tion described in Theorem 2. While our construction avoids using the determinization
construction, the proof of the bounded-size run-graph property makes use of the bound
the construction provides to the blow-up involved in determinization. Since we handle
the generalized co-Biichi construction, we need a bound on the blow-up involved in the
determinization of NGBW. We provide such a bound in Section 4.1.

* We can use the improved bound on determinization established in [21] to improve the bounds
in [15]. This, however, reduces only the constants in the exponent.
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4.1 NGBW to DPW

There are two known approaches to determinization of NGBW. The first is to convert
the NGBW to an NBW [3] and then use determinization [27,21]. The second is to
view the NGBW as a Streett automaton and apply determinization of Streett automata
[28,21]. Both approaches produce automata with (nk)?("*) states. In this section we
show how to extend the determinization construction for the case of generalized Biichi
automata. Our construction below produces a DPW with (nk)©(") states, exponentially
fewer states than the approaches described.

We offer here a succinct description of the improvement. The basis of our construc-
tion is Safra’s determinization [27], as improved by Piterman [21]. The key is to aug-
ment compact Safra trees with an indexing function. In Piterman’s construction, the
DPW refers to a visit in the set of accepting states as a good event. In our extension,
a good event occurs only after visits to all the sets in the generalized Biichi condition.
Thus, the idea is similar to the indexing used in the translation of NGBW to NBW [9],
but the challenge is to combine this indexing in the state space of the DPW in a way
that minimizes the blow-up in terms of k. the improved construction is used only to
generate the improved bound. The synthesis algorithm uses this bound but it does not
use the determinization construction.

Theorem 3. Given an NGBW with n states and index k, we can construct an equivalent
DPW with at most n®"T2k™ states and 2n priorities.

Proof: Let N = (X,S5,6, so, ) be an NGBW with |[S| = nand o = {F},..., Fj;}.
Let V' = [n]. We construct the DPW D equivalent to . Let D = (X, D, p, dp, o),
where the components of D are as follows.

— A generalized compact Safra tree t is (N, 1,p,l, h,r,g) where N C V is a set of
nodes, 1 € N is the root node, p : N — N is the parenthood function, [ : N — 25
is a labeling of the nodes with subsets of S, h : N — [k] is an indexing function
associating with every node an index in [k], and r, g € [n + 1] are used to define
the parity condition. In addition, the label of every node is a proper superset of
the union of the labels of its children. The labels of two siblings are disjoint. The
set of nodes is always consecutive and includes the first |[N| elements in V' (i.e.,
1,...,|N]). The set D of states is the set of generalized compact Safra trees over
S and k.

- dp € D has a unique node 1 where [(1)={so}, h(1)=1, r=2, and g=1.

— The parity acceptance condition is o'={F{, ..., F5, _,} where

e Fj={deD|g=1}
o Fy, ,={deD|r=i+2andg >r}
o Fy, y={deD|g=i+2andr > g}

— For every tree d € D and letter o € X the transition d’ = p(d, o) is the result of
the following transformations on d. (1) For every node v with label S’ replace S’
by §(S5’, ). (2) For every node v with label S’ such that (v) = i and S' N F; # 0,
create a son v’ such that v’ is the minimal value in V' that is greater than all other
nodes. Set its label to S'NF; and its index to 1. We may use temporarily nodes in the
range [(n+1)..(2n)]. (3) For every node v with label S and state s € S” such that
s belongs also to some sibling v of v such that v' < v, remove s from the label of
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v and all its descendants. (4) For every node v whose label is equal to the union of
the labels of its children, remove all descendants of v. If h(v) = k, change h(v) to
1 and call v green. If h(v) < k, increase h(v) by one. Set g to the minimum of n+1
and the green nodes. (5) Remove all nodes with empty labels. Set » the minimum
of n+1 and all the nodes removed during all stages of the transformation. (6) Let
Z denote the set of nodes removed during all previous stages of the transformation.
For every node v let rem(v) be [{v' € Z | v' < v}|. For every node v such that
I(v) # 0 we replace v by v—rem(v). O

Let Det(n, k) be the number of generalized compact Safra trees for NGBW with n
states and index k. By Theorem 3, Det(n, k) is bounded from above by n?"+2k".

4.2 From UGCT to NBT

A Bounded-Size Run Graph Property for UGCT. Let A = (¥, D, Q, qin, 6, ) be
a UGCT with « = {F1, ..., F} }. Recall that a run (7., 7) of A on a X-labeled D-tree
(T, 7)isa (T x @Q)-labeled tree in which a node y with r(y) = (z, ¢) stands for a copy
of A that visits the state ¢ when it reads the node . Assume that (T', 7) is regular, and is
generated by a transducer 7 = (D, X, S, s;,,, 1, L). For two nodes y; and y in T;., with
r(y1) = (x1,q1) and 7(y2) = (w2, ¢2), we say that y; and yo are similar iff g1 = ¢
and n(z1) = n(x2). By merging similar nodes into a single vertex, we can represent the
run (T, 7) by a finite graph G = (V, E), where V. = S x Q and E({s, q), (s’,¢')) iff
there is ¢ € D such that (¢, ¢’) € 6(¢q, L(s)) and n(s,c) = s’. We restrict G to vertices
reachable from the vertex (S;,, gin ). We refer to G as the run graph of Aon 7. A run
graph of A is then a run graph of .4 on some transducer 7. We say that G is accepting iff
every infinite path of G has only finitely many F;-vertices (vertices in S x F}), for some
1 < j < k. Since A is universal and 7 is deterministic, the run (7T}, r) is memoryless
in the sense that the merging does not introduce to G paths that do not exist in (7)., r),
and thus, it preserves acceptance. Formally, we have the following:

Lemma 1. Consider a UGCT A. Let (T, T) be a tree generated by a transducer T . The
run tree (T, 1) of A on (T, T) is accepting iff the run graph G of A on T is accepting.

Note that G is finite, and its size is bounded by S x (). We now bound S and get a
bounded-size run-graph property for UGCT. The bound on S depends on the blow-up
involved in NGBW determinization, which we studied in Section 4.1. Essentially, the
bound depends on the size of an NPT equivalent to the UGCT, and in order to get such
an NPT we have to determinize an NGBW that accepts bad paths in runs of the UGCT.

Theorem 4. A UGCT A with n states and index k is not empty iff A has an accepting
run graph with at most Det(n, k) - n vertices.

From UGCT to NBT via ABT. Consider a graph G’ C (. We say that a vertex (s, q)
is finite in G' iff all the paths that start at (s, ¢) are finite. For 1 < j < k, we say that a
vertex (s, ¢) is F)j-free in G’ iff all the vertices in G’ that are reachable from (s, g) are
not [;-vertices. Note that, in particular, an [;-free vertex is not an I;-vertex.
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Given a run (7)., ), we define an infinite sequence of graphs Gy 2 G% D G% )
LG D GM D @Gl O L. GETT D G ... as follows. To simplify notations, we
sometimes refer to G3; ., as Ga;41 and to G’;#l as Gaji2. Thus, G; = Gi, Gy =
G, Gy = GY, Gy = G5, and so on.

- Gy =G.
- Gii1 = G2 \ {(s,q) | (s,q) is finite in G, }.
- G =G\ {(5.9) | (s,q) is Fj-freein G}, },for1 < j < k.

Lemma 2. A run graph G = (V, E) is accepting iff there is i < |V| for which Go; is
empry.

Let GG be an accepting run graph. Given a vertex (s, q) in G, the rank of (s, q), denoted
rank(s, q), is defined as follows:

24 If (s, ) is finite in G'y;.

"'ank(sa q) = <2’L + ]-,_7> If <5’ q> is Fj-free in Ggi-&-l'

Recall that, for an integer ¢, we have defined Ry (c) = [2¢]**"U([2¢]*%x{1, ..., k}),
as a set of ¢(k + 1) ranks, and defined < as the lexicographical order on the elements
of Ry(c). For an odd rank p = (2i + 1, j), we refer to G3;,; as G,. Let ¢ = |V|.
By Lemma 2, there is ¢ < ¢ for which G9; is empty. Therefore, every vertex gets a
well-defined rank in Ry/(c).

Lemma 3. In every infinite path in an accepting run graph G, there exists a vertex
(s, q) with an odd rank such that all the vertices (s',q') on the path that are reachable
Sfrom (s, q) have rank(s',q") < rank(s, q).

We can now use the analysis of ranks in order to translate UGCT to NBT. In order to
enable further optimizations, we use ABT as an intermediate step in the construction.

Theorem 5. Let A be a UGCT with n states and index k. There is an ABT A’ over the
same alphabet such that all the following hold.

- L(A) C L(A),

- L(A) # 0 implies L(A") # 0, and

— the number of states in A’ is 20((ogn+logk))

As detailed in the proof of the Theorem, the ABT A’ accepts all the regular trees
(T, ) € L(A) that are generated by a transducer 7 = (D, X, S, s, 1, L) with at
most Det(n, k) states. Note that the run graph of A on such (7', 7) is accepting and is
of size most Det(n, k) - n. By Theorem 4, we have that £(A’) # 0 iff L(A) # 0.

The state space of A" is Q' = @ X Ry(c). Intuitively, when A’ is in state (g, p) as
it reads the node = € T, it guesses that the rank of the vertex (n(x), q) of G is p. The
transitions of A" allows the guessed ranks to decrease, but makes sure that if a state
is in F;, the guessed rank for it cannot be odd with index j. By Lemma 3, the guessed
ranks should eventually converge to some odd rank, which is checked by the acceptance
condition of A’>

5 Readers familiar with weak automata [20], would note that our automaton is in fact an alter-
nating weak tree automaton. It is the special structure of weak automata that enables some of
the optimizations we describe below.
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In [18], Miyano and Hayashi describe a translation of ABW to NBW. In Theorem 6
below (see also [19]), we present (a technical variant of) their translation, adapted to
tree automata,

Theorem 6. Let A be an ABT with n states. There is an NBT A’ with 20 states, such
that L(A") = L(A).

Combining Theorems 5 and 6, one can reduce the nonemptiness problem for UGCT
to the nonemptiness problem for NBT. Consider a UGCT A with n states and in-
dex k. If we translate A to an NBT by going through the ABT we have obtained
in Theorem 5, we end up with an NBT with 220("(1°g"+10g P states, as the ABT has
20(n(logn+logk)) states. In order to complete the construction, and get the NBT de-
scribed in the proof of Theorem 2, we exploit the special structure of the ABT and
show that only 20(n*(logn+log k) giates of the NBT constructed in Theorem 6 may
participate in an accepting run.

5 Compositional Synthesis

A serious drawback of current synthesis algorithms is that they assume a comprehen-
sive set of temporal assertions as a starting point. In practice, however, specifications are
evolving: temporal assertions are added, deleted, or modified during the design process.
In this section we describe how our synthesis algorithm can support compositional syn-
thesis, where the temporal assertions are given one by one. We show how the Safraless
approach enables us, when we check the realizability of 1) A1), to use much of the work
done in checking the realizability of 1) and ¢/’ in isolation. Devising compositional syn-
thesis algorithms to other forms of composition, e.g., 1)’ — 1), is an interesting research
problem.

Our compositional algorithm extends the incremental-synthesis algorithm described
in [15]. Essentially, we show that when we construct and check the emptiness of the
NBT to which realizability of ) A ¢’ is reduced, we can use much of the work done
in the process of checking the emptiness of the two (much smaller) NBTs to which
realizability of 1) and ¢’ is reduced (in isolation).

We first review the incremental-synthesis idea from [15]. Recall that our construction
is based on the fact we can bound the maximal rank that a vertex in an accepting run
graph G gets. Often, the sequence Gy, G1, Ga, . .. of graphs described in Section 4.2
converges to the empty graph very quickly, making the bound on the maximal rank
much smaller (see [11] for an analysis and experimental results for the case of UCW).
Accordingly, one can regard the bound c as a parameter in the construction: start with a
small parameter, and increase it if necessary.

To see how this is done, consider the combined construction described in Theorem 2.
Starting with a UGCT A with state space @ of size n, we took ¢ = Det(n, k) - n (an
upper bound on the size of the minimal accepting run graph of .A), and constructed an
NBT A’ with state space 3¢ x Ry(c), where Ry (c) is the set of functions f : Q —
Ry, (c) in which f(g) is not odd with index j for all ¢ € Fj. For I < ¢, let Ry [l] be the
restriction of Ry, to functions with range Ry (1), and let A’[l] be the NBT A’ resulting
from replacing the functions Ry[c] by R[c]. Recall that the NBT A’[l] is empty iff
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all the run graphs of A of size at most [ are not accepting. Thus, coming to check the
emptiness of 4, the incremental approach proceeds as follows: start with a small / and
check the nonemptiness of A’[l]. If A’[l] is not empty, then .4 is not empty, and we can
terminate with a “nonempty” output. Otherwise, increase [, and repeat the procedure.
When [ = ¢ and A’[l] is still empty, we can terminate with an “empty” output.

As argued for UCTs in [15], it is possible to take advantage of the work done during
the emptiness test of A’[l1], when testing emptiness of A’[l2], for 2 > I;. To see this,
note that the state space of A’[l2] consists of the union of 3¢ x R[l1] (the state space of
A'[l1]) with 39 x (R [la] \ Ri[l1]) (states whose f € Rp[l2] has a state that is mapped
to a rank greater than [1). Also, since ranks can only decrease, once the NBT A’[l5]
reaches a state of A’[l4], it stays in such states forever. So, if we have already checked
the nonemptiness of .A’[l;] and have recorded the classification of its states to empty
and nonempty, the additional work needed in the nonemptiness test of A’[l2] concerns
only states in 39 x (R[l2] \ Re[l1]).

We now describe how the incremental approach can be extended to a compositional
one. Let S = (X,Q,6,qin, {F1,.... Fx}) and ' = (X,Q",8', ¢}, {F{,..., FL.})
be UGCWs specifying required behaviors. Let n = |Q] and n’ = |Q’|. Without loss
of generality, assume that the state spaces () and )’ are disjoint. We can define the
intersection of S and S’ as the UGCW P obtained by putting S and S’ “side by side”;
thus® P = (2, QUQ",6U8 , {Gin, i}, {F1UQ', ..., [ UQ, F/UQ, ..., F,UQ}).
Note that it is indeed the case that P has an accepting run on a word w iff both S and
S’ has an accepting run on w.

Let A and A’ be the NBTs to which realizability of S and S’ is reduced, respec-
tively. A non-compositional approach generates the NBT that corresponds to P. By
Theorem 2, this results in an NBT U with state space 3@Y9" x Ry (p)QUQ/, for
p = Det(n+n',k+k)-(n+n'). On the other hand, the state spaces of A and A’ are
much smaller, and are 39 x Ry(c)? and 39" x Ry (¢)?', for ¢ = Det(n, k) - n and
¢ = Det(n', k") - n’. respectively.

Let us examine the structure of the state space of &/ more carefully. Each of its states
can be viewed as a triplet (S U S, O U0, f),forO C S C Q,0" C S C @, and
f:QUQ" — Rpyw(p). For f as above, let fig and fio/ denote the restrictions of
f to @ and @', respectively. Note that if f maps the states in S to ranks in Ry (c) and
maps states in S’ to ranks in Ry (¢’), then the state (S U S’,O U O, f) corresponds
to the states (S, O, f|g) of Aand (S, 0, fio/) of A’. Moreover, if one of these states
is empty, so is (S U S’,O U O, f). This observation is the key to our compositional
algorithm.

Forl < candl’ < ¢, letU[l,l'] denote the NBT U restricted to states (S U S, O U
O’, f) in which f(q), for ¢ € S, is in Ry(l) and f(¢'), for ¢’ € S’,isin Ry (I'). We
check the emptiness of U/ incrementally and compositionally as follows. We start with
small /1 and I} and check the emptiness of U[l1,[1]. Doing so, we first mark as empty
all states (SUS’, OUQ', f) for which either (S, O, f|q) is empty in Aor (S",0’, fio/)
is empty in A’, and continue the emptiness check only in the (expectedly much smaller)
state space. If U[l1, 1] is not empty, we are done. Otherwise, we increase our parameters

® For technical simplicity, we allow P to have two initial states. This can be easily avoided by
adding a new initial state whose transitions are the union of the transitions from ¢;,, and gq,,,.
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to I and 14, with [z > [y and [, > I}. Note that we need not increase both parameters.
Checking the emptiness of U[l2, 1], we make use of the information gathered in the
emptiness checks of A[l2], A’[l5], as well as U[l;, I}]. The procedure continues until we
either reach /; and l for which U[l;, ! 7] is not empty, in which case the specification
is realizable, or we ﬁnd that U[p, p| is empty, in which case the specification is not
realizable.

We note that, as with the incremental approach, the significant advantage of the com-
positional approach is when the specification is realizable, and especially when U[l,’]
is not empty for [ and I’ smaller than ¢ and ¢’ — thus we can use information about A
and A’ all the way to the positive response. We also note that the incremental approach
is possible due to the simple structure of the state spaces of the NBTs to which we have
reduced the realizability problem. This simple structure also makes it easy to implement
our approach symbolically: the state space of the NBT consists of sets of states and a
ranking function, it can be encoded by Boolean variables, and the NBT’s transitions can
be encoded by relations on these variables and a primed version of them. The fixpoint
solution for the nonemptiness problem of NBT (c.f., [30]) then yields a symbolic so-
lution to the original UGCT nonemptiness problem. Moreover, checking the emptiness
of U[l;,15], we can use BDDs for the empty states in A[l;], A[l%], and U[l;1,1}_,].
Finally, as discussed in [15], the BDDs that are generated by the symbolic nonempti-
ness procedure can be used to generate a symbolic witness strategy, from which we can
synthesize a sequential circuit implementing the strategy.
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Minimizing Generalized Biichi Automata
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Abstract. We consider the problem of minimization of generalized Biichi
automata. We extend fair-simulation minimization and delayed-simulation mini-
mization to the case where the Biichi automaton has multiple acceptance condi-
tions. For fair simulation, we show how to efficiently compute the fair-simulation
relation while maintaining the structure of the automaton. We then use the fair-
simulation relation to merge states and remove transitions. Our fair-simulation al-
gorithm works in time O(mn®k?) where m is the number of transitions, 7 is the
number of states, and & is the number of acceptance sets. For delayed simulation,
we extend the existing definition to the case of multiple acceptance conditions.
We show that our definition can indeed be used for minimization and give an al-
gorithm that computes the delayed-simulation relation. Our delayed-simulation
algorithm works in time O(mn>k). We implemented the two algorithms and re-
port on experimental results.

1 Introduction

In recent years algorithmic methods for verifying temporal-logic properties of finite-
state systems have been discovered (cf. [CGP99]). The development of symbolic meth-
ods to reason about large state spaces [McM93, BCCT99] have led to the acceptance
of model checking in hardware industry [BLMO1, CFFT01]. The standard approach to
linear temporal logic (LTL) model checking is to translate the given specification to a
nondeterministic Biichi automaton [Var96]. By now, there are many algorithms that take
an LTL formula (or formalisms that extend LTL, cf. [AFFt02, IEE05]) and construct
an equivalent Biichi automaton [GPVW95, SB00, GOO1]. The resulting automata may
be exponentially larger than the original LTL formula.

To improve model-checking efficiency we would like to produce the minimal pos-
sible automata. Unfortunately, finding the minimal automaton equivalent to a given
nondeterministic automaton is computationally expensive. Thus, we usually resort to
computationally cheap methods that are not guaranteed to produce the best automata.

One such approach is to use simulation [Mil71]. A state ¢ simulates a state s if it has
the same observations and for every successor s’ of s there exists a successor ¢’ of ¢ that
simulates s". If s and ¢ are simulation equivalent, i.e., t simulates s and s simulates ¢,
then we can merge s and ¢ to a single state. Similarly, if s has transitions to both ¢ and
t’ such that ¢’ simulates ¢, then the transition to ¢ is redundant. Simulation considers
only the transition structure of the automaton and not its acceptance condition. Thus,
simulation is inadequate for minimization of Biichi automata.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 45-58, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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There have been several suggestions how to extend simulation to include the accep-
tance condition [DHW91, GL94, HKR97, EWSO01]. The simplest of these, is direct sim-
ulation where in addition to agreement on observations of states, we demand agreement
on acceptance [DHWO91]. A variant is reversed simulation which checks the edges enter-
ing a state [SBOO]. Both can be applied to automata on infinite objects [SB00, GBS02].
Agreement on acceptance makes direct and reversed simulation very restrictive.

Fair-Simulation is a more relaxed notion of simulation [HKR97]. According to this
notion, simulation comes equipped with a strategy. The strategy instructs us which suc-
cessor t' of ¢ to choose. We demand in addition that by following the strategy a fair
computation on one side produces a fair computation on the other side. That is, if we
have an infinite sequence of states that starts from the simulated state we can use the
strategy to produce an infinite sequence of simulating states. Furthermore, if the first
sequence is fair so is the second. Etessami et al. show how to efficiently compute fair
simulation for the case of Biichi automata [EWSO01]. They show also that fair simula-
tion is too relaxed and cannot be used to merge states. Gurumurthy et al. show that it
is still worthwhile to try minimizing with fair simulation [GBS02]. They show that by
checking every merge and edge removal for soundness, fair simulation can still be used
for minimization. The total complexity of all successful soundness checks is bounded
by the complexity of checking fair simulation.

Etessami et al. provide an intermediate simulation notion called delayed simulation
[EWSO01]. The simulation again includes a strategy but this time whenever one compu-
tation visits an accepting state the other computation must visit an accepting state later.
They show that delayed simulation can be used to merge states. That is, if s and ¢ are
delayed-simulation equivalent, then the automaton in which s and ¢ are merged into
one state is equivalent to the original. By now most LTL to Biichi conversions use some
form of simulation to minimize the size of the automaton.

Translation of LTL to Biichi automata results naturally in generalized Biichi au-
tomata, that is, Biichi automata with multiple acceptance sets (cf. [GPVW95, SB00]).
A generalized Biichi automaton with k acceptance conditions and n states can be eas-
ily converted to a simple Biichi automaton with nk states (and one acceptance con-
dition) [Cho74]. This conversion is natural (and even required) when explicit state
model checking is used [CVWY92].! However, when using symbolic model check-
ing this conversion is undesirable and unnecessary. Symbolic algorithms for checking
emptiness of automata easily handle the generalized Biichi condition without loosing
efficiency. On the other hand, converting generalized Biichi to simple Biichi results in
model checking a problem that may be k times larger. Counter examples may be sig-
nificantly longer (even more than a factor of k£ as the order between the acceptance
sets may be important). A similar situation arises when considering complementation
of generalized Biichi automata; handling generalized Biichi directly is exponentially

" In the case that a simple Biichi automaton is required it would be best to apply first the conver-
sion to a simple Biichi automaton. The conversion from generalized Biichi to a simple Biichi
involves the addition of a deterministic part; this implies that simulation on the generalized
automaton translates to simulation on the simple automaton. It follows that every modifica-
tion done using our techniques on the generalized automaton would be done on the simple
automaton.



Minimizing Generalized Biichi Automata 47

more efficient [KV04]. Also when we use LTL in the context of synthesis, handling the
generalized Biichi condition directly produces algorithms that are exponentially better
than converting them to simple Biichi [KPV06]. Thus, it is extremely important to be
able to further minimize generalized Biichi automata without first converting them to
simple Biichi automata.

The notions of direct and reversed simulation are extended naturally to generalized
Biichi automata (though they are even more restrictive in this case) [EH00, SBOO]. This
is not the case for fair and delayed simulation. The definition of fair simulation does not
rely on a specific acceptance condition. Indeed, it applies naturally to generalized Biichi
automata. It is not clear, however, how to solve efficiently fair simulation with respect
to generalized Biichi automata and how to extend the efficient soundness check. In the
case of delayed simulation it is not even clear how to extend the definition to the case of
generalized Biichi automata. As mentioned, generalized Biichi automata that are used
for symbolic model checking are not converted to simple Biichi automata. As we do not
know how to use fair-simulation minimization and delayed-simulation minimization on
these automata, we use only the simple optimization techniques. Here we show how the
more advanced minimization techniques can be applied to generalized Biichi automata.

In the context of fair simulation, the efficient computation of fair simulation for
Biichi automata relies on Jurdzifiski’s ranking for parity games [Jur00, EWSO01]. We
show how to define a ranking for this type of fair simulation, how to compute this
ranking efficiently, and how to check efficiently whether fair-simulation minimization
is sound. The overall complexity of the fair-simulation minimization for all success-
ful merges / edge removals is O(mn3k?) where m is the number of transitions of the
automaton, n the number of states, and k the number of acceptance sets.

The definition of delayed simulation is tailored specifically for simple Biichi au-
tomata [EWSO01]. We show how to extend this definition to the case of generalized
Biichi automata. We prove that our definition, while seemingly very relaxed, has the
power needed in order to be used to minimize generalized Biichi automata. We also
show how to efficiently check delayed simulation for this case. The complexity of the
delayed simulation minimization is O(mn®k) where m is the number of transitions of
the automaton, n the number of states, and k the number of acceptance sets.

Finally, we have implemented both these extensions in Wring [SB0O0]. We report on
the results of testing our implementation on 500 randomly generated LTL formulae.

2 Preliminaries

2.1 Games

A gameis atuple G = (V, Vp, Vi, p, W) where V is the set of locations of the game, V)
and V; are a partition of V' to locations of player 0 and player 1 respectively, p C V x V'
is the transition relation, and W C V“ is the winning set of G.

A play in G is amaximal sequence of locations m = vgvy - - - such that forall i > 0 we
have (v;, v;+1) € p. A play 7 is winning for player O if 7 € W or 7 is finite and the last
location in 7 is in V] (i.e., player 1 cannot move from the last location in 7). Otherwise,
player 1 wins. For an infinite play 7 we denote by in f () the set of locations that recur
infinitely often in . Formally, inf(7) = {v € V | v = v; for infinitely many i}.
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A strategy for player 0 is a partial function f : V* . V[ — V such that whenever
f(mv) is defined (v, f(7wv)) € p. We say that a play 7 = wvovy - -+ is f-conform if
whenever v; € Vp we have v;11 = f(vo---v;). The strategy f is winning from v if
every f-conform play that starts in v is winning for player 0. We say that player 0 wins
from v if she has a winning strategy. The winning region of player 0, is the set of states
from which player 0 wins. We denote the winning region of player 0 by Wj. A strategy,
winning strategy, win, and winning region are defined dually for player 1. We solve a
game by computing the winning regions W and W . For the kind of games handled by
this paper Wy and W, form a partition of V' [GH82].

In this paper we are interested in two types of winning conditions. In order to define
the first winning conditions we use two sets P = {Py,..., P} and Q = {Q1,...,Q}
of subsets of the states in G. The generalized Streett[1] condition on P and @ is the
set of sequences m € V* such that either there exists ¢ such that inf(7) N P, = () or
forall j we have inf(m) NQ; # 0. That is, either there exists some set in P that appears
finitely often in 7, or every set in () appears infinitely often in 7v. Notice that when P
and @) are singletons then the generalized Streett[1] condition on P and @ is in fact a
Streett[1] condition [Str82] or a parity[3] condition [EJ91]. The second winning con-
dition is generalized response. We use a set P = {(P1,Q1), ..., (Px, Q) } of pairs of
subsets of V. In order to define the winning condition we add to the game a counter that
ranges over {1, ..., k}. The counter is controlled by player 1 and before every move of
player 1 she may change this counter arbitrarily. Player O wins the generalized response
condition on P if either player 1 changes the counter infinitely often, or if eventually
the counter is set to ¢ and along the suffix of the play along which the counter is ¢ every
visit to P; is followed by a visit to @);. That is, player 1 chooses a pair (P;, Q;) € P.
While playing according to this pair a visit to P; should be followed later by a visit
to Q;. At every given point in time player 1 may decide to change the target pair to j
and start following (P;, Q;). If player 1 changes her mind infinitely often she looses.
Notice that this is very different from ensuring that for every j € {1, ..., k} every visit
to P; is followed by a visit to @);. In our setting player 0 can work with each of the pairs
separately. She does not care about other pairs while playing according to one pair (at
least not directly). From every state in the winning region of player 0, she has a strategy
to win the delayed game with respect to every one of the pairs. This strategy cannot
leave the region from which she can win with respect to the other pairs. In order to
ensure that forall j € {1,...,k} every visit to P; is followed by a visit to @);, player
0 has to memorize to which pairs she owes a visit. This is not necessary in our case.
Notice that in the case that P is a singleton {(P;, Q1)}, this game is exactly the game
defined in [EWSO01] for delayed simulation. We explain below the motivation for these
two conditions and in Section 3 show how to solve these two types of games.

2.2 Nondeterministic Biichi Automata

A nondeterministic Biichi automaton (or NBW for short) is N = (X, S, Sy,6,T, F),
where X = {—1,0,1}% for some set of propositions P is a finite alphabet, S is a
finite set of states, Sy C S is a set of initial states, 6 C S x S is a transition relation,
T : S — X is alabeling function, and F = {F},..., Fy} C 29 is a set of winning
conditions. We call F' € F a winning set or acceptance set. For v € V we denote
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S(v) = {w | (v,w) € §} and 6 1(v) = {w | (w,v) € &} the set of successors and
predecessors of v. A run of N is an infinite sequence of states sg, s1, ... € S such that
S0 € Sp and forall j > 0 we have (s;, sj41) € 6. Forarunr = sg, s1,..., letinf(r) =
{s € S| s = s, for infinitely many i’s} be the set of all states occurring infinitely often
in the run. A run r is accepting if for every 1 < ¢ < k we have inf(r) N F; # 0.
Usually, we distinguish between Biichi automata where |F| = 1 and generalized Biichi
automata where |F| > 1. In this paper we are interested mainly in generalized Biichi
automata. Unless mentioned explicitly, all NBW have more than one acceptance set.

Given two labels o, 0’ € {—1,0, 1}, we say that o’ abstracts o (o C o) if for every
g € P such that 0’(q) = 1 we have o(q) = 1 and for every ¢ such that o'(¢) = —1
we have o(q) = —1. It is simple to see that the abstraction relation is reflexive and
transitive. An infinite word over P is an infinite sequence w = wows -+ € {—1,1}F
of truth assignments to the propositions in P. A run r = sg, s1, . .. induces an infinite
word w = wow; - - - if for every i > 0 we have that T'(s;) abstracts w; (notice that
a single run may induce many different words). A word w is accepted by N if it is
induced by some accepting run. The language of N, denoted L(N), is the set of words
accepted by V. We say that two automata are equivalent if they have the same language.

Another way to characterize sets of sequences of propositions is by LTL formulas
[Pnu77, Eme90]. For every LTL formula ¢, there exists an NBW N, with 200¢D states,
such that L(N,) = L(y) [VW94]. We would like the produced NBW to have a minimal
number of states, transitions, and acceptance sets.

2.3 Simulation

A natural way of comparing automata is by considering language equivalence and lan-
guage containment. However, these problems are computationally expensive and im-
practical. In many cases, we resort to using simulation, an equivalence criterion that
implies language containment and is easy to compute.

Simulation does not consider the acceptance condition. We use the extensions fair
simulation [HKR97] and delayed simulation [EWSO01] that consider acceptance. Both
simulations are defined via games. Consider two NBW N = (XSS, 6,T, F) and
N' = (¥R, Ro,n,T',F'). Let Gy n+ = (VoUWV1, Vi, Vi, p, W) be the simulation
game where (a) V) = S x R x {0} (b) Vi = {(s,t,1) : s€ S, t € R, andT(s) C
T/(0)} © p = {((5,£,1), (s',£,0)) : (s,") € 8} U{((s,2,0), (5,2, 1)) | (¢,¢') € n}
Note that the game has O(]S|-|R|) states and O(|6|-| R|+|n|-|:S|) transitions. In order to
define the winning conditions we define sets of subsets of the locations that depend on
the winning conditions of N and N'. Let F = {Fi,...,Fy} and 7' = {F{,... F}.
We define the sets Py, ..., Py and Q1, . .., Q;. The set P; contains all locations (s, ¢, 1)
such that s € F;. The set Q; contains all locations (s, ¢,1) such thatt € F.

In order to consider fair simulation we consider the generalized Streett[1] game
Gy, n» over P={Py,...,P;} and Q= {Q1,...,Q;}. It follows that player 0 wins
an infinite play if the projection of the play on the first component is fair implies that
the projection of the play on the second component is fair. We call this game the fair-
simulation game or just the fair game. If player 0 wins the fair game from state (s, ¢, 1)
then ¢ fair simulates s, denoted by s<st. We call H = {(s,t) | (s,t,1) € Wy} the
simulation relation. From every pair (s,t) € H player 0 has a strategy so that the play
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remains in [ and if the projection of an infinite outcome on the first component is
fair then so is the projection on the second component. We say that s and ¢ are fair
equivalent, denoted s=yt if both s<y? and ¢<ys. Fair simulation implies language
containment [HKR97]. Gurumurthy et al. show how to use fair simulation to reduce the
number of states and transitions of an NBW where | 7| = 1 [GBS02].

In order to consider delayed simulation we require that |F| = |F'| (i.e., k = ).
Consider the generalized response game G, n over P = {(P1,Q1),. .., (P, Qr)}.
We call this game the delayed-simulation game or just the delayed game. As before, if
player O wins from (s, ¢, 1) then ¢ delayed simulates s. Thatis, H = {(s,t) | (s,t,1) €
Wy} is the simulation relation. From every pair (s,¢) € H and for every pair (P;, Q;) €
P player 0 has a strategy so that the play remains in H and if the projection of an infinite
outcome on the first component visits P; then the projection on the second component
visits (; sometime later. The notations <; and =, are defined like for fair simulation.
We consider delayed simulation between an automaton and itself. When |F| = 1 our
definition is equivalent to the definition in [EWSO01]. Etessami et al. study delayed sim-
ulation for the case where |F| = 1. They show that delayed simulation is implied by
direct simulation (which we do not define here) and it implies fair simulation. These
two claims are true also for the general definition above. The first claim is immediate
and the second can be proved much like Theorem 8.

We note that the generalization of delayed simulation to the case of generalized
Biichi automata is not straight forward. The most straight forward extension would
be to consider a play winning if for every (P;, Q);) € P we have that every visit to P; is
followed by a visit to @);. In Section 4 we show that our definition is strong enough to
be used for minimization of NBW. Having different strategies for every one of the pairs
is exactly what is needed to establish correctness of delayed-simulation minimization
(as long as the strategies remain in the winning region of player 0).

We use simulation to reduce the number of states and transitions of an automaton.
We usually compute simulation between an NBW and itself. In order to reason about the
changes done to an automaton, we consider simulation between two different automata.

3 Solving Games

3.1 Generalized Streett[1] Games

In [EWSO01] and [GBS02], fair games are solved using a reduction to parity[3] games.
Then Jurdzinski’s algorithm for solving parity games is used [Jur0O]. Here we gener-
alize this approach to our case.

Let G = (V,p) be a generalized Streett[1] game over P = {Py,..., P} and
Q={Q1,...,Q;}. We define a set of ranking functions R = (r1, ..., 7). The ranking
r; measures what is the minimum over j of the maximal number of visits to P; until a
visit to (); is enforced by player 0. If the rank of some state is finite, it means that either
for some j we have P; is visited finitely often or within a finite number of steps player
0 forces a visit to (9;. We use the ranking to define a winning strategy for player O and
show that whenever player O wins, such a ranking system exists.

We now define formally the range of the ranking functions and the ranking functions
themselves. We denote by |P;—@Q;| the number of states in P,—Q;. For j € [k], let
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l7] = max;{|P;—Q,|}. We set D; = ([0..]]] x [1..k]) U{co}. We order D; according
to the lexicographic order with co as maximal element. This induces a well order on
D; and we define increment by one in the natural way according to this order. Namely
(ryi)+1lis (r,i+1)ifi < kand (r+1,1)ifi = kandr < |j]. We set (||, k) +1 =
oo = oo + 1. Let j @ 1 denote (j mod 1)+1. Consider a set of ranking functions
R = (r1,...,m)suchthatr; : V— D;. We define best;(v) to be the rank of the mini-
mal successor of v in case v € Vj and the maximal successor in case v € Vi. If v € Q;
we take the minimal / maximal according to 741, otherwise according to r;. Formally,

min(u,w)ep{rj@(w)} veVpandv € Q)

best;(v) = 4 MNwwepri(w)}t veVoandv ¢ Q;
’ maz(ywyep{rjo1(w)} v e Viandv € Q;
maz(ywyep{rj(w)} veViandv ¢ Q;

A ranking is good if for every v € V and for every j € [1..1] all the following hold.

- If v € Q; and best;(v) < oo then rj(v) = (0,1).

- Ifv ¢ Qj, best;(v) = (r, i), and v € P; then r;(v) > best;(v).

— Otherwise 7;(v) > best;(v).
Notice that there is a circular dependency between all the rankings through the defini-
tion of best;(v) when v € ;. We claim that given a good ranking, every state v such
that r1 (v) < oo is winning for player 0.

The ranking defines a winning strategy for player 0. More accurately, every ranking
([1..1]) defines a different strategy. Player O chooses one such strategy and tries to de-
crease it. When playing according to strategy j and the play reaches a state v for which
rj(v) = (0,1) and v € Q; she starts playing according to the j&1 strategy. If player
0 changes her strategy infinitely often then forall 1 < ¢ < [ we have @); is visited in-
finitely often and player O wins. If player O eventually plays according to some fixed
strategy 4, it follows that the rank eventually remains constant (r, 7). It follows that P;
is not visited again and player O wins.

We say that a ranking is tight if it is good and in addition for every winning state v of
player 0 we have 7 (v)<oo. In [KPP05] we give a symbolic algorithm for the solution
of generalized Streett[1] games. The algorithm consists of a p-calculus formula that
characterizes the set of winning states of player 0. In the full version we prove that
the strategy proposed above is winning and use the algorithm of [KPPOS5] to prove
that whenever there exists a winning strategy for player O a tight ranking system exists.

If we can produce a tight ranking system, it provides a partition of the states of the
game to Wy and W;. In order to efficiently compute tight ranking system, we gener-
alize Jurdzinski’s rank lifting algorithm [JurOO] to our case. For a state v € V and a
ranking function r; : V' — Dj, let incri (i, 0) be (0,1) in the case that v € Q; and
(i,0) < 0o, (i,0) + 1 in the case that v ¢ @; and v € P, and (i, 0) otherwise®. Let
update;(r;,v) be the ranking r; such that 7’ (v') = r;(v") for v # v and r}(v) =
maz{r;(v),incr (best(v))}. The lifting algorithm that computes the good ranking is:

1Let R:=Vov,j:7;(v)=(0,1)
2 While (Jv, j s.t. rj(v) # update;(r;j,v)) do
3 Let r; := update;(r;, v)

% Notice that in the case that v € Q; and (4, 0) = oo then incri (i, 0) = co.
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Theorem 1. Given a generalized Streett[1] game G, player 0 wins from a location v
iff after the lifting algorithm r1(v) # oc.

Etessami et al. give an efficient implementation that computes Jurdziriski’s ranking for
parity[3] games [EWSO1]. In Fig. 1 we generalize their approach to our ranking.

1 foreachv € V and j € [n] do

2 Bj(v):=0:C;(v) := {w : (v,w) € 6}f;7;(v) := (0,1);
3 Li={(v,j) €V |q ¢ Lv)and pr € L(v)};

4 while L # () do

5 let (v,5) € Ly L := L\ {(v,5) };

6 t:=r;v);

7 Bj(v) := bestj(v); Cj(v) := ent;(v);

8 r;(v) := incrd (best;(v));

9 P:={weV|(ww)€p}

10 foreach w € P such that (w,j) ¢ L do

11 ifwe Voand ¢t = Bj(w) and Cj(w) > 1 then Cj(w)——;
12 ifw e Vpand t = B;(w) and Cj(w) = 1then L := LU {(w, j)};
13 ifw € Vi and t = Bj(w) then Cj(w)++

14 ifwe Viandt > Bj(w) then L := LU {(w,j)};

15  endforeach

16 endwhile

Fig. 1. Efficient solution of generalized Streett[1] games

Theorem 2. We can solve a generalized Streett[1] game in time O(tgkl) where t is the
number of transitions, g the number of locations, k = |P|, andl = |Q)|.

When we use this algorithm to compute the fair simulation relation (i.e., solve Gy )
we get the bounds stated in the following corollary.

Corollary 1. We can compute the fair simulation on an NBW N in time proportional
to O(mn>k?) where m is the number of transitions of N, n is the number of states of
N, and k is the size of F.

We note that if P and () are singletons then our ranking and Jurdziniski’s ranking for
parity[3] are one and the same. In this case the two algorithms are identical.

3.2 Generalized Response Games

In [EWSO01], delayed games with one pair are solved using a reduction to parity[3]
games. In order to remember whether the play owes a visit to the acceptance set they
add a Boolean flag. We prefer to take the view of player 1. This allows us to remove the
Boolean flag. The treatment of delayed games becomes completely different from the
treatment of fair games.

Let G = (V, Vo, Vi, p, W) be the delayed game over P={(P1,Q1), ..., (Px, Qx)}.
In Fig. 2 we give an algorithm that solves delayed games. Intuitively, player 1 wins
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‘immediately’ from P; states from which player 1 can avoid @); states. Additional win-
ning states are states from which player 1 can force the game to immediate wins or to
previously recognized winning states. The algorithm computes the immediate winning
according to some pair and the states from which player 1 can force visits to them. Then
it proceeds to do the same thing for other pairs until no new winning states for player
1 are discovered. Here & and & denote cyclic subtraction and addition in [1..k]. The
function back_reach(X) computes the set of states from which player 1 can force the
play to X. The function avoid_set(X,Y’) computes the set of states from which player
1 can avoid X orreach Y.

1 foreach (P;,Q;) € P do
2 win; = (; old-win; = V;
3 1:=1;

4 while win; # old-win; do

5 old_win; := win;o1;

6 avoid := avoid_set(Q;, old_win,);

7 imm-win := (avoid N P;) V old-win;;
8 win; := back_reach(imm_win);

9 1:=1D1;

10 endwhile

Fig. 2. Efficient solution of generalized response games

Theorem 3. The algorithm in Fig. 2 computes W1 in generalized response games.

We prove soundness by showing that every state collected by the algorithm has some
winning strategy for player 1. We prove completeness by showing that the winning
region of player 1 can be partitioned to regions winning by each of the pairs.

Theorem 4. We can solve generalized response games in time proportional to O(tgk)
where t is the number of transitions, g the number of locations, and k the size of P.

When we use this algorithm to compute the delayed simulation relation we get the
bounds stated in the following corollary.

Corollary 2. We can compute the delayed simulation on an NBW N in time propor-
tional to O(mn3k) where m is the number of transitions of N, n is the number of states
of N, and k is the size of F.

4 Simulation Minimization

4.1 Modifications to NBW and Games

Given an automaton N = (X, S, Sy, 6, T, F) and two states s, ¢ € S we would like to
merge states s and ¢. We denote by N (¢ < s) the automaton N where state s is merged
with state ¢. That is, we remove state s from the automaton, replace every occurrence of
sin Sp, 6, and F by t. Formally, N (t — s) = (X, 5", 5;, 6, T, F') with the following
components.
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- 8" =5 — {s} - remove s from the set of states.

If s € Sy then S = (So U {t}) — {s}, otherwise S, = Sy - replace s by ¢ in the
set of initial states if necessary.

& =(U{(ts) : (s,8) et U{(s,t) : (s',s) €6})— ({s} xSUS x{s})
- replace transitions entering or leaving s by the respective transition from / to ¢.
Forevery F € F,if s € F add (FU{t}) — {s} to 7', otherwise add F to F’.

In the case where |F| = 1, Etessami et al. use delayed simulation to merge states
[EWSO01]. They show that if s and ¢ are delayed equivalent then N and N (¢ < s) agree
on their languages. Formally, we have the following.

Theorem 5. [EWSO01] For an NBW N such that |F| = 1, and s,t such that s=4t we
have L(N) = L(N(t < s)).

Etessami et al. show that in the case of NBW with one acceptance set, delayed simula-
tion can be used for minimization. We show that this is the case also with our definition
and NBW with multiple acceptance sets.

Merging two fair-equivalent states may result in automata that are not equivalent
[EWSO1]. Gurumurthy et al. show that it is still worthwhile to try and merge fair-
equivalent states, however, every such merge has to be verified to make sure that it has
not changed the automaton [GBS02]. We show how to extend the efficient algorithm
for computing fair-simulation to the case of NBW with multiple acceptance sets.

Let N = (X, 5,50,6,T,F)and N' = (¥ R, Ro,n, L, F') be two NBW such that
R =S.Let A C S x S be aset of transitions. We define rem (N, A) = (X, S, Sy, 6 —
AT, F) and add(N,A) = (X,5,S50,6 UA,T,F). Let Gy n = (V, Vo, Vi, p, W)
be the simulation game for N and N'. We define rem(Gn n+, A) = (V, Vo, V1, p', W)
where p' = p — {((s,¢,0),(s,t',1)) | (t,t') € A}. That is, we restrict the moves of
player 0 by removing the moves in A. We define add(Gn n') = (V, Vy, Vi, p", W)
where p”" = pU {((s,t,1),(s',t,0)) | (s,8") € A}. That is, we add options to player
1 by adding the moves in A. Intuitively, if we add transitions to an automaton we know
that the new automaton simulates the old one. We only check that the old automaton
simulates the new one. Dually, when we remove transitions we know that the old au-
tomaton simulates the new one. We have to check only the other direction.

Theorem 6. [GBS02] Let N be an NBW and A a set of transitions. All the following
are true.

- GNrem(v,a) = rem(Gn N, A).

- rem(rem(Gn.n,A), A") =rem(Gny,n, AU A).

= Gagan,a),N = add(Gn N, A).

- add(add(GMN, A), A = add(GNVN, AU A,

According to this theorem it does not matter whether we handle the game graph directly
or build it from scratch from the modified automata. Furthermore, a series of transitions
can be removed one at a time without rebuilding the game. This theorem is used to
efficiently check whether merging of fair equivalent states is allowed [GBS02].

4.2 Fair-Simulation Minimization

As mentioned fair simulation cannot be used for merging states. Gurumurthy et al. show
that it is still worthwhile to try to merge using fair simulation provided that all merges
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are checked [GBS02]. Their algorithm is efficient in the sense that it does not start the
fair simulation computation anew for every merge. In a similar way, if there exists a
state s such that s has transition to both ¢ and ¢ where t<st' they try to remove the
transition from s to . In such a case, they say that ¢ is a little brother of t’. Again, they
show how to check efficiently all the edge removals. In this section we extend their
approach to the case of generalized Biichi automata.

In order to use fair-simulation for minimization we have to check whether the
changes done to the automaton are sound, i.e., the new automaton accepts the same
language. We change the automaton by adding or removing transitions. In order to
check soundness of changes we try to prove that the original automaton and the modi-
fied automaton are fair-simulation equivalent. In order to check a series of additions /
removals efficiently, we show how to reuse the ranks computed in previous stages.

Consider an NBW N = (X,5,50,6,T,F). It induces the fair game Gy n =
(V,Vo,Vi,p,W). Let R = {ry,...,ri} be the ranking computed by the algorithm
in Section 3. We say that R is the ranking of a game G when R is the result of applying
the rank computation algorithm. Given two ranking systems R and R’, we say that R
is at least R’ if for every location v and every 1 < j < k we have r;(v) > 7’ (v). The
following lemma is stated and proved in [GBS02] for NBW with |F| = 1. The lemma
and its proof are identical for the case of NBW where |F| > 1.

Lemma 1. For every set of transitions A, the ranking of rem(Gy n, A) is at least the
ranking of G, n and the ranking of add(G n,n, A) is at least the ranking of Gy, .

Intuitively, if we want to add transitions to the automaton, we add these transitions to
the locations of player 1. If we want to remove transitions we remove these transitions
from the locations of player 0. When we do that, the game becomes easier for player 1
and harder for player 0. It follows that the ranking in the modified game increases. This
means, that if we start from the ranks computed in previous stages and only increase
them we are safe. However, the ranks are bounded by values that are not changed by
addition / removal of edges. When we measure the amount of work done in all stages
of the algorithm (that include several lifting rounds) it cannot be more than O(mn3k?)
total. Essentially, we do the extra lifting rounds for free.

We would like to be able to merge fair equivalent states of N and check if the re-
sulting automaton is equivalent to the original. We would like to use only addition /
removal of transitions to do that. In order to check if a merge is possible, we create an
automaton with two states with the same predecessors and the same successors. That
is, if s=¢t we add all outgoing / incoming transitions from /to s to ¢ and vice versa. We
show now that if we have two states with equivalent incoming / outgoing transitions,
one of them can be removed.

Theorem 7. Let N = (XS, S0, p,T,F) be an NBW. Given s and t in S such that
p(s) = p(t) and p~\(s) = p () then L(N) = L(N(t — s)).

Suppose that we have the game G,y and the ranking R resulting from running our al-
gorithm. This gives us the fair-simulation relation H. Consider two states s and ¢ such
that s=;¢. We would like to check whether we can merge s and ¢. In order to do that we
make s and ¢ have the same incoming edges and the same outgoing edges. Formally, let
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A= {(v,) | (v,5) € 8}U{(v, ) | (v,8) € 5YU{(t,0) | (5,0) € 6} U{(5,0) | (t,) €
6}. We consider the game add(Gy n, A). We update the ranking according to the ad-
dition. If the new automaton fair simulates the old automaton we conclude the merge
to be successful and continue. If the new automaton does not fair simulate the old au-
tomaton we conclude the merge to be unsuccessful and revert to the ranking before
considering add(G n n, A). We then proceed to the next pair of candidates to merge.
As explained we can now consider the game add(add(Gn N, A), A”) where A’ is the
set of transitions that relate to the new pair of states to be merged. Little brothers are
handled similarly.

4.3 Delayed-Simulation Minimization

Delayed simulation as defined for NBW with single acceptance condition can be used
for minimization [EWSO01]. That is, if s=4t then L(N (t < s)) = L(N). Our definition
extends delayed simulation for the case of NBW with multiple acceptance conditions.
We show that also under our definition s=,4¢ implies L(N (t «<— s)) = L(NV). Although
our definition is weaker than the straight forward extension of delayed simulation it is
strong enough. When considering an infinite fair computation of one automaton, there
are infinitely many visits to every one of the acceptance sets. We use delayed simulation
on every set separately. When the first automaton visits some acceptance set we force a
visit to the same acceptance set in the second automaton. Until this goal is achieved we
ignore accepting states belonging to other sets. Once this goal is achieved we consider
the next acceptance set in cyclic order.

Theorem 8. Given an NBW N and states s, t s.t. s=4t then L(N (t «+ s)) = L(N).

We show that if there exists a run r of N (¢ « s) that starts with a fair state according
to F; we can find a run segment 1’ or N that simulates the prefix of r and ends with a
fair state from F;. Given an accepting run of N (¢ < s) every fair set is visited infinitely
often. So we create a run of NV that visits each fair set in turn. While going for a visit in
F; we ignore other sets in F.

In a similar way we can prove that delayed simulation implies fair simulation (which
in turn implies trace containment). As delayed simulation implies fair simulation, every
delayed equivalent states are also fair equivalent. This means, that if we try delayed
minimization after fair minimization, the only candidates for merging are the states that
we try merging but fail to pass the fair simulation test.

5 Experimental Results

In this section, we present experimental results for our algorithms. We have imple-
mented the approach described in Section 4 in Wring [SBOO]. In order to test the effi-
ciency of our application we tested it on randomly generated LTL formulas.

In Wring, the sequence of optimization steps applied to an NBW starts with a prun-
ing step that removes states that cannot reach a fair cycle. This is followed by a min-
imization step that includes direct, reverse, fair, and delayed simulation minimization.
Finally, there is another pruning step. Obviously, on NBW with multiple acceptance
conditions only direct and reverse simulation are applied (in the original Wring).
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We compare our extension to generalized Biichi automata, with the previously im-
plemented algorithms. We have generated 537 random LTL formulas which produce
NBW with more than one acceptance condition (that is, for these formulas direct and
reversed simulation leave an NBW with more than one acceptance set). We report on
the results of running our application on these formulas. We compare the original ver-
sion of Wring, which applies direct and reverse minimization, to our version, which
adds fair minimization, delayed minimization, or both fair and delayed minimization.
The results are given in Table 1. For each option we give the total number of states,
transitions, initial states, fairness conditions, and CPU time.

Table 1. Experimental results for 537 random LTL formulae

Method|States Trans Fair Init Time| |Method States Trans Fair Init Time
original|26836 104605 1213 3586 3006 delayed 26776 104236 1204 3585 3732
fair 26262 100912 1153 3518 6107 fair+delayed|26070 99672 1141 3518 6666

The results above show that our algorithm can improve generalized Biichi automata
that have already undergone optimization. We save approximately 3% of the states of
the automata, which is comparable to the 1% saved by the original implementation
of fair and delayed simulation to NBW with one acceptance set [GBS02]. In the case
of fair simulation the CPU time is considerable. We note that our automata are larger
by a factor of 10 than the automata used in [GBS02] (where in average an NBW has 55
states and 100 transitions). When combined, delayed and fair simulation may produce
better results. On one example (not included above), starting from 183 states, each sep-
arately hardly reduced the automaton while together they reduced about 90 states. On
this example alone, our application requires about 2000 seconds while original Wring
requires about 200. Out of 537 NBW, only on 70 our algorithm saves more than 2 states.
On these automata it reduced the number of states from 4234 to 3572 and the number
of transitions from 17029 to 13077 (about 15% of the states and 25% of the transitions).
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Abstract. We present the tool Ticc (Tool for Interface Compatibility
and Composition). In TiCC, a component interface describes both the
behavior of a component, and the component’s assumptions on the envi-
ronment’s behavior. T1CC can check the compatibility of such interfaces,
and analyze their emergent behavior, via a symbolic implementation of
game-theoretic algorithms.

1 Overview

Open systems are systems whose behavior is jointly determined by their inter-
nal structure, and by the inputs that they receive from their environment. In
previous work, it has been argued that games constitute a natural model for
open systems [1,6,7,4,2]. We use games to represent the interaction between the
behavior originating within a component, and the behavior originating from the
component’s environment. In particular, we model components as Input-Output
games: the moves of Input represent the behavior the component can accept
from the environment, while the moves of Output represent the behavior the
component can generate.

Unlike component models based on transition systems, models based on games
provide a notion of compatibility [6,7,4]. When two components P and @Q are
composed, we can check whether the output behavior of P satisfies the input
requirements of @), and vice-versa. However, we do not define P and @ to be
compatible only if their input requirements are always satisfied. Rather, we rec-
ognize that the output behavior of P and @ can still be influenced by their
residual interaction with the environment (unless the composition of P and @ is
closed). Thus, we define P and @ to be compatible if there is some environment
under which their input assumptions are mutually satisfied, and we associate
with their composition P||@ the weakest (most general) assumptions about the
environment that guarantee mutual compatibility. In game-theoretic terms, P
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and ) are compatible if, in their joint model, Input has a strategy to guaran-
tee that all outputs from P to ) can be accepted by @, and vice-versa; the
environment assumption of P||@ is simply the most general such Input strategy.

These game-based component models have been called interface theories, and
two tools for interface theories predate Ticc. The asynchronous, action-based
interface theories of [6] are implemented as part of the Ptolemy toolset [8].
The tool CHIC implements synchronous, variable-based interface theories closely
modeled after [7]. Our goal in developing T1CC was to provide an asynchronous
model where components have rich communication primitives that facilitate the
modeling of software and distributed systems.

In T1cC, variables encode both the local state of the components (called mod-
ules) and the global state of the system. Modules synchronize on shared actions,
and the occurrence of actions can cause variables to be updated. Each global
variable can be updated by more than one module, so that it is both read
and write-shared; restrictions ensure that variable updates are free from race-
conditions. An action can appear in a module both as input and as output. If
an action a occurs in a module P as output, but not as input, then P can gen-
erate a, but not accept it from other modules. If a occurs in P both as input
and as output, then P can both generate a, and accept it from other modules.
This enables the encoding of rich communication schemes, including exclusive,
and many-to-many schemes, and differentiates the modules of T1cC from other
modules with more restrictive communication primitives, such as I/O Automata
[10] and Reactive Modules [3]. The theory behind T1ccC has been presented in
[5]; here, we describe the tool itself.

2 The Ticc Tool

Ticc parses interfaces, called modules, encoded in a guarded-command lan-
guage, and builds symbolic representations for these interfaces that are used
for compatibility checking and composition. TicC is written in OCaml [9],
and the symbolic algorithms rely on the MDD/BDD Glue and Cudd pack-
ages [11]. The code of TicC is freely available and can be downloaded from
http://dvlab.cse.ucsc.edu/dvlab/Ticc. This web site is an open Wiki that also
contains the documentation for the tool, and several additional examples.

We illustrate the modeling language of T1icC by means of a simple example:
a fire detection system. The system is composed of a control unit and several
smoke detectors. When a detector senses smoke (action smoke), it reports it by
emitting the action fire. When the control unit receives action fire from any
of the detectors, it emits the action call_fd, corresponding to a call to the fire
department. Additionally, an input disable disables both the control unit and the
detectors, so that the smoke sensors can be tested without triggering an alarm.

We provide the code for the control unit module (ControlUnit), for one of
the (several) fire detectors (FireDetectorl), as well as for a faulty detector that
ignores the disable messages (Faulty FireDetector2):

The body of each module starts with the list of its local variables; TiccC
supports Boolean and integral range variables. The transitions are specified using
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guarded commands guard = command, where guard and command are boolean
expressions over the local and global variables; as usual, primed variables refer
to the values after a transition is taken. For instance, the output transition fire
in module FireDetectorl can be taken only when s has value 1; the transition
leads to a state where s = 2.

module ControlUnit:
var s: [0..3] // O=waiting, l=alarm raised, 2=fd called, 3=disabled

input fire: { local: s =0 | s=1==>s" =1
else s =2 ==> i3
input disable: { local: true ==> s’ := 3 }
output call _fd: { s =1 ==>g’> =2}
endmodule

module FireDetectorl:
var s: [0..2] // O=idle, 1=smoke detected, 2=inactive
input smokel: { local: s =0 | s=1==>g" :=1

else s =2 ==> } // do nothing if inactive
output fire: {s=1 ==>g’ =2}
input fire: { } // accepts (and ignores) fire inputs
input disable: { local: true ==> s’ := 2 }

endmodule

module Faulty_FireDetector2:
var s: [0..2] // O=idle, 1=smoke detected, 2=inactive
input smoke2: { local: s =0 | s =1==>g" :=1

else s =2 ==> } // do nothing if inactive
output fire: {s=1 ==> g’ =2}
input fire: { } // accepts (and ignores) fire inputs
// does not listen to disable action

endmodule

When modules ControlUnit and FireDetectorl are composed, they syn-
chronize on the shared actions fire and disable. First, input transitions in a
module synchronize with the corresponding output transitions in the other mod-
ule. Thus, the output transition labeled with fire in FireDetectorl synchro-
nizes with the input transitions labeled with fire in ControlUnit. Moreover,
input transitions associated to a shared action in different modules also synchro-
nize. For instance, the input transitions associated with fire in FireDetectorl
and ControlUnit synchronize, so that the composition FireDetectorl ||
ControlUnit can also accept fire as input, and can therefore be composed with
other fire detectors.

The composition of ControlUnit and Faulty FireDetector2 goes less
smoothly. When the composition receives a disable action, the control unit shuts
down (s = 3), while the faulty detector remains in operation. When the faulty
detector senses smoke (input smoke2), it will emit fire: if the control unit has
been disabled by the disable action, this causes an incompatibility. Ticc diag-
noses this incompatibility by synthesizing the following input restrictions:
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— A restriction preventing the input disable if the faulty detector is in state
s = 1, that is, it has detected smoke and is about to issue fire.

— A restriction preventing the input smoke2 when ControlUnit is at s = 3
(disabled).

Since the actions disable and smoke2 should be acceptable at any time, the new
input restrictions for these actions are a strong indication that the composition
ControlUnit || Faulty_FireDetector2 does not work properly.

3 Using Ticc

Ticc is implemented as a set of functions that extends the capabilities of the
OCaml command-line. The incompatibility mentioned in the previous section is
exposed by the following series of OCaml commands:

open Ticc;;

parse "fire-detector-disable.si";;

let controlunit = mk_sym "ControlUnit";;

let wfire2 = mk_sym "Faulty_FireDetector2";;
print_input_restriction (compose controlunit wfire2) "disable";;
print_input_restriction (compose controlunit wfire2) "smoke2";;

* oW oW OH OH H

The mk_sym function builds a symbolic representation of a module, given the
module name. The last two lines print how the input actions have been restricted
in the composition.
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Abstract. FAST is a tool designed for the analysis of counter systems,
i.e. automata extended with unbounded integer variables. Despite the
reachability set is not recursive in general, FAST implements several in-
novative techniques such as acceleration and circuit selection to solve
this problem in practice. In its latest version, the tool is built upon an
open architecture: the Presburger library is manipulated through a clear
and convenient interface, thus any Presburger arithmetics package can
be plugged to the tool. We provide four implementations of the inter-
face using LAasH, MoNA, OMEGA and a new shared automata package
with computation cache. Finally new features are available, like different
acceleration algorithms.

Keywords: counter systems verification, acceleration, generic Pres-
burger interface, automata with cache computation.

1 Introduction

The automatic verification of reactive systems is a major field of research. A
popular way of modeling such systems is by means of (synchronized) automata
extended with variables. The automata represent the control structure of the
system, while variables encode data. FAST is a tool for the analysis of systems
manipulating unbounded integer variables. We check safety properties by com-
puting the reachability set of the systems. Even if this reachability set is not
necessarily recursive, we use innovative techniques (acceleration, flattening, re-
duction) to increase convergence. FAST relies heavily on Presburger arithmetics
for both system/properties specification and symbolic representation of infinite
sets of states. FAST theoretical background is described in [7,2,1,3].

In our opinion, the following facts make FAST a valuable tool for counter
system analysis. (1) Since counter systems and Presburger constraints are very
expressive, FAST can be applied to a large spectrum of applications and the tool is
not tied to a particular specific case-study. (2) Despite the inherent theoretical
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limitations, the analysis succeeds in most practical cases. (3) FAST design is
fully based on a clear theoretical framework. Abilities and limits of the tool are
identified: the tool is complete relatively to the class of flattable systems [3]. Since
many decidable subclasses of counter systems are flattable [8], FAST provides
a unified and efficient verification algorithm for many well-studied classes of
counter systems. (4) Finally the user can guide the tool via a script language,
which is useful since termination cannot be guaranteed.

Experimentations. FAST has been tested over a pool of 40 infinite-state systems,
and the computation succeeded in around 80% of the tests [2,1]. In [5] FAST
is used to prove properties of a class of communication protocols manipulating
counters and queues. A comparison of FAST and other tools in [3] shows that
FAST provides a very efficient engine for (forward) reachability set computation
of counter systems.

Extended Release. This new version provides the following improvements: (1) an
open architecture based on an analysis engine and a convenient interface (API)
for Presburger arithmetics. We provide adaptations of the standard packages
LasH [9], MoNA [10] and OMEGA [11] to the API; (2) a new Presburger package
implementing the API via shared automata [6] equipped with a computation
cache; (3) various add-ons both in the analysis engine and in the interface.

2 Open Architecture

The architecture of the tool has been redesigned, and the tool is now divided in
two parts: on the one side, a counter system analysis engine built upon a generic
Presburger API; on the other side various implementations of this API. These
different libraries can be re-used easily in various applications, independently of
FAST and counter system analysis, corresponding to a recurrent demand.

The Generic Presburger Programming Interface (GENEPI). The API requires
only basic operations on Presburger formulas such as conjunction, disjunction,
negation, (inverse) projection and satisfiability testing. The API is easy to use,
and it is also quite easy to adapt existing Presburger packages to the API.

Implementations of the API. We provide three implementations of the API based
upon standard packages LASH, MONA and OMEGA. The MONA implementation
corresponds to the former version of FAST.

Potential Applications. People concerned with Presburger packages can take ad-
vantage of our open architecture and API in at least two ways. (1) Presburger
developers. People interested in developing a Presburger package can easily linked
it to FASTER and use the tool and the 40 case-studies as intensive benchmarking
for their package. (2) Presburger users. People interested in developing any ap-
plication requiring Presburger arithmetics can use our generic Presburger API,
and then select through the set of implementations which one fits most their
application.
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3 The Shared Automata Package

We have also developed from scratch an implementation of the API using shared
automata introduced by Couvreur in [6]. These automata share their strongly
connected components in a bdd-like manner. It allow to implement important
features for intensive computation, such as cache computation and constant-time
equality testing. Our library is functional, but the computation cache is not yet
well optimized. However it has already permitted to speed up computation time
by a factor 3. The shared automata package is called PRESTAF.

4 New Features in Analysis

The tool has been extended with new capacities, both in the analysis engine
and in the interface. (1) One can specify the acceleration algorithm, choosing
between standard acceleration and convex acceleration [1]. The last one considers
restricted functions but is more efficient. Different search heuristics are also
available. (2) One can specify some circuits to be used during the analysis. (3)
Finally we developed a tool to transform a Petri net in PNML format into a FAST
model. The language PNML [4] describes various extensions of Petri nets and it
is under standardization.

5 Comparison of Presburger libraries

We present in figure 1 the performances (time spent in seconds) of FASTER
depending on our different implementations of Presburger arithmetics. Columns
V and T denote respectively the number of variables and transitions in the
system. All these systems have infinite reachability sets, except Dekker.

System V| T |MonNA™|LasH|PRESTAF**|OMEGA
Central Server system 13|/ 8| 5.94 |91.1 7.20 43.3
Consistency Protocol 12| 8| 77.4 (2400 140 50.3
Producer/Consumer Java|l8|14| 446 |2520 57.6 > 3600
CSM - N 13(13| 13.1 | 241 12.5 616
Dekker ME 22|22 11.4 | 287 12.8 > 3600
Last-in First-served 17/10| 0.65 |8.12 1.13 13.9
Multipoll 1720 7.25 | 283 8.55 295
SWIMMING POOL 96| 44.1 | 993 48.6 > 3600

* This implementation corresponds to the former version of FAST.
** A computation cache is available, but not yet optimized.

Fig. 1. Comparison of different Presburger implementations

Even though the computation cache implemented in PRESTAF is not fully
optimized, figure 1 shows that PRESTAF and MONA have significantly the same
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execution time. LASH seems outperformed by the two previous libraries. Recall
that (1) LAsH provides Presburger implementation for negative and non-negative
integers, thanks to more complex algorithms, and (2) LAsH does not imple-
ment any computation cache. OMEGA is also outperformed. The tool appears to
compute unduly complicated Presburger formulas (even with the simplification
method provided by the package), while LASH, MONA and PRESTAF benefit
from canonical representations of formulas.

In the previous table, the memory used is not given because, due to cache
computation, this value is not representative. Without computation cache, since
the internal representations of LASH, MONA and PRESTAF are slightly the same,
the three implementations require slightly the same amount of memory.

Availability. FASTER, GENEPI and PRESTAF are availableat http://altarica.
labri.fr/. The tool, the API and the libraries are freely available under the GPL
license. The analysis engine is written in C++ and the different implementations
of the APT are written in C. FASTER has been tested on an Intel PC running Linux
and gcc 4.0.2.

Acknowledgments. We are grateful to Jean-Michel Couvreur for providing
us advices on the implementation of shared automata, and to Ales Smrcka for
adapting OMEGA source code to recent compilers.
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Abstract. Automata are a useful tool in infinite-state model checking,
since they can represent infinite sets of integers and reals. However, anal-
ogous to the use of BDDs to represent finite sets, the sizes of the automata
are an obstacle in the automata-based set representation. In this paper,
we generalize the notion of “don’t cares” for BDDs to word languages as
a means to reduce the automata sizes. We show that the minimal weak
deterministic Biichi automaton (WDBA) with respect to a given don’t
care set, under certain restrictions, is uniquely determined and can be
efficiently constructed. We apply don’t cares to improve the efficiency
of a decision procedure for the first-order logic over the mixed linear
arithmetic over the integers and the reals based on WDBAs.

1 Introduction

As Biichi observed almost 50 years ago [8,9], automata can be used to de-
cide arithmetical theories, like Presburger arithmetic. Roughly speaking, a Pres-
burger arithmetic formula defines a regular language, for which one can build the
automaton recursively over the structure of the formula. So, automata are used
to represent sets of integers that are definable in Presburger arithmetic. More
recently, model checkers for systems with unbounded integers, like FAST [1] and
ALV [19] have been developed that use such an automata-based set represen-
tation. The use of automata in these model checkers can be compared to the
use of BDDs in model checkers for finite state systems, like sMv [17]: automata
describe sets of system states. Moreover, automata constructions can be used
for computing or overapproximating the set of all reachable states.

Sets of reals can be represented by w-automata. Boigelot, Jodogne, and
Wolper [5] have shown recently that even weak deterministic Biichi automata
(wpDBAs) suffice to represent the first-order definable sets in (R, Z, +, <), where
Z is the unary predicate stating whether a number is an integer. This result
paves the way for a more effective automata-based decision procedure for the

* This work was supported by the German Research Foundation (DFG) and the Swiss
National Science Foundation (SNF).
** Due to space limitations, proofs are omitted. Details are in the technical report [10].
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first-order logic over (R, Z, +, <). WDBAs can be handled algorithmically almost
as efficiently as automata over finite words. For instance, in contrast to Biichi au-
tomata, they can be efficiently minimized [16] and they are easy to complement.
WDBAs and this logic have a wide range of applications, such as the symbolic
verification of linear hybrid automata [3,4]. The automata library LASH [15] pro-
vides implementations of all the needed operations for implementing a decision
procedure for the first-order logic over (R, Z, 4+, <) based on WDBAs.

However, analogous to BDDs, it turns out that a limiting factor in the
automata-based representation of potential infinite sets of integers or reals is
the size of the automata. In fact, our first results of an automata-based decision
procedure for the first-order theory over (R, Z, +, <) were rather discouraging;
even for medium sized formulas the minimal WDBAs were often huge. An analysis
of the constructed automata lead to the results presented in this article.

For BDDs, many algorithms and methods have been developed to reduce the
BDD sizes, which have improved the performance BDD-based model-checkers. One
of these techniques is the use of don’t cares [12]. Roughly speaking, don’t cares
are inputs of a combinational circuit for which the circuit output is not specified
or irrelevant. The BDD representation of a circuit can be reduced by choosing
appropriate output values for the don’t care inputs. In this paper, we generalize
the notion of don’t cares for BDDs to languages. In the most general sense, a
don’t care set is a language over some alphabet. The set chosen depends on the
application domain. The intuition of a don’t care word is that it is irrelevant
whether this word belongs to a language or not. Adding or removing don’t care
words to languages can result in smaller automata. A trivial example is where
the don’t care set consists of all words. In this case we can either add or remove
all words and obtain an automaton with a single state. However, usually a don’t
care set is a proper subset of all words and it is not obvious which of these
words must be added or removed to obtain smaller automata. Furthermore,
the order in which we add and remove words might lead to different (minimal)
automata accepting the same language modulo the don’t care set. We prove that
under certain restrictions on the don’t care set, the minimal WDBA is uniquely
determined and can be efficiently constructed.

To demonstrate the effectiveness of don’t cares for automata, we apply it to the
approach for representing and manipulating sets of integers and reals by WDBAs.
First, we define a straightforward don’t care set when encoding reals by w-
words. Second, we present an automata construction for handling the existential
quantification, which becomes more complicated when using don’t cares. Third,
we show by experiments that introducing don’t care sets can reduce the automata
sizes significantly in computing and representing sets of integers and reals.

We proceed as follows. In 2, we give preliminaries. In §3, we introduce don’t
care words and present our general results about don’t care sets. In §4, we present
an automata construction for projecting sets of reals that are represented by
wDBAs modulo a specific set of don’t cares. In §5, we report on experimental
results. Finally, in §6, we draw conclusions.
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2 Preliminaries

We assume that the reader is familiar with the basics of automata theory and
first-order logic. The purpose of this section is to recall some background in these
areas, and fix the notation and terminology used in the remainder of the text.

2.1 Languages and Deterministic Automata

Let X be an alphabet. We denote the set of all finite words over X' by X* and
X* denotes the set X* \ {¢}, where ¢ is the empty word. X* is the set of all w-
words over Y. The concatenation of words is written as juxtaposition. We write
|w| for the length of w € X*. We often write a word w € X* of length ¢ > 0
as w(0)...w(¢ — 1) and an w-word o € X* as a(0)a(1)(2) ..., where w(i) and
a(7) denote the ith letter of w and «, respectively.

A deterministic finite automaton (DFA) A is a tuple (Q, X, 8, qr, F'), where
Q@ is a finite set of states, X' is an alphabet, 6 : @ x X — @ is the transition
function, g1 € @ is the initial state, and F' C @ is the set of accepting states.
A state not in F' is a rejecting state. The size of A is the cardinality of ). We
write A, for the DFA that is identical to A except that ¢ € @ is the initial
state. We extend & to the function & : Q x ¥* — Q defined as 5(q,5) = ¢ and
S(q, bu) = 5(6((1, b),u), where g € Q, b € X, and u € X*. The DFA A defines the
language L.(A) = {w € 2* : é(qr,w) € F}.

The state ¢ € @Q is reachable from p € @ if there is a word w € X* such
that 3(])7 w) = ¢. In the remainder of the text, we assume that every state in
an automaton is reachable from its initial state. A strongly connected component
(scc) of A is a set S C @ such that every p € S is reachable from every ¢ € S
and S is maximal. For ¢ € @), SCC(q) denotes the scc S C @ with g € S. We
call an scc S accepting if S C F, and rejecting if SN EF = ().

We can view a DFA as a deterministic Biichi automaton (DBA). A run of the
DBA A on the w-word o« € X¥ is an w-word ¥ € Q“ such that ¥(0) = ¢r and
Wi+ 1) = 6(9(i), a(i)), for all i € N. The run ¢ is accepting if Inf(9) N F # 0,
where Inf(¢) is the set of states that occur infinitely often in ). The pBA A
defines the w-language L, (A) := {a € X“ : the run of A on « is accepting}.
The DBA A is weak if every scc of A is either accepting or rejecting. We use the
initialism WDBA for “weak deterministic Biichi automaton.” Similarly, we can
view a DFA as a deterministic co-Biichi automaton (co-DBA). Runs of co-DBAs
are defined as for DBAs. A run ¢ of a co-DBA C is accepting if Inf(9) N F = 0,
where F is the set of “accepting” states of C. We define L, (C) := {a € X% :
the run of € on « is accepting (in the co-Biichi sense)}.

2.2 Representing Sets of Reals with Automata

Let R be the structure (R, Z, 4, <), where + and < are as expected and Z is
the unary predicate such that Z(z) is true iff = is an integer. For a formula
o(x1,...,z.) and ay,...,a, € R, we write R | ¢laq,...,a,] if ¢ is true in R
when the variable x; is interpreted as a;, for 1 < i <r.
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Boigelot, Jodogne, and Wolper have shown in [5] that for every first-order
definable set X C R” in ‘R, there is a WDBA A that describes X. Moreover, they
have shown that A can be effectively constructed from a formula ¢(z1,...,z,)
that defines X, i.e., X = {@ € R" : R |= p[a]}. We recall the precise correspon-
dence between subsets of R" and w-languages from [5]. In the remainder of the
text, let o > 1 and X :={0,...,0— 1} be fixed. g is called the base.

Definition 1. Let r > 1.

1. V, denotes the set of all w-words over the alphabet X" U{x} of the form vx-~,
where v € (X7)T with v(0) € {0,0—1}" and v € (X")“.

2. An w-word vxy € V., represents the vector of reals with v components

i . e ) 0 if v(0) =0,
(oxy) == D o)+ o 1~v(l)+{ .

_olvl-1 — 05—
0<i<|v| i>0 4 ifv(0) =01,
where vector addition and scalar multiplication are componentwise.

3. For a formula ¢(x1,...,2,), we define L(p) :={a €V, : R ¢[{(a)]}.

Note that the encoding v x v € Vi of a real is based on the ¢’s complement
representation. The symbol x plays the role of a decimal point, separating the
integer part v from the fractional part . Moreover, note that every vector in
R"™ can be represented by an w-word in V,.. However, the representation is not
unique. First, we can repeat the first letter arbitrary often without changing the
represented vector. Second, a vector that contains in a component a rational
whose denominator has only prime factors that are also factors of the base g,
has distinct representations, e.g., in base ¢ = 2, (0 104) = (0 % 01¢)) = %,
where b“ denotes the infinite repetition of the letter b.

Additional Notation. Let r > 1 and s,t € {1,...,r} with s < ¢. We denote the
tth coordinate of b € X" by by and bys 4 == (bys, brst1, - - -, b1). We write oy for
the tth track of aw € (X" U{x})¥, i.e., a is the w-word v € (X U{*})* defined as
(i) == * if a(i) =, and (i) := «(i)+ otherwise, for ¢ € N. Analogously, as
denotes the w-word consisting of the tracks s,s+1,...,t of a. For m,n > 1 and
w-words a € (X U {*})¥ and § € (X" U {x})¥, we write (a, 3) for the w-word
v € (™t U {x})¥ with y11.m = « and Yyma1,m+n = (. Here, we make the
assumption that «(i) = % iff 5(i) = «, for all i € N. We use the same notation
for finite words, which is defined analogously.

3 Don’t Cares for Optimizing the Real Representation

In this section, we define our optimized representation of the reals as w-words,
which leads us to the general concept of don’t care words for w-languages. We
first give a motivating example.

Ezample 2. Consider the formula p(z,y) := 2 #0 A z+y = 0. The minimal
WDBA accepting L(p) in base o = 2 is shown in Figure 1(a). This WDBA is rather

! Note that we do not distinguish between vectors and tuples.
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(a) straightforward encoding (b) optimized encoding

Fig. 1. Minimal wDBAs for the formula  #0 A z+y=0. For the sake of readability,
we have omitted the rejecting sink states and their incoming transitions.

complex as it must either accept or reject all w-words that represent the same
pair of reals. For instance, the w-words « := (1,0)%(1,0)* and 3 := (0, 1)%(0, 1)~
represent the pair (0,0) of reals, which does not satisfy ¢ and thus, the wDBA
must reject them. In the optimized encoding we exploit that already the w-word
~v = (0,0) % (0,0)“ takes care of the fact that the pair of reals (0,0) is not
in the represented set. That means, we can add « and 3 to the w-language.
More general, an w-word that has a suffix in which at least one of its tracks is
of the form 1% is treated as a don’t care, i.e., we can freely chose whether the
automaton should accept or reject this w-word. Observe that for every don’t
care representing the pair (z,y) of reals, there is an w-word that also represents
(z,y) and is not a don’t care.

Consider again the w-words « and (3, which are don’t cares. When reading
these w-words, we eventually loop in the states 4 and 5, respectively. Note that
all runs that eventually stay in one of these states are don’t cares. Making the
states 4 and 5 accepting clearly alters the w-language of the WDBA. However, we
only add w-words that are don’t cares, like a and (. If the states 4 and 5 are
accepting we can merge them with state 3. Analogously, we can make state 2
rejecting. Then, we can merge the states 2 and 9 with the rejecting sink state.
We could also make the states 11 or 12 accepting. However, this would not be
beneficial since it will prevent us from merging the states 10, 11, and 12. The
resulting minimized automaton is depicted in Figure 1(b).

In the context of encoding reals by w-words we use the following don’t cares.

Definition 3. Let r > 1. An w-word o € (X" U {x})* is a don’t care word if
there are t € {1,...,r} and k € N such that a(i) € X" and (i) = 0 — 1, for
all t > k. DC,. denotes the set of all don’t care words in (X" U {x})“.

Instead of constructing a WDBA that accepts the w-language L(p) for a formula
p, we are interested in constructing a WDBA that accepts an w-language that
coincide on all the w-words in L(p) that are not don’t care words. Note that
removing or adding all don’t care words to L(y) does not necessarily result in a
smaller automaton. Also note that by removing or adding all don’t care words
we can obtain w-languages that are not recognizable by WDBAs.
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The following definition generalizes the concept of w-words for which we “do
not care” if they belong to an w-language or not.

Definition 4. A don’t care set D is an w-language over some alphabet I", and
an w-word in D is a don’t care word. For w-languages L,L' C I', we write
L=p L' i L\D=L"\D.

We want to remark that the so-called don’t care sets will usually depend on the
application context. In our case, the don’t care sets DC,. naturally arise from the
encoding of the reals in Definition 1.

In the remainder of this section, we present general results about w-languages
with respect to a don’t care set D. We focus on w-languages that can be described
by Biichi automata, in particular by wbBAs. In §3.1 and §3.2, we establish some
straightforward facts. Namely, in §3.1, we observe that standard automata con-
structions carry over to handle the Boolean operations when using don’t care
sets, and in §3.2, we show how to solve the emptiness problem for Biichi au-
tomata with respect to an w-regular don’t care set D C I'. In §3.3, we describe
minimization of WDBAs with respect to a don’t care set D C I'“, where we
assume that D fulfills the two properties: (1) D # I' and (2) a € D < ua € D,
for all u € I'* and a € I'“. In particular, we show that the minimal WDBA is
uniquely determined (up to isomorphism) and we give an efficient algorithm for
constructing it under the assumption that D is w-regular.

3.1 Boolean Operations

The automata construction for Boolean operations, like union and complementa-
tion of w-languages, need not to be changed when using a don’t care set D C I'*.
For instance, for complementation, if we have that L =p L', for w-languages
L,/ C I'¥, then we have that I'“ \ L =p I'¥ \ L. Note that it is irrelevant
whether L and L’ differ on D, i.e., LN D # L' N D.

For wDBAs, we can use the standard product construction for the intersection
and union. Let A = (Q, I, 6,q1, F') and B = (Q', I,¢', ¢{, F') be wbBAs. For the
intersection, we define D := (Q x @', I',n, (g1, ¢{), F' x F’), where n((q,q’),b) :=
(6(q,b),8'(¢',b)), for ¢ € Q, ¢ € Q', and b € I'. The construction for the union
is similar. Complementing WDBAs is done by flipping accepting and rejecting
states of a wDBA. We define C := (Q, I',6,q1,Q \ F).

Proposition 5. (a) For the WpBA D, it holds that L, (D) =p L,(A)NL,(B).
(b) For the WDBA C, it holds that L,(C) =p I'* \ L, (A).

3.2 Emptiness Check

The emptiness problem for Biichi automata modulo a don’t care set D is to
check whether a Biichi automaton A accepts an w-word that is not in D. If D is
w-regular, then we can solve this problem by constructing the Biichi automaton
accepting L, (A) \ D and check whether the resulting Biichi automaton accepts
an w-word. The complexity is in O(n), where n is the number of states of A. Note
that D is fixed and hence, the size of the Biichi automaton for D is a constant.
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3.3 Minimizing WDBAs with Don’t Cares

Loding showed in [16] that the minimal WDBA can be constructed in two steps.
In the first steps, the WDBA is put in linear time into a normal form by deter-
mining a suitable set of accepting states. This step does not change the accepted
w-language, since it only alters the acceptance types of states (rejecting or ac-
cepting) that cannot occur infinitely often in a run. In the second step, the
WDBA in normal form is minimized by a standard DFA minimization algorithm,
like that of Hopcroft [13]. We extend Léding’s algorithm to wDBAs such that it
takes a don’t care set D over the alphabet I" into account, where we require that
(1) D#AT% and (2) ae Deuae D, forallu e I'™ and a € T™.

Definition 6. Let A = (Q,I,6,q1, F) be a WDBA.

1. A is D-minimal if there is no smaller WDBA B such that L,(A) =p Ly (B).

2. A state ¢ € Q is D-recurrent if L,(A')\ D # 0, where A’ is the WDBA
(Q,I,6,q,SCC(q)). A state is D-transient if it is not D-recurrent. An SCC is
D-recurrent if it contains a D-recurrent state, otherwise, it is D-transient.

Note that an scc without loops is D-transient. Moreover, note that for the
w-words not in D, it is irrelevant whether a D-transient sCC is accepting or
rejecting. Thus, we can make D-transient SCCs accepting or rejecting without
altering the accepted w-language modulo the don’t care set D.

Similar to Loding’s algorithm, we construct first a suitable set of accepting
states by determining the acceptance types of D-transient states optimal in the
sense that applying a minimization algorithm for DFAs yields the minimal WDBA
with respect to the don’t care set D. We need the following definitions.

Definition 7. Let A = (Q,I,6,q1, F) be a WDBA.
1. A mapping ¢ : Q — N is a D-coloring for A if the two conditions hold:
— ¢(q) is even < q € F, for every D-recurrent state q € Q, and
— ¢(p) < clq), for allp,q € Q and b € I" with 6(p,b) = q.
The D-coloring ¢ is k-maximal, where k € N, if ¢(q) < k and /(q) < ¢(q),
for every q € Q and every D-coloring ¢ : Q — N for A.
2. A is in D-normal form if for some even k € N, there is a k-maximal D-
coloring ¢ : Q — N such that F = F., where F. := {qg € Q : c(q) is even}.?

The algorithm in Figure 2 computes the D-normal form of a given WDBA
A=(Q,I,6,q1, F). The main task of the algorithm is to compute a k-maximal
coloring for A, where k is even and large enough. This is done by looking at
the acyclic scc graph of A, which the algorithm traverses in a reversed topo-
logical ordering (lines 4-19). The scc graph and the topological ordering can
be computed in linear time. Observe that the states in an scc have the same
color in a D-coloring. In the ith traversal of the for-loop (lines 4-19), we color the
states in the ith scc with respect to the reversed topological ordering, where the
states in the successor sCCs are already colored. If there are no successor SCCs,

2 Alternatively, we could require that k has to be odd. But we must fix some parity
in order to obtain a canonical form for D-minimal WDBAs in D-normal form.
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—_

Compute the scc graph G of A.

Compute a topological ordering wvi,...,v, on the vertices of G. To simplify
notation, we identify a vertex v; with its corresponding SCc, i.e., a set of states.
3: Let k > m be an even number.

4: for i =m downto 1 do /* Compute a k-maximal D-coloring ¢: Q — N */
5 if v; has no successors and v; is accepting then

6: Define ¢(q) := k, for all ¢ € v;.
7
8

Y

else if v; has no successors and v; is rejecting then
Define ¢(q) := k — 1, for all g € v;.

9: else

10: Let £ := min{c(q) : v; is a successor of v; and g € v;}.
11: if v; is D-transient then

12: Define ¢(q) := ¢, for all g € v;.

13: else if (¢ is even and v; is accepting) or (¢ is odd and v; is rejecting) then
14: Define ¢(q) := ¢, for all g € v;.

15: else

16: Define ¢(q) := £ — 1, for all g € v;.

17: end if

18:  end if

19: end for

20: Return the wpBa A’ := (Q, I, 6, qi, F..).

Fig. 2. Algorithm for computing the D-normal form of a wpBA A = (Q, I, 6, q1, F)

we assign the maximal color to the states depending on k and their acceptance
type (lines 5-8). Note that an sCC with no successors cannot be D-transient,
since D # I'“. If the scC has successors, the maximal color for the states in this
scc depends on the minimal color ¢ of the successor sccs (line 10). If the scc
is D-transient (lines 11-12) then ¢ is the maximal color we can assign to these
states. Depending on /, the states in the scc will then be either accepting or
rejecting in the resulting WDBA. If the scc is D-recurrent, the coloring has to
preserve the acceptance type of the states in the scc. Depending on ¢, we assign
the maximal possible color to the states in the scc (lines 13-15).

In line 11 of the algorithm, we must check whether an scc S is D-transient.
This can be done by checking whether L, (€) C D holds, where € is the WDBA
(Q,%,6,q,5) and ¢ is an arbitrarily chosen state in S. Note that L, (C) C D
iff L,(C)N (I'*\ D) = 0. Under the assumption that D is w-regular, it is easy
to see that L, (€) N (I'*\ D) = ( can be checked in time O(]S|), since D is
fixed and we can construct a Biichi automaton for the w-language I'¥ \ D in
a preprocessing step. In summary, the checks performed in line 11 take time
O g o of 4 1S) = O(|Q])- So, if D is w-regular, the algorithm in Figure 2
computes a k-maximal coloring in linear time.

Lemma 8. For a given WDBA A = (Q,I,6,q1, F), there is a set F/ C Q
such that the WpBA A’ := (Q, T, 6, q1, F') is in D-normal form and L, (A) =p
L,(A"). The set F' can be constructed in time O(|Q|) if D is w-regular.

Our minimization algorithm for WDBAs with the don’t care set D is as follows:
First, we put the given WDBA into D-normal form. Second, we apply to the
WDBA in D-normal form the classical DFA minimization algorithm [13]. The
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overall complexity is in O(nlogn), where n is the size of A. This algorithm
returns the unique minimal WDBA for the don’t care set D.

Theorem 9. For a given WpBA A = (Q,I,6,q1, F), there is a D-minimal
WDBA A" with L,(A) =p Ly(A’). A" can be constructed in time O(|Q]log|Q])
if D is w-reqular. Furthermore, every D-minimal WDBA B in D-normal form
with L, (A) =p L, (B) is isomorphic to A’.

Remark 10. Similar to Definition 3, we can define for » > 1, the set |, that
consists of the w-words over X" U {x} that are not periodic in at least one track.
Note that such a periodic track, if it is also in Vi, corresponds to an irrational
number. Obviously, |, has the properties (1) and (2). The decision procedure
for the first-order logic over fR using WDBAs given in [5] can be understood as
an automata-based decision procedure for the first-order logic over (Q, Z, +, <)
using WDBAs with the don’t care sets I,.. Note that the w-languages definable
in the first-order logic over (Q, Z,+, <) are in general not w-regular using the
encoding in Definition 1.2. From this point of view, we see that WDBAs modulo
don’t care sets can describe non-w-regular languages and in this case, they even
have a canonical minimal form (Theorem 9). Analogously, WDBAs with the don’t
care sets DC,. can describe w-regular languages that are not in the Borel class F,N
G's, which exactly captures the expressive power of WDBAs [18]. Furthermore,
by Theorem 9, the w-words in DC,. that have to be added to or removed from
the w-language are uniquely determined in order to obtain the minimal WDBA
for the w-language modulo the don’t care set DC,..

4 Quantification for the Reals

In this section, we give an automata construction for WbDBAs that handles the
quantification in the first-order logic over R when using the don’t care sets DC,..
Roughly speaking, for the straightforward encoding, the existential quantifica-
tion is done by eliminating the track of the quantified variable in the transitions
of the WDBA.? Intuitively, this nondeterministic automaton guesses the digits of
the quantified variable. As explained in [5], we can determinize this automaton
by using the breakpoint construction for weak co-Biichi automata (see [14]). The
construction for handling the existential quantification that we present in this
subsection for the optimized encoding is also based on the breakpoint construc-
tion. However, the construction is more subtle because of the following problem:
Assume that A is a WDBA for the formula ¢(x1,...,2,), i.e., L,(A) =pc,. L(y).
Eliminating the track of the variable x, results in a nondeterministic Biichi
automaton that might accept w-words o ¢ DC,._; for which there is only an
w-word v € DC; such that («,7) € Ly(A). A wDBA for 3z, must not accept
such w-words a.. A concrete instance of this problem is given in the example:

Ezample 11. Consider again the formula ¢(x,y) == ¢ # 0 Az +y = 0 and
the wpBA in Figure 1(b) from Example 2. Eliminating the az-track, i.e., the

3 Some additional work is needed for the sign bit, see, e.g., [6,5] for details.



76 J. Eisinger and F. Klaedtke

first track, yields a nondeterministic Biichi automaton that accepts the w-word
0 0%, since we can infinitely loop in state q := {3,4, 5} by reading the letter 0.
However, R [~ [0 0)]. Here, the problem is that the only w-word 7 such
that (v,0* 0¥) is accepted by the wpBA in Figure 1(b) is the don’t care word
1% 1¢. On the one hand, for the w-word 0 % 0¥ the state ¢ has to be rejecting.
On the other hand, for the w-word 0 (10) the state ¢ has to be accepting.

Before we present our construction, we remark that removing all don’t care words
from the w-language of the given WDBA before applying the construction in [5]
for handling the existential quantification does not work. The reason is that the
resulting DBA is not necessarily weak and hence, we cannot longer apply the
breakpoint construction after eliminating the track of the quantified variable.

Assume that A = (Q, X" U {x},6,q1, F) is a WDBA for the formula ¢ with r
free variables, i.e., L,(A) =pc, L(p). We divide the construction of the wDBA
for dx;p into two steps. First, we construct from A a co-DBA B that accepts an
w-language for Jz;¢, i.e., L,(B) =pc,_, L(3x;p). Second, we show that B can
be easily turned into a WDBA. To simplify notation, we assume without loss of
generality that ¢ = r and L,(A) C V,.

To define B’s transition function, we need the following definitions. For u €
2+ with u(0) € {0,0— 1}, we define

o if u=(0—1)" with n >0,
=< 010" if u="0(p—1)" with n >0,
v(e+1)0" if u=wve(p—1)" withv e T, ce ¥\ {o— 1}, and n > 0.

Note that (u(o —1)" * (0 — 1)*) = (@W0™ x 0«)), for all n > 0 and u € ¥ with
u(0) € {0, 0 — 1}. We define the relation M C Q x Q by pMq iff p € F' and for
every a € (X771% \ DC,_1, it holds that («, (o0 — 1)¥) € Ly(A") = (a,0¥) €
L, (A,), where A’ is the wpBA (Q, X" U {x},6,p,SCC(p)).

Intuitively, the construction works as follows. As in the breakpoint construc-
tion, B has states of the form (R,.S). Roughly speaking, in the first component
we collect A’s states that are reached by guessing the digits of the variable x,.
The second component checks whether we eventually stay in an accepting scc
of A. In contrast to the breakpoint construction, R and S are not only subsets
of @ but sets of pairs of states of A. The reason for using pairs of states is the
following. Assume that we reach the pair (R, S) from B’s initial state by reading
a finite prefix of an w-word v € V,_; \ DC,_1. For (p,q) € R, we have that
p is reached by guessing a finite prefix of the digits of a real number for the
quantified variable x,.. However, the guessed digits v could be a finite prefix of
a don’t care word o € DCy N'Vy. Suppose that we visit p infinitely often when
reading (v, ). If p is accepting, A accepts (7, a). However, since (7, «) is a don’t
care word, (o)) is not necessarily a real number such that R = o[((7)), (@)]. In
order to detect such a case, we use the state ¢ and the relation M. The state ¢
is the state that is reached when guessing the corresponding digits for u of the
w-word B € Vi \ DCy such that (o)) = (3). If pM¢ holds, then we know that
R E o[{(v), ()], since () = (B)) and A also accepts (. Hence, p is rightly an
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accepting state for the prefix of v we have read so far. In the case where pMgq
does not hold, we have to treat p as a rejecting state.

Formally, B is the co-DBA ({¢{} U (K x K), X"~ YU {x},n,q}, K x {0}), where
K = P(Q x Q), ¢f is a fresh state and 7 is defined as follows. For the initial
state, we define 7(qf,b) := (0,0), for b ¢ {0,0—1}""1, and for b € {0,0—1}""1,
we define 7(qf,b) := (I1(b), D), where

{( ar, (011 w)), 8(qr, (blﬂl,ﬂ))) cue X with u(0) € {0,1}}.
For a state (R,S) € K x K and b € X"~ ! we define

n((R,S),b) ::{(RhR’ﬂM) %fS:Q)’
(R,S'NM) if S+#0,

where
R = {(6(p, (b0~ 1)), 6(q, (b,0))) : (p,q) € R}U
{(6(p, (b,¢)),6(p, (b,c+ 1))) (p,g) e Rand ce X\ {o— 1}}7 and
S = {(6(p, (b0~ 1)), 6(q, (b,0))) : (p,q) € S}U
{(6(p, (b,)),6(p. (b,c+1))) : (p,q) € Sand ce L\ {o—1}}.

1
Finally, n((R, S),*) := (R', R*'N M), where R' := {(6(p,*),6(q,*)) : (p,q) € R}.
Lemma 12. It holds that L. (B) =pc,_, L(3z,0).

An scc of B might contain accepting and rejecting states. The next lemma shows
that if an scc of B contains accepting and rejecting states then we can make all
states in this SCC accepting. Given this, it is easy to turn the co-DBA B into a
wDBA A’ for L(3x,p), i.e., L,(A") =pc,_, L3z, ).

Lemma 13. Let ¥(y1,...,ys) be a formula and let C = (P, X° U {x}, i, p1, E)
be a co-pDBA with L,(C) =pc, L(v). If S € P is an scc with S N E # 0 then
L,(C") =pc. L(¥), where € is the co-DBA (P, X U {x}, p,p1, EUS).

The above given construction yields a WDBA that has 1+ 221Q1” states. However,
some of the states are not reachable from the initial state ¢f, e.g., the states
(R,S) € K x K with S ¢ R are never reachable from ¢f. Next, we briefly discuss
the auxiliary computations involved in the construction.

For the transitions from the initial state ¢{, we need to compute the sets I(b),
for every b € X"~1. Computing I(b) separately for each b € X7~1 yields an
algorithm that is exponential in r and is not practical. The algorithm described
in [6] for determining the initial transitions of DFAs for quantifying Presburger
arithmetic formulas, can be adopted to our construction and it works well in
practice, although it has exponential worst case complexity in r.

For computing the relation M, we define the WpBAs G := (Q, X"t 61, q1, F)
and H := (Q, X1 62, q1, F), where 81(q,b) := 6(p, (b,0 — 1)) and 82(q,b) :=
8(p, (b,0)), for ¢ € Q and b € Y"1, For states p,q € Q, we have that pMgq iff
(1) pe F and (2) L,(9") N L, (3,) contains an w-word not in DC,_, where §’
is the WDBA (Q, X771, 61, p,SCC(p)). Since the SCC of p consists of at most |F|
states, condition (2) can be checked in time O(|Q| - |F), see §3.1 and §3.2. An
upper bound for computing M is O(|Q|? - |F|?), since the first component in M
has to be a state in F'
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5 Experimental Results

In this section, we report on experimental results obtained from our prototype
implementation of an automata-based decision procedure for the first-order logic
over ?:.* We want to point out that in our implementation we only used the don’t
care sets DC, (Definition 3). We have carried out tests on two different classes of
problems: (1) randomly generated formulas and (2) the iterative computation of
the reachable states of infinite-state systems. In the later case, we mainly focus
on the sizes of the automata, as our prototype is not intended to compete with
optimized tools for solving the reachability problem.

Fischer 4 (peak size) Fischer 4 (after minimization)
4.0e+05 9.0e+04
3.5e+05 e 8.0e+04
300405 ~$: B g 7:00+04
G 250405 i © g-ge*’gi
g hi £ 5.0e+
:2.0e+05 i S 4.0e+04
51.Se+05 5 3.0e+04 VI I IS TR
© 1.0e+05 T 5 06+04 . i kl NSNS ANANAR
5.0e+04 i 1.0e+04 et il L)
[Sig A o AT NNV N Ny
0.0e+00 = b 0.0+00 SUCY SN
20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
intermediate construction steps intermediate construction steps

Fig. 3. Automata sizes encountered during the computation for Fischer’s protocol with
4 processes. The solid (dashed) lines correspond to the optimized (straightforward)
encoding. The intermediate construction steps correspond to the flows and jumps of
the processes in Fischer’s protocol. We obtain similar results for the other protocols.

Random Formulas. We have applied our prototype to randomly generated for-
mulas. For a test set of 100 formulas with 4 variables with about 10 disjunctions
and conjunctions each, the savings in terms of automata sizes encountered dur-
ing the construction are observable (on average 8.4%), although moderate. Our
new construction for the quantification generates larger automata (on average
40.1%), however, after normalization and minimization the resulting automata
with don’t care sets are smaller (on average 7.7%). Our prototype requires up
to one order of magnitude more runtime for the quantification when using don’t
care words. When restricting the 4 variables to the integer domain, the savings
due to the don’t care set become more substantial (on average 48.5%), as ev-
ery integer has encodings that are in the don’t care set. In comparison to an
implementation based on LASH [15] without don’t cares, our prototype is faster.
The marginal difference in performance on small quantifier free formulas grows
rapidly when the formulas contain quantifiers or have more variables.

Reachability Analysis. Infinite-state systems, like systems with unbounded inte-
gers or linear hybrid automata can be analyzed symbolically in the first-order
logic over R. We have analyzed the Bakery protocol, Fischer’s protocol, and the

4 Qur prototype is publicly available online at http://www.informatik.
uni-freiburg.de/"eisinger/research/rva.html.
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with don’t cares without don’t cares

iterations/peak [final [runtime [peak [final [runtime
Fischer 2 9 238 53 43.98s 2,318 182 49.52s
Fischer 3 15| 44,631 405 164.75s| 90,422 2,045 184.59s
Fischer 4 21| 51,676 4,377| 2,739.58s| 417,649| 27,548| 4,353.66s
Fischer 5 27(145,629|55,885(20,972.79s]1625,141{430,727|53,940.37s
Railroad 8[152,826] 7,735| 1,594.325| 365,004] 9,411| 1,080.24s
Bakery 2 30 107 - 52.42s 557 - 63.64s
Bakery 3 30 314 - 107.74s 2,010 - 121.09s
Bakery 4 30 909 - 201.41s 8,883 - 272.70s

Fig. 4. Iterations required to reach the fixpoint of the reachable state set for several
infinite-state systems, construction times, and peak and final automata sizes. Note that
the fixpoint for Bakery cannot be reached using our naive fixpoint computation.

railroad crossing example [11]. Using don’t care words, the automata constructed
during the iterative computation of the reachable states become smaller by an
order of magnitude (see Figures 3 and 4). This saving can be explained by the
following two observations. First, the formulas that describe the transitions of a
system contain many variables (the formulas for Fischer’s protocol with 5 pro-
cesses have 34 variables). Note that the don’t care sets contain more words if the
formula contains many free variables. Second, the construction of the reachable
state set requires a large number of automata constructions. Although the saving
in a single automata construction might be small, the overall saving grows with
the number of automata constructions.

6 Conclusions

We generalized the concept of don’t cares for BDDs to automata and demon-
strated that don’t cares are effective in reducing the automata sizes. On the one
hand, we were able to prove rather general results about don’t cares sets, like the
minimization of WDBAs. On the other hand, we presented an automata construc-
tion for the quantification in the first-order logic R, which depends on the used
don’t care set. We demonstrated the potential of don’t cares by a prototype.

Related to our work is [2] on widening sets of integers that are represented by
automata. In order to obtain always an overapproximation of a set, widening an
automaton represented set only adds words to the language. In contrast, we al-
low words to be removed, and adding or removing don’t care words still yields an
exact automata-based representation of a set. Moreover, for the sets of vectors of
reals, we used a don’t care set for which the automata-based set representation
is still unique. We want to point out that the widening method [2] is complemen-
tary to don’t care words and hence, they can be combined in infinite-state model
checkers that use an automata-based representation for the reachable states of a
system. Analogously, don’t care words are complementary to acceleration tech-
niques like [7]. However, further work is needed in combining these techniques,
since the automata constructions might need some adjustment to work also for
don’t care words (see, e.g., the automata construction in §4).
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Future work also includes improving the mechanization of the automata con-

struction for handling the existential quantification in the first-order logic over
R, which is currently the bottleneck in our prototype. Another direction we
want to pursue is to exploit don’t cares further. For example, for carrying out
the quantification of z in the second disjunct of the formula (y) V Jxp(z,7),
we can use the language of the automaton for ¢ as a don’t care set for making
the automaton for ¢ smaller before we apply the construction for the existential
quantification. Overall, we believe that don’t care words have a large potential
for making automata-based model checking more effective.
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A Fast Linear-Arithmetic Solver for DPLL(T)*
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Abstract. We present a new Simplex-based linear arithmetic solver that can be
integrated efficiently in the DPLL(T") framework. The new solver improves over
existing approaches by enabling fast backtracking, supporting a priori simplifica-
tion to reduce the problem size, and providing an efficient form of theory propa-
gation. We also present a new and simple approach for solving strict inequalities.
Experimental results show substantial performance improvements over existing
tools that use other Simplex-based solvers in DPLL(7") decision procedures. The
new solver is even competitive with state-of-the-art tools specialized for the dif-
ference logic fragment.

1 Introduction

Decision procedures for quantifier-free linear arithmetic determine whether a boolean
combination of linear equalities, inequalities, and disequalities is satisfiable. Several
tools for solving this problem rely on the DPLL(T") approach [1]: they combine boolean
satisfiability solvers based on the Davis-Putnam-Logemann-Loveland (DPLL) proce-
dure, and arithmetic solvers capable of deciding the satisfiability of conjunctions of lin-
ear constraints. Results of a first satisfiability modulo theories (SMT) competition, com-
paring several of these tools, are presented in [2]. Several tools (e.g., Barcelogic [21] or
Slice [20]) are specialized for the difference-logic fragment of linear arithmetic and rely
on graph algorithms. For general linear arithmetic, existing tools rely either on Fourier-
Motzkin elimination [3] (used by CVClite [4], CVC [5], SVC [6]) or on Simplex meth-
ods [7] (used by MathSat [8], ICS [9], Simplics, Yices, ARIO [10]). Fourier-Motzkin
elimination explodes on many problems and Simplex is generally superior.

The common methods for integrating a Simplex solver with DPLL rely on incre-
mental versions of Simplex such as described in [11,12,13,14]. A tableau is constructed
and updated incrementally: rows are added as DPLL proceeds and are later removed
when DPLL backtracks. These frequent addition and removal of rows and the related
bookkeeping have a significant cost. For example, backtracking may require pivoting
operations. This paper presents a simpler and more efficient solver that considerably
reduces this overhead. The approach relies on transforming the original formula & into

* This material is based upon work supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. NBCHD030010. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do not nec-
essarily reflect the views of DARPA or the Department of Interior National Business Center
(DOI-NBC).

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 81-94, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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an equisatisfiable @’ such that the satisfiability of @’ is decided by solving a series of
problems of the form

find z € R™ such that Ax = 0and[l; < z; <wu;fori=1,...,n,

where the matrix A is fixed and /; and u; are bounds on z; that may vary with each
problem. Variants of Simplex can efficiently solve problems in this form. Section 4
presents such a variant designed to be efficient in the DPPL(7T") context, and Section 5
shows how to extend it to problems with strict inequalities. Since A is fixed, no row
is ever added or removed from the tableau, and backtracking is very cheap. The new
solver has additional advantages: it is possible to simplify the problem a priori by elim-
inating irrelevant variables, and a simple but useful form of theory propagation can be
implemented cheaply.

2 Background

Given a quantifier-free theory 7', a T-solver is a procedure for deciding whether a fi-
nite set of atoms of 7" is satisfiable. If @ is a formula built by boolean combination of
atoms of T, then the satisfiability of @ can be decided by combining a boolean satis-
fiability solver and a T-solver. The DPLL(T") approach is an efficient method for such
integrations that relies on the DPLL procedure.

2.1 Solvers for DPPL(T)

In the DPLL(T") framework, a T-solver maintains a state that is an internal representa-
tion of the atoms asserted so far. This solver must provide operations for updating the
state by asserting new atoms, checking whether the state is consistent, and backtracking.
Optionally, the solver may also implement theory propagation, that is, identify atoms
that are implied by the current state. To interact with the DPLL search, the solver must
produce explanations for conflicts and propagated atoms. In an inconsistent state .S, an
explanation is any inconsistent subset of the atoms asserted in S. Similarly, an expla-
nation for an implied atom ~ is a subset I" of the asserted atoms such that I" |= . An
explanation I" is minimal if no proper subset of " is an explanation.

The solver is assumed initialized for a fixed formula ¢ and we denote by A the set
of atoms that occur in . The set of atoms asserted so far is denoted by a. The solver
also maintains a stack of checkpoints that mark consistent states to which the solver can
backtrack. We assume that a T-solver implements the following APL!

— Assert(7y) asserts atom + in the current state. It returns either ok or unsat(I") where
I is a subset of . In the first case,  is inserted into «. In the latter case, o U {~}
is inconsistent and " is the explanation.

— Check() checks whether « is consistent. If so, it returns ok, otherwise it returns
unsat(l"). As previously I' C « is an explanation for the inconsistency. A new
checkpoint is created when ok is returned.

! This is similar to the API proposed in [1].
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— Backtrack() backtracks to the consistent state represented by the checkpoint on the
top of the stack.

- Propagate() performs theory propagation. It returns a set {(I'1,v1), ..., (I, )}
where I'; C «and y; € A\ . For every pair (I3, ;) produced, ; is an atom not
already asserted that is implied by I, and I; is a subset of a.

Assert must be sound but is not required to be complete: Assert(y) may return ok
even if U {v} is inconsistent. Similarly, Propagate must be sound but does not have to
be exhaustive. On the other hand, function Check is required to be sound and complete:
if Check() = ok then v must be consistent. This model enables several atoms to be
asserted in a single “batch”, using several calls to Assert followed by a single call to
Check. Assert can then implement only inexpensive (and possibly incomplete) consis-
tency checks while Check implements a complete (and possibly expensive) consistency-
checking procedure. The state S’ after executing Backtrack must be logically equivalent
to the state .S when the checkpoint was created, but S” may be different from S.

2.2 Existing Simplex Solvers for DPLL(T)

A quantifier-free linear arithmetic formula is a first-order formula whose atoms are
either propositional variables of equalities, disequalities, or inequalities of the form

a121 + ... + apxy X b,

where ay, ..., a, and b are rational numbers, z1, ..., x, are real (or integer) variables,
and < is one of the operators =, <, <, >, >, or #. In the DPLL(T") framework, de-
ciding the satisfiability of such formulas requires a linear-arithmetic solver. A common
approach is to use incremental forms of Simplex similar to the algorithms described
in [11,12,13,14]. Tools based on this approach include our own tools, Yices and Sim-
plics, and others such as MathSat [8].

In these algorithms, a solver state includes a Simplex tableau that is derived from all
equalities and inequalities asserted so far. A tableau can be written as a set of equalities
of the form

r; = b; + Z aijTj, T; € B (1)
zj EN

where B and \V are disjoint sets of variables. Elements of B and N are called basic and
nonbasic variables, respectively. Additional constraints are imposed on some variables
of B U N. So-called slack variables are required to be non-negative, and the tableau
may also contain zero variables, which are all implicitly equal to 0. Zero variables are
used to generate explanations (cf. [11]).

A pivoting operation pivot(z,., xs) swaps a basic variable x,. and a nonbasic variable
x5 such that a,.s # 0. After pivoting, x; becomes basic and x,- becomes nonbasic. The
tableau is updated by replacing equation x,, = b, + in e N @rjxj With

br T rjdg
Ty = —— + e Z Grjty Q)
Grs Grs Qrg
T EN\{ZEa}

and then equation (2) is used to eliminate x5 from the rest of the tableau by substitution.
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Fig. 1. Impact of theory propagation in Simplics

Assertion of equalities or inequalities adds new equations to the tableau. For exam-
ple, let v be an atom of the form ¢ > 0 where ¢ is an arithmetic term. The operation
Assert(~y) involves three steps. First, v is normalized by substituting any basic variable
x; occurring in ¢ with the term b; + ZIJ_ N @iy The solver checks then whether
the resulting inequality ¢ > 0 is satisfiable. This step uses the Simplex algorithm to
maximize ¢’ subject to the tableau constraints. If ¢’ has a maximum M and M is neg-
ative, then ¢/ > 0 is not satisfiable and an explanation is generated. Otherwise, a fresh
slack variable sj, is created and a row of the form s, = t” is added to the tableau.
Some bookkeeping is required to record that s; is nonnegative and is associated with
atom ~y. Processing of equalities and strict inequalities follows the same general princi-
ples. Backtracking removes rows from the tableau. For example, to retract -y, the solver
retrieves the slack variable s; associated with . If s; is a basic variable in the cur-
rent state then the corresponding equation is removed from the tableau. Otherwise, a
pivoting operation is applied first to make sy, basic.

Disequalities are treated separately since they cannot be incorporated into the
tableau. When a disequality ¢ # 0 is asserted, it is first normalized as before, and
then the solver must check whether the current tableau implies ¢ = 0. This can be
implemented via the zero-detection procedure described in [11] for example.

2.3 Performance

Assertions and backtracking have a significant cost in solvers based on incremental
Simplex algorithms. Part of this cost (e.g., the pivoting involved in Assert operations)
cannot be avoided, but there is also significant overhead in the frequent additions and re-
movals of rows, creations and deletions of slack variables, and associated bookkeeping.
The remainder of the paper describes a different type of solver, still based on the Sim-
plex method, which significantly reduces this overhead. The new approach is simpler
and more uniform than incremental Simplex. It is also more economical as irrelevant
variables can be eliminated a priori and fewer slack variables are necessary.

Some of the simplifications are based on lessons we learned from experiments with
our previous tools Simplics and Yices:?

2 Both use incremental Simplex and zero detection.
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— Minimal explanations are critical. Dramatic improvements were observed when
comparing Simplics and Yices, which generate minimal explanations, and their
predecessor ICS, which does not.

— Theory propagation is useful if it can be done cheaply. Figure 1 compares the re-
sults of Simplics on the real-arithmetic subset of the SMT-LIB benchmarks [15]
using different levels of theory propagation. By default, Simplics uses a heuristic
form of propagation that is relatively inexpensive but incomplete (no pivoting is
used). This is compared in Figure 1(a) with Simplics running with no propagation
at all, and in Figure 1(b) with Simplics running with complete propagation (where
pivoting is used). On these benchmarks, full propagation is just too expensive, but
no propagation is also a poor choice. Heuristic propagation is clearly superior.

— Zero detection is expensive and can be avoided. On a few examples in the SMT-
LIB benchmarks, Simplics spends as much as 30% of its time in the zero-detection
procedure. A simpler alternative is to rewrite a disequality ¢ # 0 as the disjunction
of two strict inequalities (¢ < 0) V (¢ > 0). This transformation may seem wasteful
since it may entail additional case splits, but it works well in practice. After this
transformation, Simplics can solve six problems of the SMT-LIB benchmarks that
it cannot solve otherwise.

3 Preprocessing

Incremental Simplex algorithms can be avoided by rewriting a linear arithmetic formula
@ into an equisatisfiable formula of the form @4 A d’, where @ 4 is a conjunction of lin-
ear equalities, and all the atoms occurring in &' are elementary atoms of the form y < b,
where y is a variable and b is a rational constant. The transformation is straightforward.
For example, let @ be the formula

r>0AN(r+y<2Vz+2y—2>6)A(z+y=2Va+2y—2z>4).
We introduce two variables s; and s, and rewrite @ to @4 A @' as follows.

(s1=z4+yAsa=x+2y—z) A
(x>0A(s1 <2Vs3>6)A(s1=2Vs2>4))

Clearly, this new formula and @ are equisatisfiable. In general, starting from a formula
@, the transformation introduces a new variable s; for every linear term ¢; that is not
already a variable and occurs as the left side of an atom t; > b of @. Then @ 4 is the
conjunction of all the equalities s; = t; and ¢’ is obtained by replacing every term ¢;
by the corresponding s; in P.

Let 1, ..., , be the arithmetic variables of 4 A &', that is, all the variables orig-
inally in @ and m-additional variables s, ..., S, introduced by the previous transfor-
mation (m < n). Then formula ¢4 can be written in matrix form as Az = 0, where
A is a fixed m X n rational matrix and z is a vector in R"™. The rows of A are linearly
independent so A has rank m. Checking whether @ is satisfiable amounts to finding an
x such that Az = 0 and z satisfies ¢'. In other words, checking the satisfiability of &
in linear arithmetic is equivalent to checking the satisfiability of @’ in linear arithmetic
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modulo Ax = 0. Since all atoms of ¢’ are elementary, this requires a solver for de-
ciding the consistency of a set of elementary atoms /" modulo the constraints Az = 0.
If I'" contains only equalities and (nonstrict) inequalities, this reduces to searching for
x € R™ such that

Ar=0and [; <z; <wu; forj=1,...,n 3)

where [ is either —oo or a rational number, and u; is either 400 or a rational number.

Since the elementary atoms of @’ are known in advance, we can immediately sim-
plify the constraints Ax = 0 by removing any variable x; that does not occur in any
elementary atom of @’. This is done by Gaussian elimination. In practice, this presim-
plification can reduce the matrix size significantly (cf. [16]).

The variables s; introduced during the transformation play the same role as the slack
variables of standard Simplex. However, the presence of both lower and upper bounds
is beneficial. For example, incremental Simplex algorithms need two slack variables to
represent a constraint such as 1 < x + 3y < 4, whereas a single sy, is sufficient if the
general form (3) is used. Overall, rewriting @ into @4 A &’ and relying on the general
form leads to problems with fewer variables than the algorithms discussed previously.

4 Basic Solver

We first describe a basic solver that handles equalities and nonstrict inequalities with
real variables. Extensions to strict inequalities and integer variables are presented in the
next sections. The basic solver decides the satisfiability of problems in form (3) and
implements the API of Section 2.1 for integration with a DPLL-based SAT solver.

The solver state includes a tableau derived from the constraint matrix A. We will
write such a tableau in the form:

xT; = E AjjT; Tj € B,
.’E_jGN

where B and A denote the set of basic and nonbasic variables, respectively.> Since
all rows of this tableau are linear combinations of rows of the original matrix A, the
equality z; = ij e\ @ijr; is satisfied by any z such that Az = 0.

In addition to this tableau, the solver state stores upper and lower bounds /; and w; for
every variable x; and a mapping (3 that assigns a rational value 3(x;) to every variable
x;. The bounds on nonbasic variables are always satisfied by (3, that is, the following
invariant is maintained

Vacj S N7 lj < 5(3:7) < Uj. 4)
Furthermore, /3 satisfies the constraint Az = 0. In the initial state, [; = —o0, u; = +00,
and #(x;) = 0 forall j.

Figure 2 describes two auxiliary procedures that modify (3. Procedure update(z;, v)
sets the value of a nonbasic variable x; to v and adjusts the value of all basic variables
so that all equations remain satisfied. Procedure pivotAndUpdate(x;, z;,v) applies piv-
oting to the basic variable x; and the nonbasic variable x;; it also sets the value of z; to
v and adjusts the values of all basic variables to keep all equations satisfied.

3 This is the same as (1) with b; = 0 for all z; € B.
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procedure update(z;, v)
for each z; € B, (x;) := B(x;) + aji(v — B(x:))
B(wi) =v

procedure pivotAndUpdate(z;, x;, v)
0= v—pB(x4)

B(zi) =v

B(z;) = B(x;) + 0

for each z;, € B\ {z:}, B(zk) := B(zk) + ar;0
pivot(x;, ;)

Fig. 2. Auxiliary procedures

4.1 Main Algorithm

The main procedure of our algorithm is based on the dual Simplex and relies on Bland’s
pivot-selection rule to ensure termination. It relies on a total order on the variables.
Assuming an assignment (3 that satisfies the previous invariants, but where ; < 3(x;) <
u; may not hold for some basic variables x;, procedure Check searches for a new [ that
satisfies all constraints. The procedure is shown in Figure 3. It either terminates with a
new assignment and basis that satisfy all lower and upper bounds (line 4), or finds the
constraints to be unsatisfiable (lines 8 and 13). The body of the main loop selects a basic
variable z; that does not satisfy its bounds (line 3). If z; is below /;, then it looks for
a variable x; in the row z; = ZT N @ijT; that can compensate the gap in x; (lines
6-7). If no such x; exists the problem is unsatisfiable (line 8) because the value of x; is
maximal and is below the lower bound /;. Otherwise, the procedure pivots x; and x;,
and x; is set to I; (line 9). The case where x; is above its upper bound (lines 10-14) is
symmetrical.
The following property implies the correctness of Check; a proof is given in [16].

Theorem 1. Procedure Check always terminates.

4.2 Generating Explanations

An inconsistency may be detected by Check at line 8 or 13. Let us assume a conflict is
detected at line 8. There is then a basic variable x; such that 3(x;) < l; and for every
nonbasic variable z; we have a;; > 0 = f(z;) > u; and a;; < 0 = [(z;) < [;.
Let V' = {z; € N'|a;; > 0}and N~ = {m] € N | a;; < 0}. Since [ satisfies all
bounds on nonbasic variables, we have 3(x;) = [, forevery x; € N~ and 3(z;) = u;
for every z; € N'". It follows that

B(z;) = Z a;i3(z;) Z aiju; + Z aijl;

z; GN T GN z; EN

The equation x; = in e \/ @ijz; holds for any z such that Az = 0. Therefore, for any
such z, we have '

Blai) —mi= D ailuy—z)+ > ai(ly — ),
z;eN™ z;eN~
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1. procedure Check()

2. loop

3 select the smallest basic variable z; such that 3(z;) < l; or 3(z;) > u;
4, if there is no such x; then return satisfiable

5. if B(x:) < l; then

6 select the smallest nonbasic variable x; such that

7 (aij > Oandﬁ(xj) <uj)0r(aij <Oandﬁ(xj) > lj)

8. if there is no such x; then return unsatisfiable

9 pivotAndUpdate(z;, x;, l;)

10. if B(ZEZ) > u; then

11. select the smallest nonbasic variable x; such that

12. ((lz'j < 0 and ﬁ(dij) < Uj) or (aij > 0 and ﬁ(dij) > l])
13. if there is no such x; then return unsatisfiable

14. pivotAndUpdate(z;, x;, u;)

15. end loop

Fig. 3. Check procedure

from which one can derive the following implication:

/\ r; <u; A /\ lj <zj = x; < B(x;).
z;eNT z;eN ™

Since §(x;) < l;, this is inconsistent with I; < z;. The explanation for the conflict is
then the following set of elementary atoms:

FZ{xjSu]‘]€N+}U{JJJZl]|]EN_}U{JJ1ZZZ}

It is easy to see that /" is minimal. Explanations for conflicts at line 13 are generated in
the same way.

4.3 Assertion Procedures

The Assert function relies on two procedures shown in Figure 4 for updating the bounds
l; and w;. Procedure AssertUpper(xz; < ¢;) has no effect if u; < ¢; and returns unsat-
isfiable if ¢; < [;; otherwise the current upper bound on z; is set to ¢;. If variable
x; is nonbasic, then (3 is updated to maintain invariant (4). If an immediate conflict is
detected at line 3 then generating a minimal explanation is straightforward.

Procedure AssertLower(xz; > ¢;) does the same thing for the lower bound. An equal-
ity x; = ¢; is asserted by calling both AssertUpper and AssertLower.

4.4 Backtracking

Efficient backtracking is important since the number of backtracks is often very large.
In our approach, backtracking can be efficiently implemented. We just need to save
the value of w; (I;) on a stack before it is updated by the procedure AssertUpper (As-
sertLower). This information is used to restore the old bounds when backtracking is
performed. Backtracking does not require saving the successive s on a stack. Only
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1. procedure AssertUpper(z; < c¢;)

2. if ¢; > u; then return satisfiable

3. if ¢; < l; then return unsatisfiable

4. wii=c;

5. if x; is a nonbasic variable and 5(x;) > c; then update(z;, c;)
6. return ok

1. procedure AssertLower(z; > ¢;)

2. if ¢; < I; then return satisfiable

3. if ¢; > w; then return unsatisfiable

4. lz =G

5. if x; is a nonbasic variable and 3(z;) < c; then update(x;, ¢;)
6. return ok

Fig. 4. Assertion procedures

one assignment 3 needs to be stored, namely, the one corresponding to the last success-
ful Check. After a successful Check, the assignment (3 is a model for the current set of
constraints and for the set of constraints asserted at any previous checkpoint. Since no
pivoting or other expensive operation is used, backtracking is very cheap.

4.5 Theory Propagation

Given a set of elementary atoms .4 from the formula &', then unate propagation is very
cheap to implement. For example, if bound x; > ¢; has been asserted then any unas-
signed atom of A of the form x; > ¢’ with ¢/ < ¢; is immediately implied. Similarly,
the negation of any atom x; < u with u < ¢; is implied. This type of propagation is
useful in practice. It occurs frequently in several SMT-LIB benchmarks.

Another method is based on bound refinement. Given a row of a tableau, such as
T, = in N @ijTj, one can derive a lower or upper bound on x; from the lower or
upper bounds on the nonbasic variables z;. These computed bounds may imply unas-
signed elementary atoms with variable x;. This is a heuristic technique as the computed
bounds may be weaker than the current bounds asserted on x; (for example, the com-
puted bounds may be —oo or +00). However, bound refinement is quite general. It is
applicable with any equality a1z; + ... + anx, = 0 derived by linear combination of
rows of A, not just with rows of a tableau.

4.6 Example

Figure 5 illustrates the algorithm on a small example. Each row represents a state. The
columns contain the tableaux, bounds, and assignments. The first row contains the ini-
tial state. Suppose x < —4 is asserted. Then the value of = must be adjusted, since
Bo(z) > —4. Since s1 and s, depend on z, their values are also modified. No pivoting
is required since the basic variables do not have bounds, so A; = Aj. Next, z > —8
is asserted. Since (31 () satisfies this bound, nothing changes: As = A; and B2 = (1.
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A°:{i;i;i? Bo = (z— 0,y 0,51 0,52 — 0)

Al = Ay z <-4 |fi=(xr— —4,y— 0,81 — 4,82 — —4)
Ar = Ay —8< x <-4 |fa=pf

_Jy=x+ts —8< z <-4, B _ _
Ad*{52:2m+sl 5 <1 |B=e by Ssim s =T)

Fig. 5. Example

Next, s; < 1 is asserted. The current value of s; does not satisfy this bound, so Check
must be invoked. Check pivots s and y to decrease s1. The resulting state S3 is shown
in the last row; all constraints are satisfied.

If so > —3is asserted in S3 and Check is called then an inconsistency is detected:
Tableau A, does not allow s9 to increase since both x and s are at their upper bound.
Therefore, so > —3 is inconsistent with state Ss.

5 Strict Inequalities

The previous method generalizes to strict inequalities using a simple observation.

Lemma 1. A set of linear arithmetic literals I' containing strict inequalities S =
{p1 > 0,...,pn > 0} is satisfiable iff there exists a rational number § > 0 such
that IT's = (I' U Ss) \ S is satisfiable, where Ss = {p1 > 6,...,pn > 6}

This lemma says that we can replace all strict inequalities by nonstrict ones if a small
enough ¢ is known. Rather than computing an explicit value for §, we treat it symbol-
ically, as an infinitesimal parameter. Bounds and variable assignments now range over
the set Qs of pairs of rationals. A pair (¢, k) of Qs is denoted by ¢+ k6 and the following
operations and comparison are defined in Qs:

(c1,k1) + (c1,k2) = (1 + 2, k1 + k2)
ax (c,k)=(axcaxk)
(Cl,kl) < (Cg,kg) = (01 < CQ) V (Cl =Nk < kg),

where a is a rational. Strict bounds in Q are converted to nonstrict bounds in Qs: in-
equality z; > [; is converted to x; > [; + 6, and z; < u; is converted to x; < u; — 6.
Then all updates to 3 used in the previous algorithm can be performed in Q5. The matrix
A does not change; all its coefficients are rational numbers.

By this process, a problem & with strict bounds in the rational is converted into a
problem S’ in the general form (3) but where the bounds /; and u;, and the variables x;
are elements of Q. If an assignment (3’ satisfies S’ then it can be converted into a ra-
tional assignment (3 that satisfies .S. This relies on substituting the symbolic parameter
6 with a small enough positive rational number §y € @Q, which can always be done since
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there is a finite number of inequalities in S’ (cf. [16]). If S’ is unsatisfiable in Qs, then
by Lemma 1, S is also unsatisfiable in the rationals.

6 Extensions

The previous solver is sound and complete for the reals. If some or all of the variables z;
are required to be integer, the algorithm is not complete. Nothing ensures that the assign-
ment (3 constructed by Check gives an integer value to integer variables. To be complete
in the integer or mixed integer case, we employ a branch and cut strategy, that is, the
combination of branch-and-bound with a cutting plane generation algorithm [17,18].
The branch-and-bound algorithm works when problems are solved in Qs rather than
Q. In other words, it can be used when strict inequalities are present. The cutting-plane
method we use is based on mixed integer Gomory cuts. Such a cutting-plane algorithm
is critical as it dramatically accelerates the convergence of branch-and-cut in several
cases.

Also, it is possible to integrate the linear-arithmetic solver presented in this paper
with solvers for other theories. The simplest method is to perform case-splits on equal-
ities between variables that are shared between different theories. In most cases, the
number of such shared variables is small in comparison with the total number of vari-
ables and this method is quite efficient. This approach is described in detail at [19]. It
can be extended with an opportunistic equality-propagation method [16].

7 Experiments

Figure 6 compares a prototype SMT solver that uses the previous algorithms with other
tools that participated in last year’s SMT competition. The comparison uses all the
SMT-LIB benchmarks in the QF_RDL (real difference logic), QF_IDL (integer differ-
ence logic), QF_LRA (linear real arithmetic), and QF_LIA (linear integer arithmetic)
divisions. The experiments were conducted on identical PCs, all equipped with a 32bit
Pentium 4 processor running at 3 GHz. The timeout was set to 1 hour and the memory
usage was limited to 1 GB. With these timing and memory constraints, running all the
benchmarks required approximately 60 CPU days.

Each point on the graphs represents a benchmark: + denotes a difference logic prob-
lem and x denotes a problem outside the difference-logic fragment. The axes corre-
spond to the CPU time taken by the new solver (y-axis) or the other solver (xz-axis) on
each benchmark. CPU times are measured in seconds. Points below the diagonal are
then SMT-LIB benchmarks where our new solver is faster. Points on the leftmost verti-
cal edge are problems where a solver aborted, typically by running out of memory. The
graphs comparing our new solver with Barcelogic and Simplics have fewer points, be-
cause Barcelogic supports only difference logic and Simplics does not support integer
problems.

Table 1 summarizes the results. For each tool, it lists the number of instances solved
and unsolved, and the total runtime. As can be seen, the new algorithm largely outper-
forms the other solvers. It is even faster on problems in the difference logic fragment
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Fig. 6. Experimental results

than tools that are specialized for this fragment. The performance improvement is due
to efficient backtracking and to the presimplification enabled by our approach, efficient
theory propagation based on bound refinement also has a big impact.
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Table 1. Experimental results: Summary

sat| unsat| failed| time (secs)
Ario 1.1 186| 640 517| 1218371
BarcelogicTools | 153| 417 92 401842
CVC Lite 117| 454 772| 1193747
MathSAT 3.3.1 |330| 779| 234 739533
Yices 358 756| 229 702129
Simplics 240 351| 110 476940
New Solver 412| 869 62 267198

8 Conclusion

We have presented a new Simplex-based solver designed for efficiently solving SMT
problems involving linear arithmetic. The main features of the new approach include
the possibility to presimplify the input problem by eliminating variables, a reduction
in the number of slack variables, and fast backtracking. A simple but useful form of
theory propagation can also be implemented cheaply. Another result of the paper is a
simple approach for solving strict inequalities that does not require modification of the
basic Simplex algorithm. This approach is more generally applicable to other forms of
solvers, such as graph-based solvers for difference logic.

Experimental results show that the new Simplex-based solver outperforms the most
competitive solvers from SMT-COMP’05, including specialized solvers on difference
logic problems.

Applications for the algorithm presented in this paper go beyond SMT. We are cur-
rently extending the solver to support a form of weighted MAX-SMT, that is, the search
for an assignment to an SMT problem that maximizes a linear objective function. This
MAX-SMT solver will be integrated to SRI’'s CALO system®, as part of a module that
combines learning and deductive algorithms.
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Abstract. We present an incremental bounded model checking encoding into
propositional satisfiability where the property specification is expressed as a weak
alternating Biichi automaton (WABA). The encoding is linear in the specification,
or, more exactly O(|I| +k-|T|+k-|3]), where |I| is the size of the initial state
predicate, k is the bound, |7'| is the size of the transition relation, and || is the
size of the WABA transition relation. Minimal length counterexamples can also
be found by increasing the encoding size to be quadratic in the number of states
in the largest component of the WABA. The proposed encoding can be used to
implement more efficient bounded model checking algorithms for ®w-regular in-
dustrial specification languages such as Accellera’s Property Specification Lan-
guage (PSL). Encouraging experimental results on a prototype implementation
are reported.

Keywords: Weak Alternating Biichi Automata, Bounded Model Checking, PSL,
NuSMV.

1 Introduction

Large and demanding verification efforts require that the property specification lan-
guage used is up to the task. Linear temporal logic (LTL), the property specification
language implemented in many model checkers, has been criticised for the lack of ex-
pressive power [1,2]. Expressing certain properties in LTL is cumbersome at best, and
writing assumptions for compositional reasoning can even be impossible. Most of these
shortcomings are in one way or another related to the fact that LTL cannot express all
o-regular languages. This has been recognised by many key players in the hardware in-
dustry and Accellera’s Property Specification Language (PSL) [3,4] has been proposed
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as a solution. PSL extends LTL in many ways, but perhaps most importantly PSL can
express all @-regular languages. !

Expressive specification languages require efficient model checking techniques to
deliver on their promise. Bounded model checking (BMC) [5] is a symbolic model
checking technique that focuses on searching for bounded counterexamples to the given
property. By encoding the model checking problem to propositional satisfiability (SAT),
bounded model checking can leverage the efficiency of modern SAT-solver technology.
Encoding BMC to SAT is accomplished by writing a propositional formula that mod-
els all executions of the system of certain length. Additional constraints ensure that the
final formula is satisfiable if some execution is a counterexample. There are also meth-
ods for concluding that current reached depth is enough to prove that the given property
holds [6,7,8,9]. BMC has established itself as an important tool among current verifi-
cation techniques. A very important question is therefore, can BMC efficiently model
check all ®-regular properties, especially those expressed in PSL.

This work explores different possibilities of implementing BMC for PSL by using the
automata theoretic approach to model checking. The PSL property can first be converted
into an alternating Biichi automaton (ABA) with the help of an external translation
procedure, such as the one described by the Prosyd project (see [10]). This procedure
can create so called weak alternating automata (WABA) which have certain restrictions
on the structure of the automaton but are still able to express all ®-regular properties.
A large subset of core PSL can be converted into a WABA with a linear number of
states with a few exceptions [10].

In the rest of the paper we explore different options of creating an efficient BMC
encoding for WABAs. With an exponential blow-up (O(2% 4-3%), where a is the number
of accepting states and b is the number of non-accepting states) the WABA can be con-
verted to an explicit state nondeterministic Biichi automaton using the Miyano-Hayashi
construction [11]. This explicit state Biichi automaton could be used but the size of the
encoding is in the worst case exponential in the size of the WABA.

A significantly better option would be to implement a symbolic version (SAT encod-
ing) of the Miyano-Hayashi construction [10]. However, this approach does not exploit
the weakness of the ABAs and might thus not be an optimal approach for WABAs.
We have also experimentally observed that neither the symbolic nor the explicit state
versions of the approach preserve minimal length counterexamples.

We present a new efficient BMC encoding specialised for model checking WABAs.
The size of the encoding is linear in the specification as WABA and the system model.
By increasing the size of the encoding to be quadratic in the number of states in the
largest component of the WABA, we can guarantee that it detects minimal length coun-
terexamples for all WABAs. The encoding utilises the incremental SAT encoding frame-
work developed in [9].

We have experimentally evaluated our new BMC encoding for WABAs. Compared
to BMC based on explicit state Biichi automata, the new WABA encoding is much more
robust because the exponential blow-up in the explicit state Miyano-Hayashi construc-
tion is avoided. The new linear size encoding is clearly faster than a symbolic BMC

U'PSL can also express properties of finite words, for simplicity only ®-words are considered
here.
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encoding of the Miyano-Hayashi construction. In addition, the minimal counterexam-
ple variant of our new encoding produces shorter counterexamples in some cases. On
LTL formulas the new encoding generates minimum length counterexamples and is
as compact (within a constant factor) as the most compact specialised LTL encodings
known [9]. Furthermore, the performance on LTL is quite similar.

There is some earlier work on bounded model checking for subclasses of alterna-
ting Biichi automata and for all w-regular properties. Sheridan [12] describes a
non-incremental BMC encoding for very weak alternating Biichi automata. This en-
coding captures only the LTL subset of m-regular properties since very weak alternat-
ing Biichi automata exactly correspond to LTL properties [13,14]. A BMC encoding
for alternation-free uTL, a temporal logic that can express all ®-regular properties, has
been developed by Jehle et al. [15]. The encoding is cubic in the used bound k and thus
not as efficient as the new encoding presented in this work.

2 Alternating Biichi Automata

In this section we cover the technical definitions needed to introduce our BMC encod-
ing for WABAs. The set of positive Boolean formulas over X, denoted by B™(X), is
the smallest set of formulas which contains all elements from X and is closed under
disjunction and conjunction. A subset S of X is a model of 6 € B*(X), denoted by
S = 0, iff the truth assignment that assigns true to the elements of S and false to the
elements of X\ S satisfies 6.

As alphabet X of alternating automata we restrict ourselves to only considering val-
uations of atomic propositions. More precisely, for a given non-empty finite set AP of
atomic propositions we define the set of atomic proposition complements AP = {p | p €
AP} and let X be the largest set T C 247 Y AP guch that for all p € AP exactly one element
of {p,P} is contained in each member of Z.

An alternating Biichi automaton (ABA) is of the form A = (Q,X, qo,0,F), where
Q is a finite set of states, X is a finite alphabet, go € Q is the initial state, d: Q —
BT (AP U AP U Q) is the transition relation and F' C Q is the set of accepting states. We
use BT (A) to denote the set of Boolean formulas that occur in A’s transition function.

Given an infinite word w € £®, w; denotes the i-th letter of w (i.e. w = wowiwy...).
Arunof A= (Q,%,qo,d,F) on w is a directed acyclic graph (dag) G = (V,E) with the
following properties:

- VCOXN,

E CUi0((@ x {i}) x (@ x {i+1})),

(90,0) €V,

if (¢,i) € V then (wi U {q' | ((g,i),(q,i+1)) € E}) |= 8(q), and
if ((¢,7),(q',i+1)) € E then both (g,i) €V and (¢/,i+1) € V.

For technical convenience this definition of a run allows for states which are unreach-
able from the initial state. Let ¢ be an infinite path in a run in G, i.e. an infinite sequence
of nodes (vo,vi,V2,...) such that (v;,viy1) € E for all i > 0. Let Inf(G) be the set of
states that consists of all automaton states appearing infinitely often in the nodes of G.
An infinite path o is accepting iff F N Inf(c) # 0. A run G is accepting iff every in-
finite path through G is accepting. An ABA A = (Q, X, qo,9, F) accepts a word w € X®



98 K. Heljanko et al.

iff there is an accepting run G of the automaton A on w. The definition of a run allows
a state to have no successors and a path through the run (as well as the whole run) to be
finite. In effect all such finite paths ending in a state with no successors are “accepting”.
Alternatively the existence of states with no successors could be easily ruled out by
placing additional constraints on &(+).

Example 1. Forinstance, 8(q1) = ((pAq1)V(PA((rA(g2Ag3)) VT))) means that from
state (¢q1,i) € V with valuation w; = {p,r} move to a state set at i + | containing {g; }
(this also happens with valuation {p,7}), while with valuation {p,r} we will move to a
state set containing {g2, g3 }. With valuation {p,7} the transition relation of ¢; becomes
true, which means that we do not require go to have any successors.

A weak alternating Biichi automaton (WABA) is an ABA A = (Q,X,qo,0,F) whose
states Q can be partitioned into components Q1 & - - - & Q,, such that:?

- forall j,k € {1,....,m}, gj € Qj, qx € Ox: if qx appears syntactically in §(¢;) then
k < j;and
—forall1<j<m:Q;CForQ;NF=0.

A WABA is a very weak alternating Biichi automaton (VWABA) if no component Q;
contains more than one state. For a component Q;, |8;| denotes the sum of the sizes of
the transition relations 8(g), where g € Q;.

Let A be a WABA with state set Q partitioned into components Q1 W --- & Q,, and
final state set /. We next define the component unrolling depth d; needed to detect
minimal length counterexamples in our BMC encoding for each component Q;. For
any j € {1,...,m} let

4 = {0 ,ifQ; CF
I |Q]",ifQjﬁF:0

3 Incremental Bounded Model Checking for Weak Alternating
Biichi Automata

Our incremental encoding for weak alternating automata is based on the simple BMC
encodings [16,17,9] for LTL. The approach to incrementality used here is exactly the
same as in [9]. First of all, the encoding needs to be formulated so that it is easy to derive
the encoding for bound k = i+ 1 from the encoding for bound k = i. This is done by
separating the encoding to a k-invariant part and a k-dependent part. The information
learned by the SAT solver from the k-invariant constraints can be reused when the bound
is increased while the k-dependent constraints and all the information learned from them
needs to be discarded. Thus we try to minimise the use of k-dependent constraints in our
encoding. The so called Base constraints are also k-invariant, but they are conditions
that are constant for all 0 < i <k.

2 Given an ABA the sets Q1, ..., QO can be easily computed by using an algorithm for com-
puting the maximal strongly connected components (MSCCs) in a graph induced by the ABA
transition relation as follows: the states are the nodes, and there is an edge from g; to gy iff g
appears syntactically in 8(g;).
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As in earlier works, paths of length k are encoded using k-invariant model constraints
[[M]],. They encode initialised finite paths of the model M of length £:

k

[M]], < 1(s0) A\ T(si-1,8),
i=1

where I(s) is the initial state predicate and T'(s,s’) is a total transition relation. Let
T = sps152 ... be an initialised infinite path through M. The corresponding word w =
wowiwz ... € X? is obtained by concatenating the sets of valuations of atomic proposi-
tions in the states s;. We say that 7w is a (k,I)-loop if T = (sos1...5/-1)(s;...5%)® such
that 0 <! <kand s;_| = s.

The loop constraints also closely follow [9] by employing k + 1 fresh loop selector
variables ly,...,I;. They constrain the finite path of the system to always be a (k,i)-
loop for exactly one 7, in which case the variable /; is true and all other /; variables
are false. Many k-dependent constraints are avoided by introducing a new special sys-
tem state sp with fresh (unconstrained) state variables acting as a proxy state for the
endpoint of the path. In the k-dependent part the proxy state sg is constrained to be
equivalent to si. The variable InLoop; is true iff the state s; belongs to the loop part of
a (k,I)-loop. These are encoded by conjuncting the constraints below and denoted by
|[LoopConstraints]|,:

Base < L

InLoop, < L
k—invariant li = (sio1 =sE)
1<i<k InLoop; < InLoop;_; VI;,

Il’lLOOpFl :> _‘l,

k—dependent| InLoop, < T

SE < Sk

We will first give an encoding that detects minimal length counterexamples for all
WABAs, and later on show an optimisation that makes the encoding linear in the size
of the WABA if this requirement is dropped. Given a WABA A, in our new encoding
the state variables of the system are split at each time i to the actual state variables s; of
the system, to the set of variables for all automata states |[[s,] \fj (one for 0 <i<k+1
and each pair (¢,d), where ¢ € Q; and 0 < d < d;). The encoding also contains a few
additional variables which will be referred to explicitly. The rules of the encoding are
given as a set of Boolean constraints.

The WABA constraints |[Awagal|, are new to this work and restrict the bounded
paths defined by the model constraints and loop constraints to infinite words accepted
by WABA A. One intuition for understanding the encoding is given by the fact that
for (k,/)-loops the semantics of branching and linear time coincide. We will in fact
employ algorithmic ideas similar to those used in branching time logic CTL model
checkers.
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The transition relation of A is encoded in a straightforward manner. For each com-
ponent Q; and for each state g € Q; the following constraints are created:

0<d<d;
Base [[$4o) \8 < T, where g is the initial state
k—invariant,0 < i <k |lsgl|? < 1[8(q)]1¢

where the k—invariant encoding |[3(q)] |fl for each component Q;, and for each state
q € Qj is the following:

I[8(q)]I¢ 0<i<k0<d<d;
P! Pl < pi
lrzlh Bl = -pi
lq1I{ W & llsg]lE, - if 4 € Q;
1 = |sg1l2,if ¢ € 0;
Al | v Avall? < [wllé Alfwll¢

|d

i

vl | vwlld e willd v

In the encoding above p; denotes the variable holding the value of the atomic proposi-
tion p in the state s;. Notice how for state ¢ € Q; the successor states ¢’ inside Q; get
the values from the current unrolling d while the successor states ¢’ outside Q; get their
values from the unrolling d = 0. The intuition for this will be explained below.

We use a proxy loop state indexed with L with associated (free) automaton vari-
ables |[s] \,‘f to act as the loop state in order to make as many constraints k-invariant as
possible. For non-accepting components the k-dependent rules bind the truth values of

I[s4] |Z 1 to [sg] ”LIH (jump to the next unrolling level d 4 1), while for accepting com-

ponents they bind the values of |[s,] |2 .1 to the value of [[s,] \2, i.e. to the values at the
loop point state of the same unrolling. This is encoded by conjuncting the following
constraints for each component Q; and for each state g € Q;:

0<d<d,
Base IslPH & Lifqgg F
k—invariant, 1 <i <k = (115l < s
k—dependent qu]\zH < [[sq] ZH, ifqg F
0 0 .
quHk-‘-l S |sqll.ifgeF

The intuitive idea behind the encoding is as follows. Our encoding can be seen as a SAT
implementation of an automata theoretic branching time model checker using WABAs
such as [18] but specialised for models induced by (k,/)-loops. Because of the compo-
nent structure of the WABA, each component Q; can assume that all other components
and atomic propositions it refers to have already been evaluated, and the results are
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available. This is all that is needed to evaluate the component Q; by iteratively substi-
tuting these subresults.>

Similarly to [18] we want to compute the effect of these substitutions in terms of a
fixpoint evaluation procedure. Consider a non-accepting component Q; first. We want

I[s4] |Z to evaluate to whether at the loop point L starting from a state ¢ € Q; the au-
tomaton has some run which accepts the ®-word induced by the loop. Because we do
not want to allow accepting runs to be trapped forever in a non-accepting component,
the fixpoint required is the least fixpoint, and gives us the initial approximation values
I[s4] Zj e By running through the loop once in the backward direction making
substitutions of known results along the way, we can get a better approximation of the

final value, namely |[s,] |ij . Either we have already reached a fixpoint, or at least one of

states ¢’ € Q; has obtained the value |[s,/] |ij = T, in which case we have to resubstitute
this value by running through the loop a second time in the backward direction. Clearly
after d; = |Q| rounds the fixpoint is guaranteed to be reached, and the values of |[s,] |Z
are exact results of the fixpoint iteration. Finally, an extra fixpoint iteration is done with
I[s4] |? variables to get the correct final values for indices to the right of the loop point.

We could do the obvious dual greatest fixpoint iteration for the accepting compo-
nents. However, we will use the optimisation trick of employing any fixpoint instead
of the greatest fixpoint. The intuitive reason why this is sound is that any fixpoint will
in our encoding cautiously underapproximate the greatest fixpoint, (see the soundness
proof, Lemma I in Appendix A which never uses the fact that the fixpoint obtained for
accepting components is the greatest fixpoint). The completeness part is trivial, as the
any fixpoint enforcing constraints are strictly less constraining that the constraints that
would be needed for enforcing the exact greatest fixpoint.

We can optionally add constraints based on the monotonicity of the fixpoint approx-
imations of non-accepting components. These k—invariant propagation constraints are

as follows. For each non-accepting component Q;, and for each state g € Q;, 0 <i <
k+1,1<d <dj:

d—1

i

k—invariant [[s4] \fl = |[sqll

Conjuncting all the constraints above the encoding |[M,Awapa]|, becomes:
|[M,Awagal, < |[M]|; \|[LoopConstraints]|, A |[Awaally.-

Theorem 1. Given a finite Kripke structure M and a WABA A, M has a path Tt accepted
by A iff there exists a k € N such that |[M,Awapall, is satisfiable. More specifically, if
T =1505152... is a (k,1)-loop accepted by A then |[M,Awapal|, is satisfiable. 4

Proof. Immediate by Lemmas 1 and 2 in Appendix A. O

3 Notice the similarity to evaluating CTL formulas by substituting subformula results and prop-
agating these in the backward transition relation direction. See for example the WABA based
CTL model checking algorithm [18] as well as similar algorithms for the alternation free u-
calculus [19]. The main difference is that we aim for an easy encoding into SAT instead of
optimal running time as in the algorithms mentioned above.

4 A direct corollary of this is that minimal length (k,1)-loop witnesses can be detected.
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The exact size of the encoding is O(|/|+k- |T|+k-|8] +k- X (d;-[8;|)). Note that
the size is bounded from above by O(|I| + k- |T|+k-|Q|-|8|), and becomes O(|I| + k -
|T|+k-|8]) when the WABA 1is a very weak alternating Biichi automaton (as produced
by most LTL to WABA translations). Combined with a linear size translation from an
LTL formula into a VWABA (for example a state acceptance based variant of [20] with
a symbolically encoded transition relation), bounded LTL model checking using this
approach is as compact as the approaches of [16,17,9]. In fact, by doing so the encoding
would for LTL formulas effectively become an optimised incremental variant of [16].

Trading Minimal Length Witnesses for a Smaller Encoding. Instead of quantifying
d over 0 < d < d; in the encoding above, for any non-accepting component Q; we can
instead use 0 < d < c;, where 1 < ¢; < d;. Now c; is the number of fixpoint iterations
made’, and we need the following constraints to guarantee correctness of the approach.
For each non-accepting component Q;, and for each state g € Q; the following fixpoint-
enforcing constraints are added:

0 1
Base I[sqll; < |[sq]l,

The constraints intuitively check that the fixpoint iteration has reached a fixpoint after
cj iterations. Thus the approach will be sound. The reason why the approach is still
complete is that by going through the loop part of a (k,[)-loop d; times one can with
cj = 1 simulate the d; fixpoint iterations done by going through the loop part only
once but with d; unrollings. Thus increasing the bound by roughly a factor of d; can
compensate for the lack of d; unrollings. By changing the quantification to, for example,
always use ¢; = 1 (as used in our experiments) the resulting encoding is of size O(|/| +
k-|T|+k-|9]|), i.e. linear in the size of the WABA. The correctness of the encoding is
preserved in the sense that every witness will eventually be detected when the bound is
increased large enough (albeit with a non-minimal bound).

4 Experimental Results

We have implemented a prototype of the proposed WABA BMC encoding on top of a
development version of the NuSMYV tool [21]. We use the “Sugar” tool (obtained from
http://www.prosyd.org/), by C. J. Kargl of TU Graz, as a translator from PSL
to ABAs and reuse our previous incremental SAT encoding techniques [9]. As the SAT
solver we use ZChaff version 2004.11.15 in the experiments. In order to evaluate and
validate the proposed encoding, we have also implemented two other BMC approaches
for WABASs on top of the same software platform: (i) translate the WABA to an explicit
state Biichi automaton by using the Miyano-Hayashi algorithm of the “Sugar” tool and
then do BMC by using the explicit state Biichi automaton, (ii) take the Miyano-Hayashi
translation from (W)ABA to Biichi automata given in [10, page 38] and derive a sym-
bolic BMC encoding from it.

5 The encoding of |[s,] \7 with d = 0 can be seen as an “extra” fixpoint iteration. It is needed in

order to also obtain correct |[s] \? values for indices i to the “right” of the loop point. We use it
here to also check that the fixpoint has been reached.
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Fig. 1. A comparison of encoding approaches on random models and VWABAs generated from
LTL formulae. Red boxes mark cases with a counterexample while black diamonds mark cases
where none was found.

These two BMC encodings are linear in the bound k and the sizes of the transition
relations of the corresponding automata (Biichi and WABA, resp.). Unfortunately we
do not have space to explain them in more detail here. The prototype implementation
as well as the experiments are available at http://www.tcs.hut.fi/“timo/
cav2006. The implementation also contains a (W)ABA input path, allowing alterna-
tive PSL to (W)ABA translations to be used.

Figures 1 and 2 show a comparison of encoding schemes for randomly generated
models (Kripke structures of 100 states and a single justice fairness requirement) and
WABAs generated from LTL and PSL formulae (of parse tree sizes between 3 and 14).
The time limit for each run was 10 minutes and the memory limit 1.5GiB.

In Fig. 1(a), 1(b) and 1(c), we benchmark our new algorithm on 1200 random LTL
formulae. We plot the total execution time of each run to either find a counterexample
for the property or to reach the bound limit of 50. In the plots, cases where a counterex-
ample was found are denoted by red boxes while black diamonds denote cases where
none of the approaches found a counterexample. The scales are logarithmic. Based on
Fig. 1(a), it is easy to see that the “WABA to Biichi” approach is not very competitive:
it suffers from the automata size blow-up occurring during the WABA to explicit state
Biichi automata translation. We can see that the proposed WABA BMC encoding is
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Fig.2. A comparison of encoding approaches on random models and WABAs generated from
PSL formulae. Red boxes mark cases with a counterexample while black diamonds mark cases
where none was found.

competitive against the symbolic Miyano-Hayashi approach (Fig. 1(b)). As expected,
the specialised LTL encoding of [9] performs slightly better than the new, more general
encoding but the difference is not large: the new encoding seems to be a reasonably
good BMC algorithm for LTL, too.

In Fig. 2, we compare the encodings on 1000+ WABAs obtained by generating ran-
dom PSL formulas, translating them to ABAs using the “Sugar” tool, and picking those
instances which are WABAs that are not very weak. It is known that in the version of
the “Sugar” tool used by us there are some discrepancies with respect to the semantics
of PSL, but that does not effect our use of it as a random WABA generator. The bound
and other parameters of the setup, as well as plot point encoding, are identical to the
LTL case. We also plot the bound reached, i.e. the counterexample length, for the runs
that found one. The scales are logarithmic.

The new linear encoding performs better than the symbolic Miyano-Hayashi encod-
ing, as shown in Fig. 2(a), with comparable counterexample lengths, as can be observed
from Fig. 2(d). Comparing the two new encodings in Fig. 2(b), the linear encoding
is clearly faster but may generate significantly longer counterexamples as shown in
Fig. 2(e). If we were to model check systems with a larger transition relation, the in-
creased counterexample length as seen here might sometimes translate into a slower
running time. Comparing the new encoding that can find minimal counterexamples to
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the symbolic Miyano-Hayashi encoding in Figures 2(c) and 2(f) we see that there is no
clear winner in speed but that the new encoding produces shorter counterexamples.

To sum up, these results show that the proposed WABA BMC is a competitive en-
coding for WABAs generated from PSL formulas, and quite close to a state-of-the-art
BMC encoding specialised for LTL.

5 Conclusions

Our new BMC encoding for WABAs seems very competitive. With BMC using ex-
plicit state Biichi automata, it is obvious that for complicated properties the potentially
exponential conversion from a WABA will become a bottleneck. The reason why our
encoding performs better than a symbolic Miyano-Hayashi encoding is not completely
clear to us. We speculate that the more deterministic nature of our encoding generates
easier problems for the SAT solver. The fact that the new encoding can exploit the struc-
ture of WABAs unlike Miyano-Hayashi, which works for all alternating automata, may
also help. Both are linear size in the specification, but if we use a version that is in the
worst case quadratic in the number of states in the largest component of the WABA, our
new encoding is guaranteed to find minimal length counterexamples.

The proposed WABA BMC encoding can be made complete (in the sense that it can
also prove properties, not only find counterexamples) by modifying and applying the
simple-path constrains of [9] in a straightforward way.

We would like to investigate whether it is possible to modify Miyano-Hayashi to
generate tight Biichi automata. We believe that the BMC encoding of this work can be
adapted to also generate a symbolic WABA to Biichi automaton conversion procedure
(an alternative to Miyano-Hayashi for WABAs) which generates tight Biichi automata
and thus detects minimal length counterexamples along the lines of [22]. This intuition
is based on the fact that [22] is an adaptation of the PLTL BMC encoding [17] to the
symbolic Biichi automaton setting and the implementation techniques used here are
quite similar to those of [17].

Other potential future directions of research are related to succinctness. One possi-
bility would be to devise new direct BMC encodings for general, non-weak ABAs or
for alternating parity automata. Generalising the encoding to temporal logics with past
operators (e.g. PSL extended with past) may potentially involve handling of two-way
alternating automata.

Acknowledgements. The authors would like to thank I. Niemeld and H. Tauriainen for
interesting discussions and pointers on the topic. Thanks also to R. Bloem and other
contributors of the Prosyd project for their freely available PSL translation tool as well
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Appendix A - Proofs

Here we prove the soundness and completeness of the encoding.

Lemma 1. Given a finite Kripke structure M, a WABA A and a k € N, if |[M,Awapal|,
is satisfiable then there is an initialised infinite path T through M such that the induced
word w is accepted by A.
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Proof. Suppose |[M,Awapal|, has a satisfying truth assignment [3 for its variables. Since
B satisfies |[M]|, there are states sps; . .. s, that form an initialised finite path in M. Note
that |[LoopConstraints]|, requires that there is 0 < [ < k such that s; = s;_;. Let © now
be the initialised infinite path sg...s;—1(s;...sx)® through M. It remains to be seen that
the corresponding word w is accepted by A.

We will prove the following stronger statement from which the claim of the the-
orem follows because of the base constraint for the initial state go. For a word w =
wowiws ... € X? let w() denote the suffix of w starting from w;. We use A, to denote
the WABA that results from A by making ¢ the initial state. For all components Q; of
A all0<d<djallqge Qj andall 0 <i<k: if B(|[sq]l{) = T then w'?) is accepted
by Ay.

Note that the topological order on A’s components is well-founded. Hence, we can
use Noetherian induction assuming that the statement has been proved for all lower
components already.

Let Q; be a final component. Take any ¢ € Q; and assume B(|[s,] \?) =T for some 0 <
i < k. Itis straightforward to construct a run dag for A, and wl) starting with the node
(g,1). The constraints for & then require B(|[d(q)] |?) = T.% Since Boolean connectives
in 8 are uniformly translated in the constraints for 8, there must be a model Q' of 3(q).
The construction of the run dag is then iterated on the next level with nodes (¢',i+ 1)
for some ¢’ € Q'. Note that the constraints always ensure that there are models of 8(q)
for each ¢ that occurs in this construction. This continues on each infinite path of the
run ad infinitum or until a state ¢’ is reached such that ¢’ ¢ Q;. But then, by weakness,
¢’ must belong to some component for which an accepting run dag has already been
constructed by the induction hypothesis. Note that all the states on such infinite paths
that remain in component Q; are final. Hence, the run dag is accepting, and we have
w(l) is accepted by A,.

Now let Q; be a non-final component. Again, take any g € Q; but now assume
B(quﬂfl) = T for some 0 < i < k and some 0 < d < d;. Again, we construct a run
dag for A, and w!) starting with the node (g,i). As above, the constraints for § always
ensure the existence of a model for a node on some level of this run which creates the
nodes on the following level. But note that the index d is increased in each transition
from sy to s;. Since B(|[s] \Z’ +1) = | is ensured by the constraints of the encoding, each
infinite path in this run dag will eventually leave the component Q. By weakness, each
infinite path proceeds into another component for which an accepting run dag has al-
ready been created by the induction hypothesis. Since a finite prefix of non-final states
on any such an infinite path does not harm the acceptance condition, this run dag is
accepting, too, and we have wli) is accepted by A,. a

Lemma 2. Given a finite Kripke structure M and a WABA A, if there is an initialised
infinite path © through M such that the corresponding word w is accepted by A then
there is a k € N such that |[M,Awapa]|,, is satisfiable.

6 According to this, implications from left to right instead of bi-implications in the constraints
for & would already suffice. It is also not hard to see that this does not destroy completeness:
if there is an assignment satisfying the bi-implications then this assignment would also satisfy
the weaker implications.
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Proof. Suppose there is an infinite path © such that the corresponding word w is ac-
cepted by A. Since the class of languages accepted by weak alternating Biichi automata
are the w-regular languages we can without loss of generality assume T to be a (k,/)-
loop for some 0 < [ < k. Furthermore, without loss of generality we can assume that
7 is minimal in the following sense. There is no infinite path ' through M such that
the corresponding word w' is accepted by A and 7’ is a (k’,1")-loop for some k' < k and
some /',

It remains to be seen that |[M,Awaga]|, is satisfiable. Hence, we need to construct
a truth assignment f3 to the variables sos; ... s, InLoop; for each 0 <i < k as well as
I[s4] |§l for each component Q; of A, eachg € Qj,each0 <d <d;,andeach0 <i <k+1.
Note that the values of the other variables are determined by the values of these.

The values for the former are immediately given by the (k,l)-loop w. This shows
satisfaction of the conjuncts |[M]|, and |[LoopConstraints]|,.

For the rest of the variables we only give a proof sketch due to space considerations.
After fixing w we can see A as a WABA tree automaton running on word (degenerate
tree) w. Simplifying the encoding of & with the values given by w to variables in the
first phase above implements the tree WABA product construction in similar fashion
as in Section 3.2 of [18] and thus the rest of the encoding solves the 1-letter WABA
emptiness problem of a 1-letter product WABA induced by w. Now the rest of the
encoding is basically a SAT implementation of a variant of the fixpoint computation
algorithm of Theorem 4.7 in [18] to solve the 1-letter emptiness problem for WABAs.
The non-accepting components correspond to least fixpoints and the accepting com-
ponents correspond to greatest fixpoints. We can do an induction which processes one
component at a time as in the proof of soundness above.

For an accepting component Q; the values |[s] |? can be set to be identical to the
final values computed by the algorithm of Theorem 4.7 in [18], thus obtaining a fixpoint
which is easily checked to be a satisfying truth assignment.

For a non-accepting component Q; the values |[s] |? can also be set to be identical to
the final values computed by the algorithm of Theorem 4.7 in [18]. However, the values
of [[s4] \jl with 1 < d < dj are set to be the values obtained by a fixpoint approximation

procedure which starts from the initial values given by B(][s,] \Z’ +1) = 1| and for all i,d
pairs proceeds for i from k -+ 1 towards 0, and for d from d; towards 1. It is easy to
check that after at most d; = |Q;| iterations through the loop in the backward direction
final values have been obtained at the loop point i = [,d = 1 (recall that w is fixed
and thus also the simplified form of & is monotone and fixed according to w at each
point of computing the fixpoint approximations), and thus we obtain a satisfying truth
assignment for all the constraints concerning non-accepting components.

By the above and the fact that the algorithm of Theorem 4.7 in [18] computes T to
the initial state iff w is accepted by A, we finally obtain B(\[sqoﬂg) =T, and thus all
constraints of the encoding are satisfied. O

As a consequence of the proof, the encoding detects witnesses T that are (k,[)-loops at
minimal parameter k.
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Abstract. The problem of finding a small unsatisfiable core of an un-
satisfiable CNF formula is addressed. The proposed algorithm, Trimmer,
iterates over each internal node d in the resolution graph that ‘consumes’
a large number of clauses M (i.e. a large number of original clauses are
present in the unsat core only for proving d) and attempts to prove them
without the M clauses. If this is possible, it transforms the resolution
graph into a new graph that does not have the M clauses at its core.
Trimmer can be integrated into a fixpoint framework similarly to Ma-
lik and Zhang’s fix-point algorithm (RUN_TILL_FIX). We call this option
TRIM_TILL_FIX. Experimental evaluation on a large number of industrial
CNF unsatisfiable formulas shows that TRIM_TILL_FIX doubles, on aver-
age, the number of reduced clauses in comparison to RUN_TILL_FIX. It is
also better when used as a component in a bigger system that enforces
short timeouts.

1 Introduction

Given an unsatisfiable CNF formula, an unsatisfiable core (UC) is any subset
of these clauses that is still unsatisfiable. The problem of finding a minimum,
minimal or just a small UC has been addressed rather frequently in the last
few years [2,10,16,11,6], partially due to its increasing importance in formal
verification.

The decision problem corresponding to finding the minimum UC is a Xs-
complete problem [5] and we are not aware of an algorithms for finding it that
scales. Finding a minimal UC (any subset of clauses such that the removal of
any one of them makes the formula satisfiable), according to Papadimitriou and
Wolfe [12], is D¥-complete!.

It is questionable whether finding a minimal UC has a practical value, how-
ever, since a non-minimal UC can be smaller than a minimal one, as long as it is
not contained in it. Therefore heuristics that do not guarantee minimality, can
be both faster and better than those that guarantee minimality. The latter are
useful only when their result is compared to the core from which they started,

L' DT is the class containing all languages that can be considered as the difference
between two languages in NP, or equivalently, the intersection of a language in NP
with a language in co-NP.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 109-122, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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and thus can be used, for example, after another, faster algorithm, has already
extracted a small core and cannot find a smaller one.

Typically UCs are needed as part of a larger system (such as an abstrac-
tion/refinement loop as we will soon describe), and the influence of the size of
the UC on the other parts of the system is only vaguely known. Hence, although
more computation time can lead to finding smaller cores, it is not clear whether
it is cost-effective in the overall system. This suggests once again that minimal-
ity per-se is not so important in practice. Algorithms for extracting small cores
should be measured instead by their velocity: how many clauses they remove
from the initial formula per time unit, on average. They should also be mea-
sured by how small they can make the core within a time limit, in comparison
with other algorithms, and whether they can contribute to a setting in which
several of these algorithms are run sequentially or even in parallel. In Section 6
we measure our suggested technique, called Trimmer, with these criteria.

Before we describe previous work on this problem, let us mention some of
the typical usages of UCs. A small unsatisfiable core reflects a more precise and
focused explanation of the unsatisfiability of a given formula. In verification, it is
used in several contexts, some of which are the following. Amla and McMillan [1]
suggest to use UCs for a proof-based abstraction-refinement model-checking pro-
cess: the UC of an unsatisfiable BMC instance contains information on the state
variables that are sufficient for proving that no bug can be found up to a given
depth; based on these state variables they build a refined abstract model and
continue to iterate. Kroening et al. [8] use unsatisfiable cores for an iterative pro-
cess of solving Presburger formulas: the UC is used for checking whether certain
under-approximating restrictions on the solution space were used in the proof of
unsatisfiability. If the answer is yes, these restrictions should be relaxed. A similar
usage of UCs is by Grumberg et al. [4], in a process of under-approximation and
widening of BMC formulas corresponding to a multi-threaded process. Outside
verification, the identification of an inconsistent kernel can be important for solv-
ing the inconsistency in any constraints satisfaction problem. Further, looking
beyond the Propositional world, finding a small unsatisfiable set of constraints
is important for the efficiency of decision procedures like MathSat and CVC[15]
that rely on explanations of the reason of unsatisfiability in order to prune the
search space. The techniques we will discuss in this paper are equally relevant
to such systems as they are for systems based on propositional reasoning.

Related Work. Lynce and Silva [10] suggested an approach for finding a mini-
mal UC, in which a new ‘clause selector’ variable cs;, 1 < i < m, is added to each
of the m clauses of the formula (for example, the i*" clause (I; V l3) is replaced
with (es; VI V13)). The cs variable is set to TRUE iff the clause is not selected.
They then use a SAT solver that decides first on the cs variables. If all the
clauses become satisfied, it backtracks to the most recent cs variable set to true.
If the solver reaches a conflict and consequently backtracks to the cs variables,
it means that an unsatisfiable core was found. In such a case it records the size
of the core and continues to search for a smaller one, after adding a clause over
the cs variables that blocks the solver from repeating the same core. A similar
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process was suggested also by Oh et al. [11] (the ‘Amuse’ algorithm), although
they modify the backtracking mechanism so it performs a bottom-up search for a
UC instead of searching for a satisfying assignment. Different decision heuristics
result in different UCs, which are not necessarily minimal.

Huang suggests the ‘MUP’ (Minimal Unsatisfiability Prover) algorithm in [6].
Rather than using m clause selector variables, he suggests to augment the clauses
with minterms over log(m + 1) variables. The augmented formula, he proves,
is minimally unsatisfiable iff there are exactly m models over the y variables
(because in this case every clause that is removed makes the formula satisfiable).
Hence, the problem of proving that an existing set is minimal is reduced to that of
model-counting, which MUP performs with a variable elimination technique over
BDDs. This technique can be taken one step further towards finding a minimal
core, by running it not more than m times. MUP shows better experimental
results than RUN_TILL_FIX (see below), but only, apparently, on hand-made and
relatively small formulas, like the pigeonhole problem. None of the benchmarks
reported in [6] has more than several thousand clauses, and it is not clear how
it scales to industrial problems.

A more practical approach is to find a small core without guaranteeing mini-
mality, while attempting to be efficient and produce intermediate valuable results
in case the external process does not wish to wait for the final result. Zhang and
Malik [16] were the first in the verification community, as far as we know, to ad-
dress this problem from a practical point of view. They suggested a simple and
effective iterative procedure for deriving a small unsatisfiable core: they extract
an unsatisfiable core from an unsatisfiability proof of the formula provided by a
SAT solver and then they run the SAT solver again starting from this core, which
may result in an even smaller core. Their script RUN_TILL_FIX repeats this pro-
cess until the core is equal to a core derived in the previous iteration, or, in other
words, until it reaches a fixpoint. The solution and its implementation seem to
be the most practical one available, and is indeed widely used. The experimental
results that we present in Section 6 are compared against RUN_TILL_FIX.

What Is This Article About? We describe a new heuristic, called Trimmer,
for finding a small UC. Trimmer takes the role of zVerify in RUN_TILL_FIX.
It can be either applied once (and generate a core smaller or equal to that
generated by zVerify) or as part of a fixpoint computation, in an algorithm we
call TRIM_TILL_FIX. We will concentrate on Trimmer from hereon and return to
TRIM_TILL_FIX in the description of the experimental results.

We assume from here on that the reader is familiar with the basic inner-
workings of modern DPLL-based SAT solvers, and hence describe those parts of
the solver that our algorithm relies on only in general, abstract terms.

New conflict clauses are derived in a process called Conflict Analysis, by (con-
ceptually) traversing backwards the conflict graph and locating the reason for
the conflict. This process can be interpreted as a series of resolution steps [16].
The SAT solver can output a graph reflecting the resolution steps, known as the
resolution graph. The nodes of a resolution graph represent clauses, and the sin-
gle sink node of this graph represents the empty clause. Each internal node has
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two parents, which represent the clauses from which it was resolved. In practice
this graph can represent Hyper-resolution (a result of several resolution steps)
and hence each node can have more than two parents. The general idea of the
Trimmer algorithm, described in detail in Section 4, is the following. Trimmer
locates internal nodes in the resolution graph that dominate other nodes, called
the minions (i.e., all the paths from a minion node to the sink node go through
the dominator), and checks whether they can be proved without their minions.
If the answer is yes, the minions can be removed, and consequently the size of
the UC is decreased. In such a case the resolution graph has to be transformed
so it reflects the new proof. This transformation is the subject of Section 4.1.
Trimmer repeats this process until no changes in the graph can be made. Ex-
perimental results show that integrating this procedure in a fixpoint script in
the style of RUN_TILL_FIX, is better than RUN_TILL_FIX, at least with the rela-
tively short timeouts we tried (30 and 60 minutes). Trimmer has the advantage
that it generates intermediate results rather fast. Hence, while in many cases
RUN_TILL_FIX times out (i.e. it cannot finish the first iteration after the initial
core within the time limit), Trimmer almost always finishes several iterations by
that time, even if in the long run RUN_TILL_FIX produces smaller cores.

2 Preliminaries

Resolution is a proof system for CNF formulas with one inference rule:

(Avz) (BV )
(AV B)

where A,B are disjunctions of literals (possibly with 0 disjuncts, i.e. the constant
FALSE). The clause (A V B) is the resolvent, and (A V x) and (B V —x) are the
resolving clauses. The resolvent of the clauses (x) and (—x) is the empty clause
(1). Each application of the resolution rule is called a resolution step.

Lemma 1. A Propositional CNF formula is unsatisfiable if and only if there
exists a finite sequence of resolution steps ending with the empty clause.

A sequence of resolution steps, each one uses the result of the previous step as
one of the resolving clauses of the current step, is called Hyper-resolution. For
example, from

(xl VoV mg)(—"fl \ 1‘4)(—|1'2 \Y 1‘5)

we can derive (z3V x4V 25) by two resolution steps (first over 1, then over xs),
or by one hyper-resolution step.

The hyper-resolution steps leading to the derivation of the empty clause can
be depicted in a Hyper-resolution graph (or, simply, a resolution graph). From
hereon, we use the terms node and clause interchangeably, since every node
represents a clause.
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Definition 1. A Hyper-resolution graph corresponding to an unsatisfiability
proof by resolution, is a Directed acyclic Graph G(V,E,s) with a single sink
node s € V, in which the nodes represent CNF clauses: the leaf nodes (the
sources) represent original clauses, the inner nodes represent clauses derived by
resolution, and the sink represents the empty clause. Each node can be inferred
from its parent nodes by some sequence of resolution steps.

Modern DPLL-based SAT solvers can output a Hyper-resolution proof of un-
satisfiability. The intermediate clauses in this proof are the conflict clauses that
were generated during the run, and that are on a path from the leafs to the
empty clause.

We now generalize resolution graphs to Clause Implication Graphs:

Definition 2 (Clause Implication Graph). A Clause-Implication Graph
(CIG) G(V,E,s) is a directed acyclic graph with a single sink node s € V,
in which the nodes represent CNF clauses, and each node is logically implied by
the conjunction of clauses represented by its parents.

A CIG is less restrictive than hyper-resolution graphs. They can have edges such
as

— Subsumption (D), (P V x))
— Reflexive implication (D), (D))
— Resolution + Subsumption ((P1V z),(P1V P2 V p)) together with

(P2 V —z),(P1V P2V D))

where @1, @5 are disjunctions of literals, and p, x are variables. Other implications
forbidden by hyper-resolution are also possible. Figure 1 (left) depicts an example
of a Clause Implication Graph.

Let L denote the leaf nodes of a CIG, and assume that s represents the empty
clause. By definition of CIG, the conjunction of the L clauses is unsatisfiable,
and hence there exists a corresponding resolution proof of unsatisfiability starting
from the same nodes. Therefore, for the purpose of finding small UCs, CIGs are
sufficient for the analysis. Our construction will begin from the hyper-resolution
graph, which can be derived from the resolution trace given to us by the SAT
solver, but will transform it to a CIG as the algorithm progresses.

3 Dominators

Prosser [13] introduced the notion of dominance in the context of Flowgraph
analysis (originally a term related to code analysis and compilers).

A Flowgraph G = (V,E,r) is a directed graph such that every vertex is
reachable from a distinguished root vertex r € V. A vertex d € V dominates
v € Vv # d, if every path from 7 to v includes d. d immediately dominates v
if it dominates v and there is no other node on the path between them that
dominates v. We name v a minion of d. The set of minions of d is denoted by
M(d). A node is called a dominator if it dominates at least one node.
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In order to adapt the notion of dominators to CIGs, we conceptually reverse
the edges of the CIG. Thus, the sink node now becomes the root. Figure 1
(right) presents a Dominator Tree, which represents the immediate dominance
relation, of a CIG.

;/_—_@_'_\\
| ";
e 0 Y
1o
"@ : @~
wa v T
o —r -@llll Yo~
{aVc)) [ (ra) Ir I i [ |l | |
—%— L l _";_: :_,,,_" ) : I} ZU o |l | A :
[@ve); Ve ( (a) O o O O -0 o

Fig. 1. (Left) A Conflict Implication Graph (CIG) (Right) A Dominator Tree over a
reversed CIG. Solid edges belong to the CIG, dashed edges belong to the Dominator
Tree. There is a dashed arrow from clause c to ¢’ in Dominator Tree if ¢ is the immediate
dominator of c’.

For each vertex in a flowgraph v € V, the set of all vertices dominated by v
can be found in polynomial time.

Dominators in a Clause-Implication Graph. We will refer from hereon to
a clause set and the formula obtained by conjoining the clauses in the set as the
same thing, when the meaning is clear from the context.
Let LM (d) C L denote the leaf minions of some dominator d. By definition of
a CIG, \;c. ! = s. The significance of a dominator d € V' in a CIG is that if L\
M(d) [= d, then ;¢\ paray ! = s In other words, if d is implied by the leafs
which are not its minions, then LM (d) are redundant in the Unsatisfiable Core.
Yet removing LM (d) from the CIG is not sufficient, if we want to repeat this
process. The problem is that such a removal does not leave us with a valid CIG.
The Trimmer algorithm, presented in the next section, iterates over dominators
in the CIG, and substitutes whenever possible (i.e. when L\ LM(d) = d) the
old proof of the dominator d with a proof of L\ LM(d) k= d.

4 The Trimmer Algorithm

Our algorithm for decreasing the size of the UC is sketched in Figure 2.

Until Step 5 Trimmer is self explanatory. Step 6 Checks whether a dominator
d has an alternative proof without LM (d), which amounts to checking the satis-
fiability of ¢’ : ((L\ LM (d)) U{~d}), where {—d} denotes the set of unit clauses
corresponding to the negation of the clause d. For example, if d = (21 V...V z,)
is a dominator, then {—d} are the clauses (—z1)...(—z,), which, for a reason
that will soon be clear, we refer to as the assumptions. If ¢’ is satisfiable, the
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/ 1. Input: Resolution Graph R /

Dominators are | x

sorted acoordingl |2. Find Dominators in R ]4
to their number ¥

of leaf minions, -

in descending | +13 Create dominator queue |

arder | v
4 4. Select next dominator d

o w p
from dominator queue

no such d——

h J
Qutput: Current
- leaves L of R
yes

5. Find all leaf minions of d: LM{d}

6. SAT (L\LM(d) U {~d})?

L = leaves of the

current graph R [?. Create Resolution Graph Ry l

lB. Transform Ry into proof of d: TRy |

9. Remove from R:
- M(d) and their adjacent edges,
- incoming edges to d

10. Embed TR4into R

Fig. 2. The Trimmer algorithm

attempt failed and it proceeds to the next dominator in the queue. Otherwise,
relying on the equivalence

(L\LM@)U{~d}) L«  L\LM(d k4,

in Step 8 Trimmer transforms the hyper-resolution graph R, into a proof of d,
and builds a corresponding CIG T'R;. A transformation is needed because the
proof of ¢’s unsatisfiability, as generated by the SAT solver, is a proof of the
empty clause that uses assumptions. We have to transform it into a proof of d
without the assumptions. We discuss two different methods for performing this
transformation in Section 4.1. In step 9 Trimmer removes from R the graph
elements corresponding to the old proof of d and replaces it with the new one,
TRy, in step 10. That is, it removes all the minions of d together with their
adjacent edges and incoming edges to d, and embeds T Ry into R instead.

Definition 3 (Graph embedding). The embedding of a graph G(V, E) in a
graph G'(V', E’), is a graph G" (V" ,E") such that V"' = VUV’ and E" = EUE'.

After the old proof is replaced with the new one, the new graph is still a CIG, but
has fewer leafs, and hence a smaller unsatisfiable core than the original graph.
4.1 Transforming the Resolution Graph

Recall that in Step 8 Trimmer is required to transform the resolution graph Ry,
corresponding to a proof of ((L\ LM(d)) U {~d}) = L, into a CIG TRy that



116 R. Gershman, M. Koifman, and O. Strichman

corresponds to a proof of L\ LM (d) = d. We present two possible ways to derive
TR, from Ry. Let d = (21 V...V z,) be the dominator, and assume that no two
literals in this clause are the same. As before we call the unit clauses in {—d},
assumptions.

The Simple Transformation. When ((L \ LM (d)) U {—d}) is proven to be
unsatisfiable, a subset L’ C L\ LM(d) has paths to the empty clause in the
resolution graph. This implies that L’ U {—d} is unsatisfiable, or equivalently,
that L’ implies d. Thus, TRq(V, E) is defined by V = L' Ud and for all I’ € L/,
(I’,d) € E. Embedding this graph into R corresponds to adding edges from the
L' clauses to d itself. The following drawing illustrates a simple transformation
and embedding for dominator node 13:

II' @ . Ry ’W @

© d e g
"_:_ (f_@_ d:ﬁ\:i'\ms.:?r:ﬁ » i \ R
@ ¢~ N @O0
000 O O [

"'é __|7..- —..TI_ ‘_I—,.-I'mnshvnnnllun
[ TR |
®@ ® .
0JO)

The disadvantage of the simple transformation is that it is too coarse. Since
it disregards the conflict clauses, it loses the information about the way these
original clauses imply the dominator. Consequently it provides little opportunity
for removing more dominators in the main resolution graph. On the other hand,
we cannot simply add the conflict clauses, because some of them are derived
from the assumptions. What we need is a method for deriving a resolution proof
of d from L’. We suggest the Bubble transformation method for this derivation.

The Bubble Transformation. For a given clause d = {z1, ..., z;,} and clauses
{c1, ..., ¢»} we build an assumption set A = {(—z1), ..., (—zx)} and a new formula
F=A{c,....,cn} UA.

The Convert recursive transformation, which appears below, converts a res-
olution proof IT of the unsatisfiability of F' provided by a SAT solver, to a new
proof of d. It is initially called with the empty clause. Note that Convert is never
called with an assumption leaf (these are taken care of in lines 3 and 4), and that
the assumption leaves do not participate in the transformed graph. The Resolve
step resolves between two transformed clauses on the same variable as the orig-
inal resolution variable, if it still exists in both clauses in different polarity. In
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the end of this section we give an intuitive description of an implementation of
this procedure, while for now we concentrate on correctness. The relevance of
this general procedure to our case is clear: d is the dominator, A is {—=d} and
{c1,...,¢,} are the clauses of L\ LM (d).

procedure CONVERT(Node: n )
if n is leaf then return NewNode( n )

1:

2

3: if left(n) = (—z;) then return Convert(right(n))

4 if right(n) = (-z;) then return Convert(left(n))

5 return NewNode( Resolve(Convert(right(n), Convert(left(n)))) )

The following drawing demonstrates a bubble transformation with Convert,

where z € d:

(avz) (avb) (2 ) (b)) (@vz) (raVvb) (o))

Fig. 3. A bubble proof transformation, where z € d

The following drawing illustrates a bubble transformation and embedding for
dominator node 13:

Remove minions.
of dominator 13

L AL
D09 @@
Proposition 1. Let L denote the empty clause of the proof II (the proof of

F’s unsatisfiability). Then Convert(L) returns a valid resolution proof IT' of
{c1,...,en} E A, st literals(d') C literals(d).
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Proof. We use the term proof of unsatisfiability in order to emphasize that
our proof is based on a resolution graph, not a hyper-resolution graph. The
information provided by the SAT solver is enough for reconstructing any of
these graphs. In order to simplify presentation of the proof even more, we use
set notation for clauses to represent their literal sets.

Let n’ = Convert(n). We will prove the proposition by induction on the
resolution graph structure using the following invariant:

— n' is well-defined
—nCn C(nud).

Base step: if n is a leaf then n’ = n, which is well-defined and, trivially,
nCn' C(nuUd)

Induction step: there are two different cases - one for lines 3 and 4, and the other
- for line 5.

Lines 3 and 4: Suppose that n is an inner node that was resolved by the
two clauses n; and n, using the resolution variable t. Let n.. = Convert(n,)
and n) = Convert(n;). If, w.l.o.g. n; = (—z2;), then, according to the algorithm:
(1) »’ = nl. Since the proof is a DAG, n’ is well-defined by the induction
hypothesis. Also, by induction: (2) n, C n.. C (n, Ud). It must hold that ¢ = z;,
since this is the only variable common to n; and n,.. Therefore: (3) nU{z} = n,.
Combining these expressions we get

—~
—

® @ e N
n Cn. Cn. C (nUd © nu{zp)ud “£ (nud)

Therefore

ngnlr(: n’ C (nUd)

—

Line 5: Assuming that the invariant holds for n! and n], we need to prove
that a resolution step is valid on clauses n,. and nj, i.e. that, they have opposite
literals of at least one variable. Now, since Il was a valid proof, it must hold
that there exists a literal ¢ so that w.l.o.g t € n, and —t € n;. Since n, C n/.
and n; C nj, it holds that ¢t € n/. and —t € nj. Therefore n’ can be derived by
resolution between n) and n!. on the same ¢, and n’ is well-defined.

We need to prove that n Cn' C (nUd). Indeed,

Induction

n SR (e Un) \ {6 oth) S (U \ (b ) R

Induction

n'=((num)\{t,~t}) < (((nr Ud)U(nUd))\{t,~t})
= (((nr Un) \{t, =t} U (d\ {t,=t})) = (nU(d\{t,~t})) C (nUd)

Specially, the invariant implies that for the empty clause L :

Convert(l) C (Lud) = d O
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It is easy to show that the resulting graph is a CIG (a resolution graph,
actually).
Convert can also be implemented with the following, more intuitive procedure:
1: for each assumption (—z2;), 1 <i <n in Ry do
2: Add z; to all clauses on all the paths from (—z;) to the sink node.
3: Remove the assumption (—z;) from the graph.

It can be proven that the two procedures are equivalent up to reflexive implica-
tions, although this is beyond the scope of this article.

5 Optimizations
Our tool includes the following optimizations.

1. In step 6 of the algorithm (Figure 2) rather than checking
((L\ LM(d)) U {—=d}), Trimmer conjoins with this formula all the conflict
clauses in R that are not on any path from the minions to the sink node.
This addition does not change the satisfiability of the formula, because these
clauses are logically implied by L\ LM (d). But they make the SAT solving
stage incremental[14], and hence far more efficient.

2. In step &, if none of the assumptions participate in the proof, Trimmer takes
a different route. In this case R4, which is the proof of unsatisfiability of
((L'\ LM(d)) U {—d}), can also be seen as the proof of unsatisfiability of
L\ LM(d), which are a subset of the clauses in the original formula. Let
L' C L\ LM(d) be the leafs of Ry. L' is a UC of L\ LM(d), but also of
the original formula, and it is smaller than the smallest core known so far
(because the core of the current R is L). So, Trimmer assigns R = Ry and
returns to line 2.

6 Experimental Results

The implementation of the dominator algorithm in our tool TRIMMER is the
SLT variant of the Lengauer-Tarjan algorithm([9] (which runs in O(|E|log|V])
time), as provided by the authors of [3] and published on their web site. We used
version 2004.11.15 of zChaff, zVerify and RUN_TILL_FIX for both the comparison
and the extraction of the resolution traces.

The benchmark suite is composed of 75 unsatisfiable CNF instances from the
industrial category of the SAT competitions in the last two years, from IBM
formal verification benchmarks, and BMC instances from the Sun’s PicoJava
benchmarks that were used in [1]. We did not include benchmarks that timed-
out with both TRIMMER and RUN_TILL_FIX. The initial number of clauses ranges
from 1,300 to 800,000, and the largest initial core size, which is our starting
point, has around 160,000 clauses.

We measured two parameters: core reduction (the difference between the final
and the initial number of clauses) and average velocity (core reduction divided



120 R. Gershman, M. Koifman, and O. Strichman

by the time spent on the reduction). We used two different timeouts - 1,800
seconds and 3,500 seconds. Since UCs are typically used within a larger sys-
tem in which they are extracted many times, relatively short timeouts reflect
what is practically done for best overall tuning. For such systems velocity seems
to be more relevant, assuming the process of decreasing the size of the UC is
interrupted after a while, without waiting for the smallest core possible. The
timeouts do not include the time of the first run of the solver that extracts the
first resolution trace, since this step is common to all tools.
The competing systems in our benchmark are:

(Z) RUN_TILL_FIX.

(A) TRIM_TILL_FIX: running TRIMMER until it terminates, then running
zChaff on the new core, then rerunning (T) starting from the new reso-
lution graph, and so on until either a fixpoint or a timeout is reached.

(A]|Z) Running (A) and (Z) in parallel (on different machines) until the first
one stops or a timeout is reached. The smallest core produced by the
two programs so far is the resulting core of (A]|Z). This approach can be
useful if (A) and (Z) are sufficiently different, and neither one dominates
the other.

(T) A single run of TRIMMER.

The following table summarizes our results with time out of 3500 sec. Core
reduction measures the number of clauses removed from the initial core, hence
a larger number is better. An intriguing result is the superiority of (A) over
(A||Z) when it comes to clause reduction. This is because the number of clauses
counted for (A||Z) is due to the system that finishes first, which may remove
fewer clauses than the other system.

The comparison between (Z) and (A) reveals that TRIM_TILL_FIX removes
twice as many clauses on average as RUN_TILL_FIX but RUN_TILL_FIX is 50%
faster. Note, however, the medians: the median of TRIM_TILL_FIX is 5 times
larger on core reduction and 14 times larger on velocity, which is important
in the realm of short timeouts. In other words, if we ran these benchmarks
with a shorter timeout, the results would favor TRIM_TILL_FIX much stronger.
This is also evident from Figure 5: although (Z)’s velocity is typically better, it
suffers from a large number of timeouts, which is counted as 0 velocity in our
calculations.

System| Velocity [Core Reduction
Med.|Avg. |Med.| Avg.

) 1.1 |200.8| 729 | 3126.8
) 14.51130.3|3404| 6212.1

|

)

Z) |14.6(239.3|3310| 5985.3
33.01160.81464| 3863.1

(
(
(
(

ELS

We also ran a detailed statistical analysis on the results, with the ordinary
sign test — see [7] for more details. The results, referring to the differences in the
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Fig. 4. Results summary of the statistical analysis of the difference in median values
of velocity and core reduction. The nodes represent the competing systems, and an
edge from a to b represents 99% confidence (i.e. @ = 0.01) in a’s superiority over b.
med is the median of the difference of values between the parent and its child. p’ is
the estimated probability of the parent’s success (which is equal to the ratio of its
success). The results without parentheses correspond to a timeout of 3,500 sec., and
within parentheses to 1,800 sec. (A) is the ultimate leader in core reduction, and (T)
and A||Z are the fastest.
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Fig. 5. Core Reduction (top) and Velocity (bottom) of A, A||Z and T Compared to Z

medians of velocity and core reduction, are summarized in Figure4. We see that
there is a statistically significant difference between the competing programs
both in velocity and in core reduction, with (A) and (A||Z) being the winners.
Note that this result is consistent with our previous conclusions.

As future work we plan to analyze acceleration, i.e. the velocity as a function
of the elapsed time: this information can lead to new strategies and help choosing
the best timeout.
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Lazy Abstraction with Interpolants

Kenneth L. McMillan

Cadence Berkeley Labs

Abstract. We describe a model checker for infinite-state sequential pro-
grams, based on Craig interpolation and the lazy abstraction paradigm.
On device driver benchmarks, we observe a speedup of up to two orders
of magnitude relative to a similar tool using predicate abstraction.

1 Introduction

Craig interpolants derived from proofs have been shown to provide an efficient
method of image approximation in finite-state symbolic model checking [10]. In
this paper, we extend the interpolation-based model checking approach from
finite- to infinite-state systems, in particular to the verification of sequential
programs. The approach applies an interpolating prover [11] in the lazy abstrac-
tion paradigm [7]. Instead of iteratively refining an abstraction, lazy abstraction
refines the abstract model on demand, as it is constructed. Up to now, this
refinement has been based on predicate abstraction [12]. Here, we refine the ab-
straction using interpolants derived from refuting program paths. This avoids
the high cost of computing the predicate image (or abstract “post”) operator,
yielding a substantial performance improvement.

To illustrate the algorithm, we will use the simple C fragment of Figure 1
(borrowed from [7]). We model the functions lock and unlock by setting and
resetting a variable L representing the state of the lock. We would like to prove
that L is always zero on entry to lock. A control-flow graph for the function is
shown in the figure. We have initialized L to zero and added a transition to an
error state when lock is called and L is non-zero. Our algorithm unwinds the
control-flow graph of the program into a tree. Each vertex in the tree corresponds
to a program control location, and is labeled with a fact about the program
variables that is true at that point in the execution of the program. Each vertex
is initially labeled TRUE. When we reach a vertex corresponding to the error
location, we strengthen the facts along the path to that vertex, so as to prove
the error vertex unreachable.

For example, suppose we first expand the path that branches to the error
location on entering the loop (Figure 2a). We wish to label the error vertex
FALSE, thus proving it unreachable. This is done by generating an interpolant
for the path to the error state. An interpolant for a path is a sequence of for-
mulas assigned to the vertices, such that each formula implies the next after
executing the intervening program operation, and such that the initial vertex is
labeled TRUE and the final vertex FALSE. Existence of an interpolant implies

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 123-136, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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do{
lock();
old = new;
if(*){
unlock;
new++;
}
} while (new != old);
(a) program fragment (b) control-flow graph
Fig. 1. A simple example program
T
L=0
T, o [L!=0] T
ERR
L=0
[new!=0l1d] @T [new! :é__;d] ——Old] 6
T~ [L!=0] F, [LI=04X ,
, CUERTARES
ERR ERR
(a) first error (b) second error (¢) termination

Fig. 2. Stages of the unwinding (vertex labels in italics)

that the final (error) vertex is unreachable. An interpolant can be derived from
a refutation of the path generated by a theorem prover [11,6]. In Figure 2a, an
interpolant would be: TRUE,L = 0,FALSE. In Figure 2b, we have strengthened
the labeling on the error path with this interpolant (ruling out the error) and
backtracked to explore the non-error branch. We pass through the loop, calling
lock and unlock, then return to the top, taking the error branch again. In this
case, our interpolant labels vertices 4 and 5 with L = 0 (again labeling the error
vertex FALSE). Notice that vertices 5 and 1 correspond to the same location (the
top of the loop) and that the label of vertex 5 implies the label of vertex 1. We
say that vertex 1 covers vertex 5, and we cease expanding descendants of the
covered vertex. However, if vertex 1 were to be strengthened in the future, it
might cease to cover vertex 5, and we would have to continue expanding it.
Figure 2c shows the remainder of the unwinding, indicating coverings with
dotted lines. We backtrack, expanding the path that falls out of the loop, and
then the path that skips the call to unlock. In the latter case, we again reach
an error state, strengthening the path. This labels vertex 9 with FALSE, thus
it is also covered by vertex 1. At this point all unexpanded states are covered,
so the procedure terminates. At termination, the disjunction of the labels for a
given location is an invariant for that location. Notice also that the labels use
the atomic predicates L = 0 and old = new, but are not the strongest facts ex-
pressible using those predicates (as we would obtain with predicate abstraction).
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Rather, they are just strong enough to allow us to label the error vertices FALSE.
Notice that we could also strengthen a path by computing strongest postcondi-
tions or weakest preconditions along the path (these are, in fact, the strongest
and weakest interpolants respectively). However, by deriving interpolants from
proofs, we exploit the prover’s ability to focus on relevant facts, and thus avoid
deducing irrelevant information that could complicate the analysis, or even lead
to divergence.

Related Work. The most closely related technique is predicate abstraction [12].
This is implemented using the lazy paradigm in the BLAST model checker [7],
and in a number of software model checkers [2,4,3] using a counterexample-
based refinement loop. The advantage of the present method over predicate
abstraction is that it avoids computing the abstract “post” operator. That is,
in predicate abstraction, computing the set of successors of a set of abstract
states requires an exponential number of calls to a decision procedure in the
worst case. Because of this, weak approximations are typically used, such as
the Cartesian or “Boolean Programs” approximations [1], with the associated
need for refinement in case of failures. Even with approximations, computing the
abstract post operator (or abstract transition relation) is still the dominant cost.
By contrast, the present method requires just one call to a decision procedure
for each error vertex reached, and one for each covering test.

The method is also closely related to the interpolation-based model check-
ing method of [10]. That work only treated finite-state systems. In principle the
method could be generalized to infinite-state programs, however it would require
applying a decision procedure to an unfolding of the entire program up to some
depth k. This would almost certainly be impractical. Using the lazy abstrac-
tion method, we only apply the decision procedure to individual program paths
leading to error locations, greatly reducing the burden on the prover.

Outline of the Paper. In section 2, we will formalize the lazy interpolation-
based model checking procedure, proving some results about soundness and ter-
mination. Then in section 3, we describe an implementation of the procedure
in a software model checking tool called IMPACT, and compare the performance
of this tool to the lazy predicate abstraction approach implemented in BLAST.
Experiments using a small set of device driver benchmarks show a performance
improvement of one to two orders of magnitude using the new method. Finally
in section 4, we conclude and consider some future directions for research.

2 Lazy Interpolant-Based Model Checking

Throughout this paper, we will use standard first-order logic (FOL) and the
notation £(X') to denote the set of well-formed formulas (wff’s) of FOL over a
vocabulary X of non-logical symbols. For a given formula or set of formulas ¢,
we will use £(¢) to denote the wff’s over the vocabulary of ¢.

For every non-logical symbol s, we presume the existence of a unique sym-
bol s’ (that is, s with one prime added). We think of s with n primes added
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as representing the value of s at n time units in the future. For any formula or
term ¢, we will use the notation ¢{™ to denote the addition of n primes to every
symbol in ¢ (meaning ¢ at n time units in the future). For any set X of symbols,
let X’ denote {s' | s € X'} and X" denote {s{" | s € ¥}

Modeling Programs. We use FOL formulas to characterize programs. To this
end, let S, the state vocabulary, be a set of individual variables and uninterpreted
n-ary functional and propositional constants. A state formula is a formula in
L(S) (which may also include various interpreted symbols, such as = and +). A
transition formula is a formula in £(S U S").

For our purposes, a program is a tuple (A4, A,l;, 1), where A is a finite set
of program locations, A is a set of actions, I; € A is the initial location and
ly € A is the error location. An action is a triple (I,7,m), where I,m € A
are respectively the entry and exit locations of the action, and T is a transition
formula. A path 7 of a program is a sequence of transitions of the form (lo, T, 1)
(l1,T1,12) - (ln—1,Th—1,1n). The path is an error path when lop = [; and l,, = 5.
The unfolding U(m) of path 7 is the sequence of formulas TO<O>, e ,Té"‘”? that
is, the sequence of transition formulas Ty ...7T,_1, with each T; shifted ¢ time
units into the future.

We will say that path 7 is feasible when A U(w) is consistent. We can think of
a model of AU(m) as a concrete program execution, assigning a value to every
program variable at every time 0...n. A program is said to be safe when every
error path of the program is infeasible. An inductive invariant of a program is
amap I : A — L£(S), such that I(l;) = TRUE and for every action (I,T,m) € A,
I(1) AT implies I(m)'. A safety invariant of a program is an inductive invariant
such that I(l;) = FALSE. Existence of a safety invariant of a program implies
that the program is safe.

To simplify presentation of the algorithms, we will assume that every loca-
tion has at least one outgoing action. This can be made true without affecting
program safety by adding self-loops.

Interpolants from Proofs. Given a pair of formulas (A, B), such that A A
B is inconsistent, an interpolant for (A, B) is a formula A with the following
properties:

— A implies A,
— A A B is unsatisfiable, and
— Ae L(A)NL(B).

The Craig interpolation lemma [5] states that an interpolant always exists for
inconsistent formulas in FOL. To handle program paths, we generalize this idea
to sequences of formulas. That is, given a sequence of formulas I' = Ay, ..., A,,

we say that Ay, ... A, is an interpolant for I when

— Ag = TRUE and A, = FALSE and,
—foralll1 <i<mn, 41‘—1 A A; implies A; and
—foralll<i<mn, A; € (,C(A1 ce AZ) n ,C(A,;H .. An))
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That is, the i-th element of the interpolant is a formula over the common vo-
cabulary the prefix Ag...A; and the suffix A;y1...A,, and each interpolant
implies the next, with A;. If I" is quantifier-free, we can derive a quantifier-free
interpolant for I" from a refutation of I', in certain interpreted theories [11].

Program Unwindings. We now give a definition of a program unwinding,
and an algorithm to construct a complete unwinding using interpolants. For two
vertices v and w of a tree, we will write w C v when w is a proper ancestor of v.

Definition 1. An unwinding of a program A = (A, A, l;,lf) is a quadruple
(V,E, M,, M,), where (V,E) is a directed tree rooted at €, M, : V. — A is the
vertex map, and M. : E — A is the edge map, such that:

- Mv(ﬁ) = ll
— for every non-leaf vertex v € V', for every action (M,(v),T,m) € A, there
exists an edge (v,w) € E such that M,(w) =m and M.(v,w) =T.

Definition 2. A labeled unwinding of a program A = (A, A,l;,1f) is a triple
(U,4,>), where

- U= (V,E,M,, M.) is an unwinding of A
— 1 : V — L(S) is called the vertex labeling, and
— > CV xV is called the covering relation.

A vertex v € V is said to be covered iff there exists (w,x) € > such that w C v.
The unwinding is said to be safe iff, for all v € V, M,(v) = ly implies (v) =
FALSE. It is complete iff every leaf v € V is covered.

Definition 3. A labeled unwinding (U, ¢,>) of a program A = (A, A,l;,1ly),
where U = (V, E, M,, M.), is said to be well-labeled iff:

— ¢(e) = TRUE, and
— for every edge (v,w) € E, ¥(v) A Mc(v,w) implies ¥(w)’, and
— for all (v,w) € >, P(v) = Y(w), and w is not covered.

Notice that, if a vertex is covered, all its descendants are also covered. Moreover,
we do not allow a covered vertex to cover another vertex. To see why, consider
the unwinding of Figure 3. Here, vertex y covers z, but is itself covered, since
its ancestor v is covered by w. This might seem acceptable, since any states
reachable from y should be reachable from w through its descendant z. However,
this is not the case. Because the vertex labels are approximate, it may be that
¥(y) # ¥(2). Thus, z may not reach all states reachable from z.

Theorem 1. If there exists a safe, complete, well-labeled unwinding of program
A, then A is safe.

Proof. Let U be the set of uncovered vertices, and let function M map location
Lto V{yv(v) | My(v) =1, ve U}. M is a safety invariant for A. O

We now describe a semi-algorithm for building a complete, safe, well-labeled
unwinding of a program. The algorithm terminates if the program is unsafe,
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Fig. 3. Example showing why covered vertices must not cover others

global variables: V aset, ECV XV, > CV xV and ¢ : V — wff

procedure EXPAND(v € V):
if v is an uncovered leaf then
for all actions (M, (v), T, m) € A
add a new vertex w to V and a new edge (v, w) to E;
set M, (w) < m and ¢ (w) < TRUE;
set Me(v,w) «— T

procedure REFINE(v € V):
if M, (v) =1y and 9 (v) # FALSE then
let @ = (vo,To,v1) -+ (vn—1,Th—1,vn) be the unique path from e to v

if U(m) has an interpolant Ao, ..., A, then
for:=0...n:
let ¢ = AS™Y

if (v;) £ ¢ then
remove all pairs (-, v;) from >
set Y(vi) — Y(vi) A

else abort (program is unsafe)

procedure COVER(v,w € V):
if v is uncovered and M, (v) = M, (w) and v [Z w then
if ¢(v) = ¥ (w) then
add (v, w) to >;
delete all (z,y) € >, s.t. v C y;

Fig. 4. Three basic unwinding steps

but may not terminate if it is safe (which is expected, since program safety is
undecidable). We first outline a non-deterministic procedure with three basic
steps: EXPAND, which generates the successors of a leaf vertex, REFINE, which
refines the labels along a path, labeling an error vertex FALSE, and COVER,
which expands the covering relation. These steps are shown in Figure 4.

The interpolant in REFINE can be generated from a refutation of U(w), by
the method of [11]. Each of the three steps preserves well-labeledness of the
unwinding. In REFINE, the first two well-labeledness conditions are guaranteed
by the properties of interpolants (i.e., Ay = TRUE and each interpolant formula
implies the next). When we strengthen (v), we remove all arcs (-,v) in the
covering relation, since a vertex covered by v may no longer be covered after
strengthening v. In COVER, if a vertex v becomes covered, then all descendants
of v are also covered. This means that any existing covering arcs (x,y) where
v C y must be removed to maintain well-labeledness. If REFINE succeeds, then
¥ (v) must be FALSE (since A, is always FALSE). Thus, to make the unwinding
safe, we have only to apply REFINE to every error vertex. Finally, when none of
the three steps can produce any change, the unwinding is both safe and complete,
so we know the original program is safe.
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procedure CLOSE(v € V):
for all w € V s.t. w < v and M, (w) = M, (v):
COVER(v, w)

recursive procedure DFS(v € V):
CLOSE(v)
if v is uncovered then
if My, (v) =l then
REFINE(v);
for all w C v: CLOSE(w)
EXPAND(v);
for all children w of v: DFS(w)

procedure UNWIND:
set V «— {e}, E — 0, ¢(¢) < TRUE, > «— 0
while there exists an uncovered leaf v € V:
for all w € V s.t. w C v: CLOSE(w);
DFS(v)

Fig. 5. DFS unwinding strategy

To build a well-labeled unwinding, we now have only to choose a strategy for
applying the three unwinding rules. The most difficult question is when to apply
CoVER. Covering one vertex can result in uncovering others. Thus, applying
COVER non-deterministically may not terminate. To avoid this possibility, we
define a total order < on the vertices. This order must respect the ancestor
relation. That is, if v C w then v < w. For example, we could define < by a
pre-order traversal of the tree, or by numbering the vertices in order of creation.
We then restrict COVER to pairs (v, w) such that w < v. Now suppose that in
adding a covering arc (v, w), we remove (z,y), where v C y. Then by transitivity,
we must have v < x. Thus, covering a vertex v can only result in uncovering
vertices greater than v. This implies that we cannot apply COVER infinitely.

We will say that a vertex v is closed if either it is covered, or no arc (v, w)
can be added to > (while maintaining well-labeledness). The procedure CLOSE
of Figure 5 closes a vertex. We would like to guarantee that when a vertex is
expanded, all of its ancestors are closed, thus we do not expand a vertex that
could be covered instead. We could, of course, call CLOSE on all the ancestors of
a vertex v before expanding it. This would be costly, however. A more efficient
strategy is shown in Figure 5. The procedure UNWIND locates an uncovered leaf,
then performs a local depth-first search around that leaf. During the search, it
maintains the invariant that all ancestors of the currently visited leaf vertex v
are closed. Moreover, all the vertices on the DFS stack are children of ancestors
of v. Thus, when we pop a vertex off of the stack, we have only to call CLOSE
on the new vertex to re-establish the invariant. After calling REFINE on an error
vertex, the procedure calls CLOSE on all of the ancestors v. This can be improved
somewhat by only re-closing those vertices that were actually strengthened by
REFINE.

Theorem 2. If procedure UNWIND terminates without aborting on program A,
then A is safe.

Proof. Since only the operations EXPAND, REFINE and COVER alter the unwind-
ing, and these preserve well-labeledness, the resulting unwinding is well-labeled.
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Further, since all error vertices are refined, the unwinding is safe. Since the pro-
cedure terminates only when there are no uncovered leaves, the final unwinding
is complete. Thus, by Theorem 1, program A is safe. O

Termination. Due to decidability considerations, we do not expect the un-
winding to terminate in all cases. However, in the finite-state case, or in general
when the language £(.5) has bounded ascending chains, we can show termina-
tion. A finite ascending chain is a sequence of formulas ¢q, ¢1, ..., @, such that
forall 0 <i<j<n, ¢; # ¢;. We will say that a language L is k-bounded, for
integer k, if all ascending chains in L have length at most k. For example, the
Boolean formulas over n variables are 2" + 1-bounded.

Theorem 3. If L(S) is k-bounded, then procedure UNWIND terminates or
aborts.

Proof. Procedure DF'S maintains the invariant that all ancestors of v are closed.
Thus, there are no x C w C v such that M,(z) = M,(w) and ¥ (w) = (x)
(else w would not be closed). Thus, for any location [, the formulas ¢(w) where
M,(w) =1 and w C v form an ascending chain. Since £(S) is k-bounded, it
follows that the path from € to v contains at most |A|-k vertices. Thus the depth
of the tree is bounded. As argued above, COVER cannot continue to cover vertices
infinitely. Thus, in the main loop, always eventually CLOSE fails to cover a new
vertex, or the loop terminates. In the former case, vertex v remains uncovered,
and is thus expanded in procedure DF'S. However, we cannot expand vertices
infinitely, since the tree depth is bounded. Thus, the loop must terminate (or
abort in REFINE). |

A Weak Notion of Completeness. In general, the FO formulas over a given
vocabulary S have infinite ascending chains. Thus, the above termination result
is not generally applicable. However, by restricting the language of the inter-
polants, we can force termination (perhaps without deciding safety). That is,
given a language L, an L-restricted interpolant for a sequence I is an inter-
polant for I' in which all formulas are contained in L. Techniques for comput-
ing L-restricted interpolants are described in [9]. Given a language L, let us
define an unwinding procedure UNWIND(L) that differs from UNWIND only
in that “interpolant” in procedure REFINE is replaced by “L-restricted inter-
polant”. If language L is k-bounded, then UNWIND(L) must terminate or abort.
Moreover, in [9] it is shown that if program A has an inductive invariant ex-
pressible in L, then every error path of A has an L-restricted interpolant. Thus
UNWIND(L) cannot abort, and must terminate proving safety.

We can use this idea to create a procedure that is complete in the limited
sense that it eventually verifies all programs that have inductive invariants ex-
pressible as quantifier-free formulas in a suitable FO theory. That is, we define
an infinite chain of k-bounded, quantifier-free restriction languages Lo C Ly - -,
such that every formula is contained in some Lj.! If a program has a quanti-

! Quantifier-freeness is required so that the entailment tests in REFINE and CLOSE are
decidable. Otherwise completeness is relative to an oracle for the theory.
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procedure FORCECOVER (v, w € V)
let = be the nearest common ancestor of v and w
let @ = (vo,To,v1) - (vn—1,Th—1,vn) be the unique path from z to v
let T = (z) - U(m) - ~p(w)™

if I" has an interpolant Ag, ..., An+2 then
fori=0...n:
let ¢ = Al

if ¥ (vi) = ¢ then
remove all pairs (-, v;) from >

set h(vi) «— Y(vi) A @

Fig. 6. Procedure to force covering of one vertex by another

fier free safety invariant in the theory, then it has an invariant in some Lj. We
start with Ly and each time UNWIND(L;) aborts, we move on to L; 1. When we
reach L, the UNWIND(Lj) must terminate. Thus, our approach is complete in
the limited sense that it verifies (eventually) any program with a quantifier-free
safety invariant in the theory (this is precisely the set of programs that we can
verify with predicate abstraction if we can guess the right atomic predicates).
Of course, in practice we must choose the restriction languages Ly carefully, so
that termination occurs for a small value of k.

Forced Covering. To speed convergence of the unwinding procedure, we can
use interpolant-based refinement to force a vertex v to be covered by some other
vertex w. We will call this a forced covering. Suppose that v and w have nearest
common ancestor x in the unwinding. We construct the characteristic formula for
the path from x to v, asserting ¥ (x) at the beginning, and - (w) at the end. If
this is infeasible (meaning 1 (w) must hold at v) we strengthen all the vertices on
the path from x to v by the corresponding interpolant formulas. Thus, we ensure
that w covers v. This procedure is depicted in Figure 6. Clearly, attempting all
possible forced coverings could be costly. In practice, before expanding a vertex
we attempt a forced covering by a few recently generated vertices representing
the same program location. This substantially reduces the part of the unwinding
that we must explore.

Other Optimizations. As in other work using interpolants [6,8], we generate
the characteristic formula of a path in static single-assignment (SSA) form. That
is, we create a new instance of a program variable only when that variable is
modified. This eliminates a large number of constraints of the form ("t = z{?
that occur when a variable is unmodified by a program statement.When refining
a program path, we also use a simple slicing (or “cone-of-influence” reduction) to
remove from the program path any assignments that cannot affect the feasibility
of the path. Slicing typically removes a large fraction of the assignments in
the path, especially initializations of global variables that are not referenced.
It should be noted, however, that slicing can affect completeness, since it is
possible that a variable that is not referenced is nonetheless necessary to express
an inductive invariant (it might even be an auxiliary variable added by the user
for this purpose). In practice, however, this has not been observed to occur, and
slicing yields a substantial performance improvement.
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Finally, in the REFINE and COVER steps, we must test whether one formula
entails another, using a decision procedure. Since the same test tends to occur
many times, it pays to memoize the decision procedure calls.

3 Experiments

The lazy interpolation-based unwinding procedure is implemented in a soft-
ware model checking tool called IMPACT? (carrying on the tradition of vio-
lent acronyms for software model checkers). In this section, we compare the
interpolant-based method of IMPACT with the predicate abstraction approach of
BrAST. The benchmarks we use are device drivers from the Microsoft Windows
DDK, written in C. They were used as test cases in [6]. Each driver is pro-
vided with a test harness (i.e., a main program that calls the driver functions
appropriately in a non-deterministic manner) and is instrumented with auxil-
iary variables and safety assertions that test whether whether certain rules are
obeyed in calling the kernel API functions.? All six of the example programs are
safe. To check the implementation of IMPACT, however, we inserted three errors
into each example program. IMPACT detected all 18 errors, each in at most a few
seconds. Performance data are reported only for the safe versions.

IMPACT is based on the interpolating prover of [9]. This prover supports a
first-order theory with equality, uninterpreted function symbols, and integer
difference-bound arithmetic (i.e., predicates of the form z —y < ¢, x < ¢ or
x > ¢, where ¢ is a constant). It also supports first-order arrays, with inter-
preted “select” and “store” functions. Support for full linear arithmetic is also
possible, but currently not for integer models.

To handle C programs, we first reduce them to Simple Goto Programs
(SGP’s). These are programs containing only conditional goto statements, as-
signments and assertions, and whose only data types are unbounded integers and
arrays of unbounded integers. Pointers and records are eliminated by this trans-
lation, and function calls are in-lined. This reduction was done using a modified
version of the SATABS infrastructure [4]. Unfortunately, space does not permit
a description of the translation process here.

Once a C program has been translated to a simple goto program, we can model
it formally in the logic of the prover. The logic contains operations on arrays, as
well as limited arithmetic. We model the unsupported integer operations (such
as the bit-wise operators) with uninterpreted functions (thus we may fail to
prove safety if it depends on properties of these operators). An assertion in the
program is modeled by a conditional branch to the error state [¢. Transitions in
the model correspond to basic blocks in the goto program. Having modeled the
program, we can then verify safety using procedure UNWIND(L), where L is the
restriction language for interpolation. We use the same sequence of restriction
languages Ly as in [9]. This restricts the constants in arithmetic formulas to fall
in a certain finite set that depends on k, and also restricts depth of function

2 Interpolating software Model checker without Predicate abstrACTion.
3 Benchmarks available from the author.
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Table 1. Performance statistics on device driver benchmarks

source|SGP |BLAST [IMPACT BLAST|BLAST [IMPACT |BLAST|IMPACT
name |loc |loc [time(s)|time(s) [speedup|preds |post(s)|interp(s)|vtcs |vtcs
kbfiltr |12K [2.3K|26.3 3.15 8.3 25 23.3  |2.2 1651 |744

diskperf|14K [3.9K|102 20.0 5.1 84 922 (193 3232|3885
cdaudio |44k |6.3K|310 19.1 16.2 108  |265 11.9 5253 |3257
floppy |18K |[8.7K|455 17.8 25.6 105 (404 16.9 9573|2518
parclass|138K [8.8K (5511 |26.2 210 162 |5302 |22.9 8612 3720
parport |61K  [13K |8084 [37.1 218 224 |7965 |31.0 63.5K |12.7K

symbol nesting as a function of k. In fact, all of the example programs can be
verified with restriction language L.

For comparison to predicate abstraction approach, we use the BLAST software
model checker [7]. This tool is in some ways a good comparison, since it is also
based on the “lazy abstraction” paradigm (using predicate abstraction instead of
interpolation to refine paths). In addition, it uses the same interpolating prover
to generate atomic predicates that IMPACT uses for path refinement. Thus in
principle both tools should be able to construct the same class of safety in-
variants. On the other hand, the implementations are independent, so observed
performance differences may be due in part to implementation efficiencies. In
principle the closest comparison could be obtained by running both programs
on the same SGP. However, as it turns out the performance of BLAST was signif-
icantly better when run on the original C source code. This may be because the
elimination of pointers prevented the use of some pointer-based optimizations
in BLAST. For this reason, we present performance numbers for BLAST as run
on the original source code. We use the standard BLAST option that assigns to
each new vertex all of the predicates that have been used for program locations
in the same function scope. This tends to increase the number of predicates at
each vertex, but reduces the number of refinements needed, thus yielding better
performance.*

Table 1 compares the run time performance of BLAST and IMPACT on the six
device driver examples. The first three columns show the name of the example,
the number of textual lines in the source code, and the number of lines in the
SGP. The last probably provides a better representation of the code size, since
the source code contains much white space and many redundant declarations.
The next two columns provide the run times for BLAST and IMPACT. Both are
run on a 3GHz Intel Xeon processor. These times represent only the model
checking process, and do not include time for parsing or translation to an SGP.
The next column shows the speedup of IMPACT relative to BLAST. For the small
examples, IMPACT has about an order of magnitude advantage, which increases
to two orders of magnitude for the large examples.

The explanation for the performance difference may lie in the fact that the
abstract post computation becomes increasingly expensive as the programs get

4 The BLAST options used were -msvc -nofp -dfs -tproj -cldepth 1 -predH 6
-scope -nolattice -clock.
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Table 2. Performance statistics for revised BLAST

source|SGP |BLAST [IMPACT BLAST|BLAST [IMPACT |BLAST|IMPACT
name |loc |loc [time(s)|time(s) [speedup|preds |post(s)|interp(s)|vtcs |vtcs
kbfiltr |12K [2.3K|11.9 3.15 3.8 38 6.6 2.2 1009 (744

diskperf|14K [3.9K|117 20.0 5.9 119  [49.8 |19.3 1855 |3885
cdaudio |44k |6.3K|202 19.1 10.6 180 114 11.9 3400 3257
floppy |18K |[8.7K|164 17.8 9.2 154 (779 |16.9 2856 |2518
parclass|138K |8.8K[463 26.2 17.7 242 175 229 5003 3720
parport |61K 13K |324 37.1 8.7 280 156 31.0 104K [12.7K

larger and the number of predicates increases. The table shows some run-time
statistics that bear this out. Columns 7-9 show the number of atomic predicates
used by BLAST, the amount of time spent by BLAST in the predicate image com-
putation, and the amount of time spent by IMPACT in computing interpolants
for path refinement. It is clear that avoiding the predicate image computation
provides a significant advantage. The last two columns of the table show the
number of vertices in the final unwinding for both BLAST and IMPACT. BLAST
expands more vertices (though not enough to fully account for the performance
difference). This may be because the predicate images computed by BLAST are
stronger than necessary. Thus BLAST distinguishes states that need not be dis-
tinguished, resulting in a larger unwinding.

After this paper was originally submitted, Ranjit Jhala improved the per-
formance of BLAST by making it less “lazy”. In this version, each new vertex
in the unwinding is assigned all the predicates seen thus far for the same pro-
gram location, or if there are none, then predicates of its parent. This slightly
“eager” approach greatly reduces the number of refinement steps. The reduc-
tion in refienements makes it practical to use only the predicates from the same
location, rather than the same function scope, which reduces the number of pred-
icates per vertex and thus speeds the predicate image computation substantially.
Table 2 shows comparison data for this new version.” The performance gap be-
tween BLAST and IMPACT is now considerably smaller (only one order of mag-
nitude). It could be that computing some state information in an eager manner
would reduce the number of refinement steps of IMPACT as well. We leave this
question for future research.

4 Conclusion

We have described a method that uses interpolation rather than predicate ab-
straction in the lazy abstraction paradigm. This avoids the most costly opera-
tion of predicate abstraction, the abstract image computation. In contrast to the
interpolation-based model checking method of [10], it avoids constructing and
refuting an unfolding of the entire program. Instead, the interpolating prover is

 BLAST options for this experiment were -msvc -nofp -craig 2 -scope -cldepth
1 -bfs except for cdaudio, which also required -clock. No single set of options was
able to verify all the examples.
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applied only to individual program paths, greatly lessening the burden on the
prover. This makes it possible to apply the interpolation-based approach to the
verification of infinite-state sequential programs. For a small collection of device
driver examples, a run-time improvement of one to two orders of magnitude
was obtained, relative to the lazy predicate abstraction approach. Although a
greater variety of examples is clearly needed to study the trade-offs between
the two methods, the experiments show that the interpolation method has the
potential to provide a substantial performance improvement.

There are several potentially interesting topics for future research. Consider,
for example, the following simple C program fragment:

for(i = 0; i < n; i++) x[i] = 0;
for(i = 0; i < n; i++) assert(x[i] == 0);

A safety invariant of this program requires a universal quantifier over the index of
the array. Thus, predicate abstraction methods that use atomic predicates cannot
verify this program. However, in [11] it is shown that an interpolating prover can
be used to generate interpolants with quantifiers. This opens the possibility of
generating quantified inductive invariants with the present method. There are
several challenges involved in this. First the decision procedure must handle
quantified formulas. Since the validity of quantified formulas is undecidable,
we must have heuristics to instantiate quantifiers. Second, we must somehow
prevent the number of quantifiers in the interpolants from increasing without
bound. Although these problems remain to be solved, using a naive approach to
quantifier instantiation it is possible to verify simple programs like the above.
Thus, it may be possible to use the method to verify properties that depend, for
example, on the contents of arrays.

It also seems possible that the interpolation approach can be made to scale
better by using function summaries, in an approach that might be called “sum-
maries on demand”. If we refute a program path that contains the expansion of
a procedure call, we can derive an interpolant that is an over-approximation of
the transition relation of the procedure (in the same way that transition rela-
tion approximations are derived in [8]). This approximation can be used as an
abstraction (summary) of the procedure. When an error path is found not to be
refutable, it might be refined by expanding one or more summarized functions,
which would strengthen the summaries of the expanded functions. Thus, there
seems to be scope for both enriching the class of properties that can be verified,
and for improving the performance of the method on large programs.
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Abstract. Predicate abstraction is a powerful technique for extracting finite-state
models from often complex source code. This paper reports on the usage of stat-
ically computed invariants inside the predicate abstraction and refinement loop.
The main idea is to selectively strengthen (conjoin) the concrete transition rela-
tion at a given program location by efficiently computed invariants that hold at
that program location. We experimentally demonstrate the usefulness of transi-
tion relation strengthening in the predicate abstraction and refinement loop. We
use invariants of the form +x+y < ¢ where c is a constant and x,y are program
variables. These invariants can be discovered efficiently at each program location
using the octagon abstract domain. We observe that the abstract models produced
by predicate abstraction of strengthened transition relation are more precise lead-
ing to fewer spurious counterexamples, thus, decreasing the total number of ab-
straction refinement iterations. Furthermore, the length of relevant fragments of
spurious traces needing refinement shortens. This leads to an addition of fewer
predicates for refinement. We found a consistent reduction in the total number of
predicates, maximum number of predicates tracked at a given program location,
and the overall verification time.

1 Introduction

Predicate abstraction [13] is a powerful technique for extracting finite-state models from
often complex source code. It abstracts data by keeping track of certain predicates on
the data. Each predicate is represented by a Boolean variable in the abstract program,
while the original data variables are eliminated. In most predicate abstraction and re-
finement based tools [4,14,6,17], spurious behavior in the abstract model is removed
by adding new predicates or making the relationships between existing predicates more
precise. Thus, even the information that can be discovered efficiently using other ab-
stract domains (e.g., numerical abstract domains [10,22]) is learned only through mul-
tiple refinement iterations in the form of new predicates.

A large number of predicates poses a problem as both the predicate abstraction com-
putation and the model checking of the abstraction are exponential in the number of
predicates. In the SLAM [4] toolkit, this problem is handled by generating coarse ab-
stractions using techniques such as Cartesian approximation and the maximum cube
length approximation. These techniques limit the number of predicates in each theorem
prover query. The refinement of the abstraction is carried out by adding new predicates.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 137-151, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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If no new predicates are found, the spurious behavior is due to inexact predicate re-
lationships. Such spurious behavior is removed by making the relationships between
existing predicates more precise.

The BLAST toolkit [14] introduced the notion of lazy abstraction, where the ab-
straction refinement is completely demand-driven to remove spurious behaviors. When
refining an infeasible (spurious) sequence of program statements, BLAST adds new
predicates only to basic blocks occurring in the infeasible trace [15]. We refer to this
as localization of predicates. While BLAST makes use of interpolation, localization
of predicates can also be carried out using weakest pre-conditions [17]. On average the
number of predicates tracked at each program location is small and thus, the localization
of predicates enables predicate abstraction to scale to larger programs.

The techniques described above employ over-approximations of the most precise ab-
stract models to ensure scalability of the individual steps in the abstraction refinement
loop. However, over-approximations introduce more spurious counterexamples result-
ing in an increase in the number of refinement iterations. Even though the refinement
process is completely automatic, a large number of refinement iterations can make the
entire predicate abstraction and refinement loop inefficient, and often intractable.

This paper makes the following contributions:

e Our main idea is to strengthen the concrete transition relation at a given program lo-
cation / using invariants that hold at /. In standard predicate abstraction approaches
(not using invariants) each program location is abstracted in isolation, that is, no
relationships are assumed between the variables read at that location. Strengthening
of the concrete transition relation using invariants provides additional relationships
between the variables read at a program location. Thus, the abstract model produced
using the strengthened transition relation can be more precise leading to fewer spu-
rious counterexamples as compared to standard approaches.

o We show the efficacy of the above idea by incorporating an abstract domain, namely
the octagon abstract domain [21,22], into the predicate abstraction and refinement
loop. Octagonal invariants are invariants of the form +x+y < ¢, where x and y are
numerical program variables and c¢ is a numerical constant. These invariants can
be computed efficiently by the octagon abstract domain. The octagon abstract do-
main has been used within Astrée [11], and was shown instrumental in reducing
the number of false alarms when detecting runtime errors in critical embedded soft-
ware [22]. The following ideas are needed to make strengthening using octagonal
invariants beneficial in practice.

e [nvariant Generation: Tracking octagonal relationships between a large number of
program variables is expensive. In Astrée, the set of program variables is clustered
into various sets of related variables known as octagon packs. The octagonal re-
lationships between all octagon pack variables are computed separately for each
octagon pack. The size of each octagon pack is kept small, so that the computation
of octagonal relationships between the variables of an octagon pack does not be-
come a bottleneck. We describe a new clustering strategy which attempts to create
octagon packs containing program variables which may likely appear in predicates
and their weakest pre-conditions through abstraction refinement.
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e [nvariant Selection: After invariant generation there can be many octagonal rela-
tionships that hold at each program location. Using all invariants that hold at pro-
gram location / to strengthen the transition relation at program location / may not
be beneficial. This is because providing too many additional relationships in form
of invariants can potentially increase the burden on the decision procedure used for
abstraction computation and simulation of abstract counterexamples. We describe
a heuristic for selecting the invariants that are used for strengthening the transition
relation at a given program location.

Further Related Work: The idea of using statically computed invariants during abstrac-
tion has been mentioned before [5,9,23]. Both Bensalem et al. [5] and Saidi [23] note
that using invariants during abstraction can produce abstract models with fewer tran-
sitions and less reachable states. However, in [5,9] the invariants to be used during
abstraction need to be supplied by the user. An invariant generation technique is pro-
posed in [23] which produces quantified invariants at each program location. However,
the tradeoffs involved in efficiently using the computed invariants in the abstraction
refinement loop are not discussed.

Constraints of the form £x £y < ¢ arise frequently in software verification. Seshia
et al. [24] observe that most of the linear arithmetic constraints arising in software
verification have the form x —y < c¢. Ball et al. [3] report that most of the queries that
arise during the refinement process of SLAM are of the form £x=+y < c. However,
to the best of our knowledge none of the predicate abstraction and refinement tools
for C code [4,14,6,17] use (octagonal) invariants during verification. Fischer et al. [12]
describe a technique for obtaining a path sensitive version of any data flow analysis by
using predicated lattices. Instead, we use transition relation strengthening as a means of
incorporating information from other data flow analysis into the predicate abstraction
and refinement loop.

2 Motivating Example

We use the counterexample-guided abstraction and refinement loop [19,7,4] to check
safety properties (such as unreachability of error labels) in C programs. Consider the
C program shown in Fig. 1(a) with variables x,y, z considered as integers. Assume that
the statements not shown do not affect the variables x,y, z. Predicate abstraction of the
C program with respect to an empty set of predicates is shown in Fig. 1(b). Observe
that the control flow in both the abstract model and the C program is the same. Since
the initial set of predicates is empty we cannot track the value of the conditions at
program locations 1 and 10 in the abstract model precisely. Thus, the conditions at
program locations 1 and 10 in the C program are replaced by non-deterministic choice
(represented as * in the figure) in the abstract model. All assignments in the C program
are replaced by skip statements in the abstract model. A skip statement at a program
location / in the abstract model means that the statement at program location / in the C
program has no effect on the predicates being tracked in the abstract model. The ERROR
label in the C program is preserved in the abstract model.

Model checking of the abstraction in Fig. 1(b) produces an abstract counterexample
which goes through all program locations starting from 1 to 11 (ERROR). Since the ab-
stract counterexample may or may not correspond to a real bug in the C program, it is
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PC PC PC
1: if (x > y) { 1: if (%) { 1: assume (x > y);
2: v =y + 1; 2: skip; 2: vy =y + 1;
5: z = Y; 5: skip; 5: z = vy;
10: if (x < z) 10: 1if (%) 10: assume (x < z);
11: ERROR: ; 11: ERROR: ;
12: } 12: }

(@ b ©
PC Invariants PC
1: 1: if (%) {
2: x>y 2: skip;
..o x>y-1 e
5: x>y-1 5: skip;
..o x>y-1, z=y, x>z-1 .
10: x>y-1, z=y, x>z-1 10: 1if (b) [(PC =10) — —b]
11: 11: ERROR: ;
12: 12: }

(d) (e)

Fig. 1. PC stands for program counter. (a) C program. (b) Abstraction of C program with respect to
an empty set of predicates. (c) Infeasible program trace corresponding to abstract counterexample
in (b). (d) The computed invariants at every program location. (e) Refined abstraction with the
use of invariants. This abstract model has no path to the ERROR label.

checked if there is a feasible sequence of statements in the original C program leading
to the ERROR label and having the same control flow as the abstract counterexample.
The feasibility check is carried out using a decision procedure. For the abstract coun-
terexample produced by model checking the abstraction in Fig. 1(b), the corresponding
sequence of statements in the C program is shown in Fig. 1(c). The assume statement
shows which branch of the if statement was taken in the abstract counterexample.
Consider the program trace shown in Fig. 1(c). The relationship x > y holds at the
program location 2 (before y=y+1 is executed). Variable y is incremented at program
location 2, thus, x > y — 1 holds after program location 2 (after y=y+1). Variable z is
assigned y at location 5, so x > z— 1 holds after program location 5. Since x,y,z are
integers, we have x > z after program location 5. The relationship x > z contradicts with
the assume statement at location 10 (x < z). Thus, the trace in Fig. 1(c) is an infeasible
trace. In order to eliminate the infeasible trace shown in Fig. 1(c) the refined abstract
model needs to track the value of the condition x < z at program location 10 precisely,
as it guards the ERROR label. This is done by introducing new predicates in most tools.
Using the technique described in [15,17] the infeasible trace shown in Fig. 1(c) can
be removed by tracking exactly one predicate at each program location from 1 to 10.
The technique of [17] will track the following relationships in the abstract model: x <
y+ 1 is false at program location 2 (before y=y+1), x < y is false from location 3 till 5,
x < z s false from location 6 to location 10. Note that even though three new predicates
(x < z,x < y,x <y—+1) are introduced only the value of one predicate needs to be
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tracked at each program location. The drawback of these techniques is that predicate
relationships need to be tracked for the entire infeasible trace, even at the program
locations (3,4,6,7,8,9) not directly involved in the infeasibility of the program trace.

Next we show how the use of efficiently computable invariants (such as octagonal in-
variants) can improve the above techniques. The two variable invariants that hold at var-
ious program locations of the program in Fig. 1(a) are shown as annotations in Fig. 1(d).
For example, at the program location 10 the relationshipsx >y—1,x > z— 1,y =z hold.
The invariants shown can be written as conjunctions of octagonal invariants and can be
computed using the octagon abstract domain [21,22]. For example, x > y — 1 can be
written as —x+y < 2, and y = z is equivalent to a conjunction of two octagonal invari-
ants y —z < 0 and —y+z < 0. The advantages of using the invariants in the predicate
abstraction and refinement loop are given below.

e Reduction in the length of infeasible trace fragments needing refinement: Let us
consider the use of invariants during the detection of infeasible traces. Consider
the program trace in Fig. 1(c). Without the use of invariants the trace is infeasible
due to statements at location 1, 2, 5, 10. The refinement procedure generates new
predicates by looking at all four statements. However, with the aid of invariants the
statement at location 10 is itself infeasible because the invariant x > z — 1 holds at
location 10 (see Fig. 1(d)). Thus, the refinement procedure only needs to look at a
fragment of the trace consisting of only the statement at program location 10.

e Reduction in the number of predicates needed for refinement: Without the use of
invariants, the refinement schemes of [15,17] track the value of at least one pred-
icate at each program location from 1 to 10. Using invariants the refinement pro-
cedure only looks at program location 10 (PC=10) and the invariants that hold at
that location. The condition x < z of the assume statement at location 10 of the
infeasible trace is introduced as a predicate and its value is tracked only at PC=10
in the refined abstract model shown in Fig. 1(e). The Boolean variable b represents
the predicate x < z in the abstract model. The constraint =& holds at PC=10 as the
invariant x > z — 1 holds at PC=10 in C program. With the aid of the constraint
(PC = 10) — —b the abstract model of Fig. 1(e) has no path to the ERROR label.

Octagon abstract domain alone is precise enough to show that ERROR label is unreach-
able in Fig. 1(a). However, this is not always the case. If the condition at PC=10 in
Fig. 1(a) is 2x < z+y (not in octagonal form), then the octagon abstract domain cannot
show that ERROR label is unreachable. Predicate abstraction and refinement loop can
still use the octagonal invariants and show the unreachability of ERROR label using the
abstract model shown in Fig. 1(e), with b representing the predicate 2x < z+y.

One reason to combine invariants with predicate abstraction, especially in the context
of weakest pre-condition based refinement as in [6,17], is the problem of handling loops
efficiently. Often, these techniques model multiple loop unwindings through the use of
several related predicates that correspond to different loop unwindings. Instead, certain
classes of loop invariants can be computed efficiently [11], and their usage inside the
abstraction refinement loop can lead to quicker convergence in presence of loops.

Example: In the C code below we wish to verify the assert statement. The use
of the loop invariant x = y in the abstraction refinement loop can eliminate the need of
numerous predicates of the form x = 200,y = 200,...,x = 0,y = 0 which arise when
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using the weakest pre-condition based refinement. The invariant x =y can be discovered
using the octagon abstract domain.

1. int x = 200, y = 200;
2. while (x !=0) { x=x-1; y =y - 1; }
3. assert (y==0);

In the above example, interpolant based refinement [15] may or may not succeed
in finding x =y as a predicate, due to its dependence on a proof of unsatisfiability of
the infeasible trace. This problem is addressed in [18] where a specialized split prover
is used to restrict the language of interpolants to avoid divergence and provide a (rela-
tively) complete method for finding predicates. However, the impact of such restrictions
and the practical efficiency of a split solver on large examples are not addressed.

3 Transition Relation Strengthening

We operate on a control flow graph of the given program, after various pre-processing
steps performed by the F-SOFT tool [16]. Let b denote a basic block in the control flow
graph. It can contain multiple assignments or an assume statement describing which
branch of a condition is taken. Let 7, (V, V') denote the transition relation of basic block
b, where V.V’ denote the state of program variables before and after executing b, re-
spectively. An invariant I, at basic block b is a Boolean formula over V. Invariant 7,
evaluates to true whenever the program counter is at b in any execution of the pro-
gram. Suppose we have pre-computed a particular set of invariants at each basic block.
Let CI,(V) denote the conjunction of various invariants that hold at basic block b. The
idea of transition relation strengthening is to use CI,(V) AT, (V,V') instead of T,,(V, V')
when analyzing b. We refer to CI,(V) AT,(V,V') as the strengthened transition rela-
tion of basic block b and denote it by ST,(V,V’). Invariants over V' are not needed
for strengthening the transition relation of b as they are implied by ST,(V,V’). The
strengthened transition relation STy(V,V’) can be used inside the predicate abstraction
and refinement loop by using ST, (V, V') in place of T,(V,V’). We describe this process
in more detail below.

Predicate Abstraction Computation: In predicate abstraction, the variables of the con-
crete program are replaced by Boolean variables that correspond to a predicate on
the variables in the concrete program. These predicates are functions that map a con-
crete state V € S into a Boolean value, where S denotes the set of program states. Let
P={m,...,m} be the set of predicates over the program variables. When applying all
predicates to a specific concrete state, one obtains a vector of Boolean values, which
represents an abstract state W. We denote this function by o(V). It maps each concrete
state into an abstract state and is called an abstraction function.

The predicate abstraction of a basic block b is carried out using existential abstrac-
tion, i.e., the abstract model can make a transition from an abstract state W to W' iff
there is a transition from V to V' after executing basic block b and V is abstracted to
W and V' is abstracted to W’. We denote the abstract transition relation obtained by
predicate abstraction of basic block b with respect to predicates in P as T, (W, W’).

Ty = {(W,W)[IV,V' €S: (a(V)=W) A T,(V,V') A(a(V)=W)} (1)
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Note that the above equation computes the abstraction of b with respect to predicates in
P in isolation. The term isolation means that no relationships are assumed between the
variables in V during abstraction. However, certain relationships may hold between the
variables in V when the program execution reaches b. In current predicate abstraction
tools, such relationships will be discovered on-demand through multiple refinement
iterations, in the form of new predicate relationships in the abstract model. Many of
these relationships can however be computed efficiently in the form of invariants. The
aim of strengthening is to provide such relationships in the concrete program itself,
rather than discovering them in form of predicate relationships in the abstract model.
Let ST,(W,W’) denote the abstract transition relation obtained by using the strength-
ened transition relation for basic block b, that is, replacing T,,(V,V') by ST, (V,V') in
Equation 1. The following claim states that predicate abstraction using the strengthened
transition relation for b can be more precise than predicate abstraction of b in isolation.

Claim. Vb : ST,(W,W') C T,(W,W’)

The above claim follows from the definition of strengthened transition relation and
Equation 1. Consider a concrete program C. Using the strengthened transition relation
for each basic block in C during verification does not add any new behaviors to C or
remove any existing behaviors from C. This is because strengthening provides invariants
which are implicit in C. Let C denote the predicate abstraction of C obtained by using
ST,(W,W') for every basic block b in C. The following claim then states the soundness
of predicate abstraction obtained using the strengthened transition relation.

Claim. Abstraction soundness: C is a conservative over-approximation of C.

Simulation of Program Traces: 1f the property is violated in the abstract model, we
obtain an abstract counterexample from the model checker. In order to check if an ab-
stract counterexample corresponds to a concrete counterexample, a simulation step is
performed. By ensuring that the control flow in the concrete program is preserved in
the abstract model, an abstract counterexample can be mapped back to a sequence Tr
of basic blocks by, ...,by in the concrete program, where b is the entry block and by
contains the ERROR label in the given program. Let V;,V;;| denote the state of pro-
gram variables before and after executing the basic block b;, respectively. We say Tr
is feasible iff there is a real execution of the concrete program which follows the same
sequence of basic blocks as 7r. The simulation step checks the feasibility of 7r by
checking the satisfiability of the following equation:

Sim(Tr) = T/,l (Vl,Vz) /\T},z(VQ,V3) VAPV Thk (Vk,Vk+1) 2)
Claim. The trace Tr is feasible iff Sim(Tr) is satisfiable.

Let STsim(Tr) denote the simulation equation when the strengthened transition relation
is used.

STsim(Tr) := STbl(Vl,Vz) /\STbZ(VQ,V3) /AN STbk(Vk,Vk+1) 3)

The following claim states that using the strengthened transition relation for simulation
of abstract counterexamples is sound. That is, if 7r is a real counterexample (feasible),
then STsim(Tr) is satisfiable, and if Tr is infeasible, then ST'sim(7Tr) is unsatisfiable.
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Claim. Simulation soundness: T is feasible iff STsim(Tr) is satisfiable.

Let Tr be an infeasible trace when no invariants are used, then 77 is also infeasible when
the strengthened transition relation is used (above claim). However, with strengthening
itis possible that a sub-sequence T+ of Tr is itself infeasible. In this case the refinement
can be done by looking at only 7+ and the invariants that hold along T7. In Section 2
we presented an example where the length of infeasible trace is reduced from 10 to 1
by using the strengthened transition relation. This in turn allows refinement with fewer
predicates per program location.

4 Invariants for Transition Relation Strengthening

The octagon abstract domain [21,22] allows the representation and manipulation of oc-
tagonal invariants, which have the form +x+y < ¢, where x,y are numerical variables
and c is a numerical constant. The octagon abstract domain allows the representation
of octagonal relationships between n program variables with O(n?) memory cost. In
order to compute octagonal relationships various abstract operators (transfer functions)
are needed. The octagon abstract domain provides all the required operators with worst
case O(n?) time cost. We selected octagonal invariants for transition relation strength-
ening because they can be computed efficiently and are expressive enough to capture
many commonly occurring variable relationships [24,3] and simple loop invariants, im-
portant for checking standard properties such as array bounds violation [21]. However,
strengthening can also be carried out using other more expressive classes of invariants.
Issues involved in the generation and usage of octagonal invariants are discussed below.

4.1 Octagon Packing for Invariant Generation

Computing octagonal relationships between n variables has O(n*) memory cost per
program location and O(n*) time cost per transfer function. This can become prohibitive
when 7 is large. In Astrée [11] the set of program variables is clustered into various sets
of related variables, known as octagon packs. The octagonal relationships are computed
separately for each octagon pack. The size of each octagon pack is kept small so that
the computation of octagonal relationships between the variables in an octagon pack is
fast. Octagon packing trades off accuracy of generated invariants for speed, and thus,
choosing a right packing strategy is important for the generated invariants to be useful.
We have experimented (Section 5.2) with the following octagon packing techniques.

e Basic block based packing: We implemented the octagon packing technique used
in Astrée as described in [22] (Chapter 8). An octagon pack is associated with each
basic block of the control flow graph. All the variables occurring in a basic block
(excluding non-linear terms) are made a part of the octagon pack associated with the
basic block. If the basic block is a part of awhile, or if-then-else structure,
then the variables appearing in the condition of the while or if-then-else
structure are made a part of the octagon pack.

e Control flow based packing: We propose a new packing technique that associates an
octagon pack with each condition in the control flow graph. Let oct(c) denote the
octagon pack corresponding to a condition ¢ at program location /. All numerical
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variables occurring in ¢ are made a part of oct(c). Then a backward traversal of
the control flow graph is done starting from /. Whenever any variable in oct(c) is
updated through an assignment, the variables appearing in the assigned expression
are added to oct(c). Thus, the variables in oct(c) affect the value of condition ¢
either directly or indirectly. In the above packing techniques a user specified bound
can be used to control the size of an octagon pack.

4.2 Invariant Selection for Strengthening

In general the expectation is that adding invariants would provide a performance im-
provement for the abstraction computation due to additional pruning of the search
space. However, for the same pruning power, a smaller number of invariants is better
since that would burden the decision procedure less. On the other hand, the invariants
are redundant when we are checking the feasibility of an abstract counterexample. But
using invariants can still speed up the feasibility check by providing facts that will oth-
erwise need to be derived by the decision procedure. Using invariants also helps in ob-
taining smaller infeasible traces for refinement. Therefore, our heuristic is to use fewer
invariants so that we get benefit from additional/quicker pruning, without incurring too
much overhead due to additional constraints in the decision procedure calls.

For each octagon pack the relationships between the variables appearing in it are
tracked at every basic block. This can result in a large number of invariants at every ba-
sic block. We apply a heuristic to filter out invariants that are not deemed important for
checking the given property. Let I be an invariant that holds at the entry to a basic block
b. Let needed (b, E) denote the set of variables whose values need to be tracked at basic
block b for checking the reachability of a given error label E. We compute needed (b, E)
at each basic block b by performing a syntactic cone-of-influence computation starting
from E. We use the following heuristic for selecting the invariants:

InvSelect: Use I to strengthen the basic block b only if all variables appearing in / are
present in needed (b, E).

5 Experimental Results

We have implemented these techniques in NEC’s F-SOFT [16] verification tool. F-
SOFT allows checking the C code for user specified (assert statements) or standard
properties (array bound violations, NULL pointer dereferences, use of uninitialized
variables). Details about the software modeling in F-SOFT can be found in [16]. We
used a 2.8GHz dual-processor Linux machine with 4GB of memory for experiments.
Before the abstraction refinement loop starts, we pre-compute the octagonal relation-
ships using the octagon abstract domain library [2]. We use a SAT solver for computing
the predicate abstraction [20,8] and simulation of counterexamples. We report results on
TCAS and internal benchmarks. TCAS (Traffic Alert and Collision Avoidance System)
is an aircraft conflict detection and resolution system. We used an ANSI-C version of a
TCAS component available from Georgia Tech. Even though the preprocessed program
has only 224 reachable basic blocks, the number of predicates needed to verify the prop-
erties is non-trivial for both F-SOFT and BLAST [1]. We checked 10 different safety
properties of the TCAS system using predicate abstraction. None of these properties
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Table 1. Comparison between three implementations of predicate abstraction and refinement
loop. 1) Default: uses the localization of predicates [17]. 2) Strengthen: Uses the strengthened
transition relation in the same framework as [17]. 3) BLAST: Results of running BLAST with
Craig interpolation options. All times are reported in seconds. “Abs”, "MC”, ”SR” sub-columns
give the abstraction computation, model checking, simulation and refinement time, respectively.
”Preds” gives the total number and the maximum number of predicates tracked at any program
location. ”’I” sub-column gives the number of abstraction refinement iterations.

Bench Default Strengthen BLAST

-mark |Time Abs MC SR| Preds |Cex| I |Time Abs MC SR| Preds |Cex| I |Time| Preds | I
tcaslal| 87 19 40 28|93/31 | 11 (38| 51 15 12 24|65/21 |7.4|28| 102 | 81/24 | 35
tcaslb| 386 49 266 71|137/56| 20 |54| 333 58 177 98|126/49| 16 |50| 278 |108/36| 69
tcas2al| 87 18 41 30|94/36 (11.3|38| 48 15 11 22|57/18 |7.1|26| 112 |97/29 | 38
tcas2bl 95 20 41 34|99/34 (13.1{39| 100 26 27 47|78/27 |11.6|37| 177 {106/31| 52
tcas3al| 164 25 96 43|113/48(13.4|40| 131 27 51 53| 89/31 |11.4|36| 217 |130/37| 57
tcas3b| 56 11 26 19|82/27 (9.9 (28| 69 18 19 32| 64/21 | 8.9 |28| 92 |99/26 | 33
tcasda| 334 51 199 84(122/45(14.7|140| 167 33 70 64|97/33 | 13 |40| 515 |158/48|104
tcasdb| 130 27 54 49| 88/28 [11.2(32| 90 25 24 41|77/22 |10.6|32| 303 [127/36| 47
tcasb5a| 113 26 40 47|96/28 (10.3|32] 27 9 6 12|46/12|6.6 (17| 100 | 87/21 | 29
tcasS5b| 149 29 69 51|98/29 (10.4|30| 87 23 27 37|75/22 (9.2 (25| 139 |102/27| 39

can be verified by using the octagonal invariants alone. We also analyzed 45 internal
industrial benchmarks Sw-1, ..., SW-45 for standard property violations. Some
of these benchmarks have more than 1000 reachable basic blocks.

5.1 Use of Octagonal Invariants During Predicate Abstraction and Refinement

Table 1 presents a comparison between three different implementations of the pred-
icate abstraction and refinement loop. The “Default” column uses the localization of
predicates as described in [17]. This means that instead of maintaining a global set
of predicates, localized predicates relevant to various basic blocks of the program are
discovered by weakest pre-condition propagation along infeasible program traces.

The ”Strengthen” column uses the same framework as the ”Default” technique. How-
ever, it uses the strengthened transition relation for each basic block in the abstrac-
tion refinement loop. The strengthening is carried out using the octagonal invariants,
which are pre-computed using the octagon abstract domain. We use control flow based
packing for invariant generation and InvSelect heuristic for invariant selection (Sec-
tion 4). Generation of octagonal invariants took five seconds for the TCAS benchmark.
The "BLAST” column presents the results of running the BLAST [1] software model
checker with the Craig interpolation [15] options craig?2 and predH7.

The ”Time” sub-column presents the total time taken by the abstraction and refine-
ment loop when checking a given property. For the “Default” and ”Strengthen” tech-
niques the breakup of total time ("Time”) is presented in the "Abs”, "MC”, and ”SR”
sub-columns. The ”Abs” sub-column gives the total time spent in computing the pred-
icate abstraction, the "MC” sub-column is the total time spent in model checking the
abstracted program, the "SR’ sub-column is the total time spent on the simulation of
abstract counterexamples and refinement. The "Preds” sub-column provides two num-
bers separated by a slash: 1) Total number of predicates present in the last iteration of
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Table 2. Results on some industrial examples. Refer Table 1 for the meaning of various columns.

Benchmark Default Strengthen

Time Abs MC SR |Preds| I |[Time Abs MC SR |Preds|I
Sw-1 29.1 8.3 2.3 18.5|53/17|14| 9.3 2.9 0.5 5.9| 16/4 |6
SwW-2 42.4 10.5 3.5 28.4|53/17({14| 9.1 2.8 0.5 5.8| 16/4 |6
Sw-3 1.9 0.8 0.3 0.8|16/14{5| 3.0 0.8 0.3 1.9|16/14|5
SW-4 109.4 94 4.8 10.6(58/22|11| 6.3 2.6 0.0 3.7| 11/4 |3

abstraction refinement loop. 2) Maximum number of predicates tracked at a given pro-
gram location. The "Cex” sub-column provides the average length of infeasible traces
that were given to the refinement procedure for generating new predicates. The I sub-
column gives the total number of abstraction refinement iterations.

Reduction in the Number of Predicates: Observe that the strengthened transition relation
(’Strengthen”) allows checking the given properties with fewer predicates (first number
in “Preds” column) on 9 out of 10 properties. Since all the three implementations use
localization of predicates, the size of the abstract models produced can be exponential in
the maximum number of predicates tracked at any program location. This is the second
number in “Preds” column and it is smallest for the ”’Strengthen” column on 9 out of
10 properties as compared to both “Default” and "BLAST”. As a result, the total time
spent on model checking the abstractions ("MC”) is smaller by 55% on average when
using the strengthened transition relation as compared to the "Default” technique.

Reduction in the Length of Infeasible Traces: The ”Cex” column shows the average
length of infeasible traces that were given to the refinement procedure. This number
is consistently smaller when using the strengthened transition relation as compared to
the ”"Default” technique. When refining an infeasible trace consisting of basic blocks
bi,...,by, new predicates are discovered at each basic block b; by the refinement pro-
cedure [15,17]. Smaller infeasible traces were refined in the ”Strengthen” case leading
to fewer predicates as compared to the "Default” case.

Impact on Running Time: The significant reduction in the model checking time, enables
”Strengthen” to outperform other techniques ("Default” and "BLAST”) in terms of total
time ("Time”) on a majority of properties.

Results on SW-x Benchmarks: We checked these benchmarks for standard property
violations using “Default” and ”Strengthen” techniques. Since the standard property
checks are added automatically through control flow graph modification, a comparison
with BLAST was not possible. The results on some SW-+ benchmarks are summarized
in Table 2. The meaning of the various columns in Table 2 is the same as in Table 1. We
observed a reduction in the total number of abstraction refinement iterations, predicates
needed, overall runtime as compared to “Default” on many SwW-* benchmarks.

5.2 Generation of Invariants

We describe results for the two different octagon packing techniques discussed in Sec-
tion 4.1. For both basic block based packing and control flow based packing we limit the
size of each octagon pack to 10. That is no more variables are added to an octagon pack
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Table 3. Comparison between octagon packing techniques and their impact on invariant gen-
eration

Bench| BB |Prop Block Control flow

-mark Time| PackStats |Done| NumlInv |Time|PackStats|Done| Numlnv
tcas | 224 10 | 18s | 72/10/49| 0O 11196/5121 | 5s [49/5/2.7| 0O 3992/3456
SW-5 |1587| 295 | 190s | 252/8/4.1 | 76 | 83478/38654 | 87s |180/6/1.5| 90 | 35042/23431
SW-6 (1986|592 |264s|256/10/4.4| 111 | 72972/50973 |132s|203/6/1.5| 131 | 58801/48612
SW-7 (2440|542 |576s| 472/9/4.2 | 82 |167738/87738(270s|310/9/1.5| 82 |105184/66130
SW-8 |1472| 402 |237s (226/10/4.2] 64 |115254/90541| 59s | 132/8/2 | 64 | 98514/83096

once its size exceeds 10. Table 3 presents the comparison between the basic block based
packing and control flow based packing and their impact on the invariant generation.
Only the results for some SW-+ benchmarks are reported in this table.

The "BB” column gives the total number of basic blocks in the benchmark, the
“Prop” column gives the total number of safety properties (reachability of labeled er-
ror statements, or automatically generated standard property monitors) in a benchmark.
The “Block” column presents the results for the basic block based packing and the
”Control flow” column presents results for the control flow based packing. The sub-
column “Time” gives the total time required to compute the invariants for the octagon
packs generated using a given packing technique. The “PackStats” column presents
three numbers separated by a slash (/): total number of distinct octagon packs, maxi-
mum number of variables in an octagon pack, and average number of variables in an
octagon pack. The "Done” column shows the number of safety properties ("Prop” col-
umn) that can be proved by using the octagon invariants only. The "NumlInv” column
presents two numbers separated by a slash (/): total number of invariants generated, and
the total number of non-redundant invariants as computed by the octagon library [2].

Discussion of Octagon Packing Results: The control flow based packing produces con-
sistently less number of octagon packs as compared to the basic block based packing.
This is expected as the number of octagon packs is proportional to the number of basic
blocks in basic block based packing, and proportional to the number of conditions in
the program in control flow based packing. The maximum and the average number of
variables tracked in an octagon pack is smaller in the control flow based packing tech-
nique. Thus, the time taken to compute invariants using the control flow based packing
is smaller (by 2.8 x on average) as compared to the basic block based packing.

In order to compare the quality of invariants generated using the two packing tech-
niques we did two experiments: First, we looked at the number of safety properties
shown correct by the use of octagonal invariants themselves. This number is shown in
the "Done” column. We observed that the number of safety properties proved correct by
basic block based packing was always a subset of or the same as those proved correct
using control flow based packing.

Second, we used the generated invariants inside the predicate abstraction and refine-
ment loop by transition relation strengthening. We found the addition of octagonal in-
variants generated (using either packing technique) to enable checking a given property
with fewer predicates, as compared to not using the invariants. However, the addition of
invariants generated using basic block based packing increased the predicate abstraction
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Table 4. Application of InvSelect heuristic for selecting the invariants used for strengthening

Bench Default InvSelect

-mark | Tot |Max|Avg| Tot |Max|Avg
tcas | 3456 | 24 |15.4| 441 | 12 | 1.9
SW-5 (23431| 43 | 18 | 2825 | 14 | 2.2
SW-6 (48612| 34 |20.7| 3307 | 8 | 1.4
SW-7 |66130| 58 |23.4| 5068 | 14 | 1.8
SW-8 [83096| 73 |56.5[14844| 31 (10.1

computation and simulation times significantly causing an overall increase in runtimes,
as compared to not using invariants. For the TCAS benchmark after invariant generation
and selection, an average of 8.6 invariants were added to each basic block when using
the basic block based packing, as compared to an average of 1.9 invariants when using
control flow based packing. As fewer invariants are added to each basic block with con-
trol flow based packing, the increase in abstraction computation and refinement times
is much less as compared to using the basic block based packing. Overall, the addition
of invariants generated using control flow based packing reduces the total runtime as
compared to not using the invariants as discussed in Table 1, 2.

Why control flow based packing is useful: In many tools the generation of new pred-
icates for abstraction refinement is done by computing the weakest pre-conditions of
the conditions present in the control flow graph. Suppose the weakest pre-condition of
a condition ¢ for a certain number of steps results in predicates p1,..., p,. Let pvars
denote the set of variables appearing in the predicates p1,..., p, and condition c. Let
vars(c) denote the octagon pack corresponding to condition c in the control flow based
packing. If the size of vars(c) is not restricted, then it is the case that pvars C vars(c).
Thus, the octagon packs computed using control flow based packing tend to cluster
those variables for which relationships will be discovered later (through refinement) as
new predicates and their weakest pre-conditions. Eagerly computing the relationships
for such clusters and using them in the predicate abstraction and refinement loop, thus,
attempts to get most benefit out of the efficiently computable invariants.

5.3 Invariant Selection for Strengthening

After invariant generation there can be many octagonal invariants that hold at each
program location. As argued in Section 4.2, using all invariants that hold at program
location [ to strengthen the transition relation at / may not be beneficial. We apply a
heuristic to filter out invariants that are not deemed important for checking a given
property. The impact of the invariant selection heuristic InvSelect (Section 4.2) on the
number of invariants that get selected for strengthening is summarized in Table 4. The
“Default” column shows the statistics before InvSelect selection heuristic is applied.
The “InvSelect” column gives the statistics after InvSelect selection heuristic is applied.
The sub-column “Tot” gives the total number of invariants that get selected, the "Max”
sub-column gives the maximum number of invariants selected at a basic block, and the
”Avg” sub-column gives the average number of invariants selected at a basic block.
The invariant selection heuristic InvSelect (Section 4.2) helps in reducing the number
of invariants that get selected at each basic block for transition relation strengthening.
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For the TCAS benchmark, application of the InvSelect heuristic reduces the average
number of invariants available for strengthening a given basic block from 15.4 to 1.9.

6 Conclusion

In this paper we presented how efficiently computable invariants can be used to im-
prove the counterexample-guided abstraction refinement flow such as used in software
verification tools using predicate abstraction. The invariants at program location / are
selectively added to the concrete transition relation at / to obtain a strengthened tran-
sition relation at /. Using a strengthened transition relation in the predicate abstraction
and refinement loop can lead to the creation of more precise abstract models leading to
fewer and shorter infeasible traces. This can allow checking a given property with fewer
predicates. More importantly, this technique can help in checking properties where us-
ing the standard predicate abstraction and refinement loop alone will take too long to
converge (for example, properties depending on loop invariants). In our experiments
we found a consistent reduction in the total number of predicates, maximum number of
predicates tracked at a given program location, and the overall verification time.

Acknowledgment. We thank Antoine Miné for answering questions about the octagon
abstract domain library, and Ranjit Jhala, Rupak Majumdar for their help with BLAST.
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Abstract. Predicate abstraction is a major abstraction technique for
the verification of software. Data is abstracted by means of Boolean
variables, which keep track of predicates over the data. In many cases, the
technique suffers from the fact that it requires at least one predicate for
each iteration of a loop construct in the program. We propose to extract
looping counterexamples from the abstract model, and to parameterize
the simulation instance in the number of loop iterations.

1 Introduction

Software Model Checking [1] promises an automatic way to discover flaws in large
computer programs. Despite of this promise, software model checking techniques
are applied rarely, as software verification tools lack scalability due to the state-
space explosion problem.

Abstraction techniques map the original, concrete set of states to a smaller set
of states in a way that preserves the property of interest. Predicate abstraction is
one of the most popular and widely applied methods for systematic state-space
reduction of programs [2]. This technique is promoted by the success of the SLAM
project [3,4]. SLAM is used to show lightweight properties of Windows device
drivers, and predicate abstraction enables SLAM to scale to large instances.

In predicate abstraction, data is abstracted by keeping track of certain pred-
icates over the data. Each predicate is represented by a Boolean variable in the
abstract program, while the original data variables are eliminated. The resulting
Boolean program is an over-approximation of the original program. One starts
with a coarse abstraction, and if it is found that an error-trace reported by the
model checker is not realistic, the error trace is used to refine the abstract pro-
gram, and the process proceeds until no spurious error traces can be found [5].
The actual steps of the loop follow the abstract-verify-refine paradigm [6]. A
second well-known implementation of this method is the software model checker
BrasT [7].

In many cases, the technique suffers from the fact that it requires at least one
predicate for each iteration of a loop construct in the program. This is due to the
fact that the simulation and refinement phases are ignorant of program loops.
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The existing simulation techniques exactly simulate as many loop iterations as
contained in the abstract trace. Most of the existing refinement techniques cor-
respond to performing one more unwinding of the loop.

The information about looping structures is actually contained within the
abstract model M. However, the model checkers for M never output error traces
with loops, as they aim at counterexamples that are as short as possible.

Contribution. We propose a novel predicate abstraction algorithm that makes
two contributions:

1. We extend the abstraction refinement framework with the concept of ab-
stract counterexamples that contain (possibly nested) loops. We add the ca-
pability to compute such counterexamples to BoPPO [8], a symbolic model
checker for Boolean programs. The computation is done by means of a propo-
sitional SAT solver.

2. We describe a two-phase algorithm for simulating such a looping counterez-
ample on the concrete model. The first phase attempts to compute a number
n that corresponds to the number of loop iterations necessary to reach an
error state. It is built using closed form solutions of recurrences and over-
approximates the program. The second phase is a conventional simulation
with n unwindings of the loop, which rules out spurious counterexamples.
The predicates contained in the equation built for the first phase are used
to improve the refinement in case the trace is spurious.

We report experimental results, which demonstrate that that our algorithm
improves the performance significantly for benchmarks where a conventional
abstraction refinement implementation has to perform repeated refinement steps
to unroll the loop.

Related Work. The NEWTON tool is used by the SLAM toolkit to decide the
feasibility of counterexamples and to generate new predicates in order to refine
the abstraction [9]. NEWTON is limited to finite counterexamples without loops.
Therefore, SLAM suffers from the problem described above.

Path Slicing is an approach that shortens counterexamples by dropping state-
ments that have no impact on the reachability of the program location in ques-
tion [10]. The statements and branches that can be bypassed are eliminated by
backward slicing: For each program location, the set of relevant variables whose
valuations at that point determine whether or not the error location is reachable
is computed. The feasibility of a path slice implies the feasibility of the original
counterexample, but assumes termination of the omitted code sequences.

Path slicing eliminates loops during the symbolic simulation if and only if
they do not contribute to the reachability of the error location. Therefore, path
slicing is orthogonal to the approach that we present, since it prevents expensive
unrolling of loops that are not related to the error.

Linear programs have been proposed by Armando as an alternative, finer
grained formalism for abstractions of sequential programs [11]. Due to the higher
expressiveness of linear programs (in comparison to Boolean programs), this
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approach may yield a smaller number of spurious execution traces. However, the
abstraction algorithm is restricted to a pointer-less subset of the C programming
language that employs linear arithmetics and arrays [12].

Rybalchenko and Podelski present a complete method for detecting linear
ranking functions of unnested program loops [13]. The inferred ranking function
poses an upper bound for the iterations of the loop. This bound is not necessarily
tight. Combined with abstraction-refinement, this approach enables proofs of
program termination [14]. A proof of termination is insufficient to show the
feasibility of counterexamples with loops, since the violation of the property
usually depends on the number of iterations. Therefore, we utilize an incomplete
method that provides the exact number of loop iterations necessary to reach the
error state.

Linear algebra can be used for an inter-procedural program analysis that
computes all affine relations which are valid at a program point [15]. The anal-
ysis presented by Miiller-Olm interprets all assignment statements with affine
expressions on the right hand side, while all other assignments are considered
to be non-deterministic. It infers all linear and polynomial relations (up to a
given degree). The approach is control-flow insensitive and cannot be used to
decide reachability. The relations over the induction variables of a loop could aid
the computation of the number of loop iterations that makes a counterexample
feasible.

Zhang provides a sufficient condition for infinite looping and uses constraint
solving techniques to detect infinite loops [16]. The method is sound, but not
complete, since it is based on deciding theorems that involve non-linear integer
arithmetic. The only goal of this approach is the detection of infinite loops.
Feasibility of terminating loops is not discussed. Furthermore, nested loops are
not considered.

Van Engelen presents an analysis method for dependence testing in the
presence of nonlinear and non-closed array index expressions and pointer
references [17]. His work is discussed in more detail in context with our loop
simulation algorithm in Section 4. Van Engelen’s approach targets compiler op-
timization, while our approach aims at feasibility checking and refinement.

Outline. The paper is organized as follows. Section 2 provides background on
predicate abstraction refinement for software programs. The contribution of this
paper is in Sections 3 to 4. Section 3 describes the syntax and semantics of loop-
ing abstract counterexamples. The simulation of such counterexamples on the
concrete program is illustrated in Section 4. Experimental results are provided
in Section 5.

2 Background

2.1 Predicate Abstraction and Refinement

Figure 1 shows an overview of counterexample-guided abstraction refinement.
We provide background on each of the four steps of the loop.
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Fig. 1. Counterexample-guided abstraction refinement with two-phase simulation

Abstraction. The concrete model M is mapped to an abstract model M by
means of an abstraction function «. The abstraction function v maps concrete
states s € S to abstract states § € 9. We use ~ to denote o~ !, which maps
an abstract state back to a set of corresponding concrete states. Existential
abstraction [18] is a reachability preserving transformation that guarantees that
the abstract transition relation — is an over-approximation of —, the transition
relation of the original program. For reasons of efficiency, most implementations
also over-approximate —.

Given a set of predicates P, a predicate abstraction ap(p) is the strongest
Boolean combination ¢ of these predicates such that ¢ implies ¢. The variables
of the abstract state § € S correspond to the predicates in P, and their valuation
is determined by ¢.

Verifying M. The model checker for M searches the state space of M for
states that violate a given specification. If no such state exists, the property
holds on M, and the algorithm terminates. If an error state §,, exists, the model
checker reports a counterexample that is a sequence of states §1,...,5, s.t. §;
is an initial state, §; N Si4+1 for each i,1 <i < n, and §, is an error state.

BEBOP is a symbolic model checker for Boolean programs that is used in
SLAM to check the abstract model [19]. Boolean programs provide the same
control flow constructs (including function calls) as C programs. BEBOP uses
BDDs as internal representation for states and features function summarization.

MOPED is a BDD-based model checker for pushdown systems [20], which are
as expressive as Boolean programs. ZING [21], an explicit-state model checker for
concurrent programs, is used in an experimental version of SLAM that provides
support for the verification of concurrent programs [8].

BEBOP, MOPED, and ZING produce counterexamples §1, . .., §, with the prop-
erty 8; # 3; for all i # j, since they aim at providing the shortest counterexample
possible.

Simulation. An abstract counterexample §1, 82, ..., 8, is feasible in M iff there
exists a corresponding sequence of concrete states s1, sa,..., S, such that s; €
~v(8;) for 1 < i < n and there is a concrete transition s; 5 Sip1 for 1 < i < n.
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Since any feasible concrete path serves our purpose, it is sufficient to demand
that only the locations of corresponding states match. We give a formal definition
of feasibility of counterexamples in terms of their strongest postcondition [22].

Definition 1 (Strongest Postcondition). The strongest postcondition SP of
a statement is defined as

SP(x:=e) = \f.32'.f[2' /z] A (x = e|a’ /x])
SP(e)=Af.f Ne
where e[x’ /x| denotes the substitution of all free occurences of x in e by x’.

Let £(8;) denote the program location that is part of the abstract state §;, and let
o; denote the concrete statement corresponding to £(s;). The strongest postcon-
dition for the sequence of statements o1, ...,0, is SP(o1,...,0,) := SP(o,) o
SP(o,—1)0...05P(01). The resulting quantifiers can be eliminated by means of
skolemization. Intuitively, this corresponds to a transformation of the path into
single static assignment form (SSA) [23]. The formula SP(o1,...,0,)(true)
represents all states that are reachable by executing the statements on the path
S1y-+-38n-

Definition 2 (Feasibility of Counterexamples). A counterexample is fea-
sible iff SP(5)(true) is satisfiable for the corresponding sequence G of concrete
statements. A counterexample is spurious if it has an infeasible prefix.

NEWTON uses a general purpose Nelson-Oppen style theorem prover to deter-
mine the feasiblity of counterexamples. Our model checker SATABS [24] trans-
lates the strongest postconditions into Boolean formulas and uses an incremental
SAT solver to decide the SAT instances that result from unwinding the path.

Refinement. If the simulation yields a spurious counterexample p, M is refined
such that p is removed from M. This is done by adding an appropriate set
of predicates. NEWTON uses heuristics to extract such predicates from SP(p).
McMillan observed that for each cut point of the path there exists a formula
¥ (called the Craig interpolant) that represents precisely the facts that need
to be known between o; to o1 to prove infeasibility [25]. This approach is
implemented in BLAST. A preliminary analysis identifies a number of promising
cut points. The resulting interpolants are then used as new predicates. Both
NEWTON and BLAST are unaware of loops and handle unrolled loops the same
way as counterexamples that do not contain iterations.

2.2 Abstracting Programs with Loops

The traditional abstraction-refinement scheme with predicate abstraction per-
forms poorly on programs that contain loops as shown in Figure 2. SLAM, BLAST,
and previous versions of SATABS need at least 1000 refinement steps that succes-
sively add predicates over the loop counter (as indicated in Figure 3) to produce
a feasible counterexample. We present a detection algorithm for loops contained
in the abstract model in Section 3 and a novel two-phased simulation approach
in Section 4.
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int ¢, s =0;

int a[1000];

for (1 =10; ¢ <1000; i =4+ 1) {
assert (7 < 1000) ;
s=s+ali]; }

Fig. 2. A simple program with a buffer overflow
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Fig. 3. Iterative abstraction refinement for the program in Figure 2

3 Abstract Counterexamples with Loops

Counterexamples with Loops. Consider the Boolean Program in Figure 4(a):
It is the abstraction of the program in Figure 2 with respect to the assertion
predicate (i < 1000) and the loop condition (i < 1000). For this program, all
model checkers listed in Section 2 report the spurious counterexample 4(b). An
inspection of the abstract model reveals that M contains a path with a potential
iteration that traverses the same program locations as the spurious counterex-
ample. Figure 4(c) shows a variant of the counterexample. The repetition signs
|: and :|| indicate that the sequence of enclosed states can be iterated arbitrarily
often. The sequence of states to the right of the loop denotes the path that can
be taken to reach the error state.

Figure 5 shows the structure of the counterexample 4(c). Each iteration of the
loop visits the same program locations. Due to the non-deterministic assignment
at location L5, the final iteration traverses a different sequence of states than
the previous iterations. The counterexample in Figure 5 represents an infinite
set of conventional counterexamples, one of which corresponds to the feasible
path that violates the assertion in Figure 2 after 1000 iterations.

We define the semantics of a counterexample with loops in terms of the in-
finite set of conventional counterexamples it represents (Figure 6). We use the
following notation: The double square brackets [path] denote the expansion of
a path. The state indicated by path[i] is the i*" element of path. The function
length(path) returns the number of states in a path without loops. The expression
(path,)* path denotes all paths that contain an arbitrary number of repetitions
of path, followed by the postfix path. The concatenation operation A™ B denotes
all concatenations of each path p, in set A with each path p;, in set B for which
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| (a) Boolean program | (b) Counterexample | (¢) Counterexample with loop |
bool by; /* Z:< 1000 =/ Li: by by Li: by by
bool by; /* 1 <1000 */ . P
L1: by boiet 1: L2: by bo |- L2: b1 b2 pL2: by by
L2: .lf’ (2'b )’ ’ to L7: L3: b1 b2 L3: by b L3: b1 bs
P Al gomo L L4: by by L4: by by | L4: by bo
L3: assert 1) L5: By by L5: by bo L5: by b
L4: skip; L6: El by L6: b1 bo ” L6: 91 bo
L5: b1,b2:=*,*; L2: B b L2: 91 bo
L6: goto L2; L 51 b2 L3: b1 by
L7: skip; 3+ 01 b2

Fig. 4. Enriching counterexamples with information about loops

G~ |
EHEA D~~~

Fig. 5. Counterexample with loop for Figure 4(a)

there is an abstract transition from the last state of p, to the first state of py.
Note that the recursive syntax definition enables nested loops.

Definition 3 (Feasibility of counterexamples with loops). An abstract
counterexample p with loops is feasible iff [p] contains a path that is feasible
according to Definition 2.

Detection of Loops. A counterexample with loops can be constructed from a
conventional counterexample p = §1, ..., §, by performing a symbolic simulation
of the abstract model along the locations £(81), ..., £(8,). At each location £(8;)
in p we search for a state 5, j < i that allows us to fork a path that traverses the
locations £(8;), ..., £(8;) and then returns to §;. Figure 7 shows the pseudo code
for this algorithm. The number of decision problems generated by this algorithm
is quadratic in the length of the original path.

This loop detection algorithm obviously fails to compute all loops along p that
are contained in M. It misses loops that do not repeatedly visit the same state at
the head of the loop. Furthermore, it (intentionally) does not detect loops that
traverse different locations (e.g., branches of a conditional statement) in each
iteration. Note that the latter kind of loop does not conform to the semantics
given in Figure 6.

In both cases, the abstraction-refinement scheme is still sound. Any feasible
counterexample that our loop detection misses is eventually found in a later
iteration. Refinement boils down to successive unrolling of loops that are not
detected. Thus, we either obtain a conventional counterexample, or the repetitive
concatenation of the loop body results in an abstract loop that matches the
criteria of the loop detection algorithm.
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SYNTAX SEMANTICS

path — state [lkpath:|] = [(path,)* pathy],
| " path foreach path, € [path]
| path path with path, such that

length(path,)=length(path,)A
Vi € {1,...,length(path,)}.
(path. (i) = £(pathy ]

[pathipaths] = [path.] ™ [path2],
where [A]™ [B] denotes

{paps| pa € [A] Apy € [B] A
pallength(pa)] = ps[1]}

Fig. 6. Syntax and semantics of abstract counterexamples with loops

FINDLOOPS(81,...,8n)
1 foreach i€ {1,...,n}, j <i:
2 if 38%,...,8]. Vk e {4, ..., i}.0(8,) = €(3k)A
3 Vk € {j,. .. i —1}.8, 5 8l A 8 =8N38 5 s/
4 then insert |} §},...,35 1
5 return counterexample §1,..., S, with loops

Fig. 7. Pseudo code for loop detection

Our approach does not necessarily benefit from a more agressive loop detection
algorithm. Our experiments indicate that it is advantageous to keep the number
of loops in a counterexample small, since the simulation of concrete loops is
expensive.

We have implemented the algorithm of Figure 7 in Boppo. BOPPO is a sym-
bolic model checker for asynchronous Boolean programs. The Boolean program
is translated to a propositional formula (function calls are inlined) and a SAT
solver is used to perform reachability checking. Each decision problem of the
loop detection algorithm corresponds to a SAT instance. The average overhead
of the loop detection compared to the model checking run itself is below one
percent!.

4 Simulation and Refinement with Loops

The strongest postcondition presented in Definition 2 gives us only a semi-
decision procedure for the feasibility of counterexamples with loops (namely,
successive enumeration of all corresponding conventional counterexamples). We
propose a new two-phase simulation semi-decision procedure for feasibility (see

! This number is based on benchmarking 489 typical Boolean programs between 26
and 656 lines of code that were generated by SLAM.
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1+ 0; s+ 0; | | 10 <— 0; so < 0; |

] ]
assume (z < 1000) ; i1 — @(i0,92); S1 < ... (o)
assert (i < 1000) ; _,| assume (41 <1000); N i’ =0
s s+ ali]; assert (41 < 1000) ; M — =1 4y
i— i+ 1; s2 < s1taccess(ao,i1);

ig — i1+ 1;
i L

Fig. 8. Transforming a simple loop into a recurrent equation via SSA

Figure 1) of a counterexample p with loops. In the first phase, a heuristic is
applied to pick a promising conventional counterexample p. out of [p]. In the
second phase we check the feasibility of p. using the traditional approach.

Simulation. The symbolic loop analysis phase provides a candidate n for the
number of feasible iterations for each loop in the counterexample. The path is
infeasible if no such n exists. The converse does not hold. Starting with the
innermost loop, we parameterize each loop body with a fresh variable n using
following algorithm:

1. Transform the loop into SSA form.

2. Generate a recurrence equation for each variable that is updated by a ¢
function.

3. Calculate the closed form of the recurrence equation (if possible). Substitute
its right-hand-side for the corresponding occurrences of the variable (this
step is known as induction variable substitution [17]). If unable to compute
the closed form, assign the variable non-deterministically.

4. Generate the strongest postcondition of the loop body and existentially
quantify n in the resulting formula.

Example 1. Consider once more the program in Figure 2. The loop in Figure 8
represents the set of concrete paths that corresponds to the looping counterex-
ample in Figure 4. We transform the loop into SSA and obtain the recurrent
equation in Figure 8. The closed form? of this recurrence is (™ = i{® + 1. n.

Therefore, SATABS replaces every occurrence of i1 with ig+1-n. By applying
SP and quantifying n we obtain

SP(loop) = \f.3In.3s(, ib.f[s0/50][i5/i2]
A ((io 4+ 1-n) < 1000) A =((io + 1 - n) < 1000)
/\(so:ao[(i0+1-n)])/\(i2:(i0+1-n)+1)

2 The closed form for a recurrent equation ‘¥ = a, ™ = "V 4 34 yn, n > 0

(where «, 3,~ are numeric constants or loop invariant symbolic expressions) is im =

o+ fn 40D
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Solving the SAT instance that corresponds to (SP(loop) o SP(ig = 0))(true)
yields n = 1000. Note that there is only one valid solution for n, since (i < 1000)
is a sufficiently strong loop invariant. The weakest loop condition that does
not change the program semantics is (¢ # 1001) and gives us the choice n €
{1000,1002,1003,...}. In our current implementation we have no influence on
the n that the SAT solver reports in such a case. We consider to use an optimizing
solver like PBS [26] in future versions of our tool to obtain the minimal values
of n.

Our approach is not restricted to simple loop counters. Van Engelen provides
a framework for handling affine, polynomial, and geometric index expressions
composed over linear and non-linear induction variables [17]. These analysis
methods and our simulation algorithm also cope with pointer arithmetic and
arrays. However, our current implementation supports only a fixed simple recur-
rence scheme (namely the one presented in Example 1). We treat recurrences
that have no closed form equivalent (e.g., E = i kD 4 1, where i is a
linear induction variable) conservatively by introducing non-determinism (as ex-
plained in step 3 of our algorithm). The subsequent traditional simulation of the
potentially spurious counterexample (see below) preserves soundness.

Ezample 2. Consider a function (e.g., as part of a library of combinatorial func-
tions) that calculates the factorial m of a variable k by iterating over i =
{0,...,k}, m =m - (i+1). Assume that the program contains a user-supplied
assertion that the computation does not overflow. By substituting the right hand
side of the closed form (™ = {9 4n for i one obtains m(™ = m™=D. (30 4n41).
The resulting recurrence is m(™ =m0 . %

On a 32 bit architecture, the overflow occurs at k& = 13. This number is suf-
ficiently small to use a bounded model checker (like CBMC [27]) to simulate
the counterexample. For this reason, our current implementation ignores recur-
rence equations with a closed form that is a fast-growing monotonic function of
n (e.g., n! as in our example, or exponentiation with positive integer exponent
or base). In this case, SATABS uses the standard abstraction-refinement algo-
rithm instead of computing a solution for n. The bit-level accurate simulation
algorithm of SATABS guarantees that an eventual overflow will be detected.

Generating Concrete Counterexamples. The symbolic loop analysis is fol-
lowed by a traditional feasibility analysis (see Figure 1). Each loop of the coun-
terexample is unrolled according to the results of the previous step. As usual,
feasible counterexamples are reported to the user. The fact that they are anno-
tated with information about loops makes them more readable. Spurious coun-
terexamples are subject to refinement.

Refinement. We distinguish two causes of infeasibility of the spurious coun-
terexample p:

— There is no such n that satisfies the recurrence, i.e., phase I reports the
corresponding SAT instance to be unsatisfiable. Then we can refine M using
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a set of predicates that remove all paths [p] from M. The unsatisfiability
of formula ¢ A <p§”> A 3 (where ;1 corresponds to the prefix, @én> to the
parameterized loop body, and 3 to the tail of p) is an explanation for the
infeasibility of p. Since no n satisfies the formula, setting n to 0 yields an
infeasible counterexample from which we can extract a set of refinement
predicates using the traditional methods presented in Section 2.

The traditional feasibility analysis (phase II) refutes @1 A <,0§6> A @3 for the
particular constant n = ¢ obtained from phase I. That means that the recur-
rences @én> are not sufficiently strong to show the infeasibility of all paths
[p]. Therefore, we compute a set of refinement predicates from the unrolled
path that corresponds to ¢1 A <,0§6> A 3. This guarantees that the execution
of ¢ iterations of the loop is infeasible in M and that the same loop is not
detected again. We expect that the recurrences are loop invariants that make
spurious counterexamples other than p abstractly infeasible, too. Therefore,
we consider adding the corresponding predicates even if they have no effect

on the feasibility of p.

5 Experimental Results

As expected, our implementation detects the buffer overflow in Figure 2 after
only one iteration. The attempt to run BLAST and SATABS without loop de-
tection on the same problem did not yield any results in reasonable time, but
exposed an exponential increase of the runtime in every refinement step.

Figure 9 shows a buffer overflow in the Linux mail transfer agent AEON 0.02a.

This bug allows local users to gain administrator privileges by executing mali-
cious byte code with help of an overly long HOME environment variable (US-CERT
CVE-2005-1019). The function getConfig is called immediately after the pro-
gram is started and copies the string returned by getenv to a buffer of (fixed)

S U R W N

—_

/* reading rc file, handling missing options */
int getConfig(char settings[MAX_SETTINGS] [MAX_LEN]) {
char home [MAX_LEN] ;

FILE *fp; /* .rc file handler */

int numSet = 0; /* number of settings */
strcpy(home, getenv("HOME")); /* get home path */

strcat (home, "/.aeonrc"); /* full path to rc file */

charx strcpy (char *t, const charx s) {
for (i = 0 ;; i++) { assert (!(t == &home)||! (i>=MAX_LEN));
t[i] = s[il; if (s[i]l == ’\0’) break; }}

Fig. 9. Buffer overflow in AEON 0.2a
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A : o
100 . : ,::%1, MAX_LEN|BLAST| SLAM|SATABS|+loops
. - : w8 25 | 161.1] 44.0] 57.7] 25.0
o ¥ S e e 50 14774 294.9| 1829 28.0
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Fig. 10. Runtime of BLAST, SLAM, SATABS and SATABS with loop detection (AEON)

size MAX_LEN without checking its bound (see line 5). This error is representative
for many buffer overflows and is detected by SATABS with loop detection in one
iteration.

The automatic verification condition generator of SATABS adds the assertion
1 (t == &home)||! (i>=MAX_LEN) to the loop body of strcpy (see line 2 in Fig-
ure 9). Note that SATABS does not specifically target buffer overflows, but aims
at verifying arbitrary assertions in C programs. We manually added a corre-
sponding assertion to the AEON sources to make a comparison with BLAST and
SLAM possible. Our attempts to detect the bug with BLAST, SLAM and SATABS
without loop detection failed despite a generous timeout of 25000 seconds. There-
fore, we reduced the value of MAX_LEN (which is 512 in the original program) and
compared the performance of BLAST, SLAM, SATABS without loop detection,
and SATABS with loop detection. The results of this benchmark® are given in
Figure 10. The table gives the runtime of all four tools for various values of
MAX_LEN. As expected, the runtime of SLAM grows exponentially with the size
of the buffer. BLAST crashes for MAX_LEN= 75. We did not further investigate
this problem. SATABS performs slightly better than SLAM?*, but the runtime still
increases exponentially with the number of iterations. The diagram in Figure 10
illustrates the exponential increase of the runtime in each abstraction-refinement
iteration. We compared the runtime of all iterations that took less than 100
seconds.

SATABS with loop detection spends most of the time in the simulation of the
unrolled counterexample. This is because SATABS performs SAT-based bit-level
accurate simulation (unlike SLAM and BLAST, which model integer variables
as unbounded integers). We listed the results for all four tools in the table in
Figure 10.

3 All our experiments were done on an Intel Pentium 4 with 3 GHz and 2 GB RAM.
* We adapted the refinement strategy of SATABS (with respect to spurious paths and
spurious transitions [28]) to match the behaviour of SLAM and BLAST.
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We refrain from presenting other benchmarks in favor of the in depth descrip-
tion of the AEON example. The SATABS executable and more examples can be
downloaded from http://www.inf.ethz.ch/personal/daniekro/satabs/.

6 Conclusion

This paper presents a novel approach that enables predicate abstraction to find
bugs that emerge as a result of a high number of iterations of loops. We propose
an algorithm to detect loops in abstract models and explain how the traditional
simulation and refinement algorithms can be extended to cope with loops. Our
implementation outperforms the abstraction-refinement based verification tools
BLAST and SLAM on typical buffer overflow examples.

Currently, our implementation recognizes only basic recurrences that are suf-
ficient to find the most common bugs. An integration of the recurrence solving
algorithms of van Engelen [17] can lift this limitation.
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Abstract. We present a tool, called Cascade, to check assertions in C
programs as part of a multi-stage verification strategy. Cascade takes
as input a C program and a control file (the output of an earlier stage)
that specifies one or more assertions to be checked together with (option-
ally) some restrictions on program behaviors. For each assertion, Cascade
produces either a concrete trace violating the assertion or a deduction
(proof) that the assertion cannot be violated.

1 Introduction

Software verification is an active area of research [2,3,5,6,9,10]. Tools have been
developed which can find bugs in real applications with large code bases. How-
ever, in order to analyze large programs, these tools often make approximations.
As a result, some of the errors reported by such tools can be false.

A promising alternative approach is the idea of two-stage verification [2,7,8]. In
two-stage verification, a light-weight analysis capable of scaling to large programs
is run first to identify potential bugs. This is followed by a more detailed analysis
of the potential errors identified in the first stage. Cascade provides a generic
back-end for two-stage verification of C programs which can be easily integrated
with any initial stage. Cascade can handle most C constructs including loops,
functions (including recursive functions), structs, pointers, and dynamic memory
allocation.

2 System Description

Cascade consists of about 6000 lines of C++ code. Its overall design is shown
in Fig. 1. The core module takes as input an abstract syntax tree representing
a C program and a control file that specifies one or more potential errors to be
checked. The core module uses symbolic simulation over the abstract syntax tree
to build verification conditions corresponding to the assertions specified in the
control file. The semantics of C statements are hard-coded into the translation
rules that the core module uses to convert C statements into logic formulas.
Cascade uses a bounded model-checking approach to handle loops (and recursive
functions). Loops are unrolled a fixed number of times (this number can be
specified by the user). Cascade models all pointers and addresses in the heap
precisely. The data stored in memory is represented abstractly as integers.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 166-169, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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EDG 4—-[ Abstract Syntax Tree J
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Fig. 1. Cascade: System design
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2.1 Abstract Interfaces

Cascade is designed to be easily customizable. Major components are hidden
behind abstract interfaces. This makes it easy to provide and experiment with a
variety of configurations based on the same basic architecture. The core module
depends on implementations of three generic abstract interfaces: an abstract
syntax tree, a memory module, and a theorem prover.

Abstract Syntax Tree. Cascade has a simple internal representation of pro-
grams as an abstract syntax tree. All operations are done on this internal rep-
resentation, completely separating it from the front end which is responsible
for building the abstract syntax tree. Cascade currently has an implementation
using EDG [4], an industrial-strength parser for C programs, as a front end to
create the abstract syntax tree.

Abstract Theorem Prover. Cascade uses an abstract theorem proving inter-
face. The interface provides an abstract ExprNode object which corresponds to
logical expressions in the underlying theorem prover. It also specifies some stan-
dard operations on ExprNodes like arithmetic operations, Boolean operations
and array operations. Any theorem prover which can support these operations
can easily be used with Cascade. An unsupported operation can be set to return
unknown. Cascade currently uses CVC Lite[1] as its theorem prover. CVC Lite
can produce proofs and concrete counter-examples. An additional advantage of
using CVC Lite is our in-house expertise on using and modifying the theorem
prover.

Abstract Memory Module. All memory operations during simulation are
handled by an abstract interface modeling heap memory. Memory is a mapping
from addresses to values where both of them are ExprNode objects. Functions
like allocate, deallocate, read and write are supported. The memory module also
provides a check_valid_address function which checks if a given address is valid
or not. This function can be used in assertions. The current implementation of
the abstract memory module uses an array of integers to model memory. We
expect to provide a more precise model of the data in memory using bit-vectors
(which are supported in the latest version of CVC Lite) in the near future.
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2.2 Core Module

Simulator. The simulator integrates the various modules. It symbolically sim-
ulates the program, building expressions using the abstract interface to the the-
orem prover, and then checking the expressions corresponding to the assertions
specified in the control file. An interface to the simulator is also exported, en-
abling Cascade to be used as a library that can be integrated with other tools.

AST Manipulator. The AST manipulator module has various functions which
can modify the AST. For example, unrolling of the loops is handled by this
module. This module also interfaces with the control file and integrates the
restrictions on execution paths and variables with the AST.

2.3 The Control File

Execution of the tool is guided by a Control File. A control file specifies the
assertion(s) to be checked. In addition, a control file can be used to constrain
the search for a violating trace by restricting the program paths to be explored
or giving constraints on program variables. The control file allows important
information about feasible violations (perhaps gathered by an earlier stage) to
be communicated to Cascade.

The control file has a simple XML format. It begins with SourceFile sec-
tions which give the paths to C source files. It then has one or more Run sec-
tions, each defining a constrained run of the program. Each run starts with a
single StartPosition and ends with a single EndPosition section. These give
respectively the start point and end point of the simulation to be run. A Run
may optionally specify one or more WayPoint sections. A WayPoint indicates
that Cascade should consider only those program paths which pass through the
WayPoint. Each position (start, end, or waypoint) can also include a command.
Commands include: cascade_assume, which takes a Boolean C expression and
adds it as an assumption to the theorem prover; cascade_check, which takes a
Boolean C expression and checks whether it is valid at the given position; and
cascade_check_valid_address, which takes a C expression as its argument and
checks if the address represented by the expression is a valid address in memory.

3 An Example

Table 1 gives a small C function which has a NULL pointer access if its argument
is negative. Suppose that a suitable first-stage tool [6,7,10] has flagged Line 9 as
a potential error. With no further information, Cascade finds a violating trace in
which the argument is negative. However, suppose the first-stage tool knows from
its analysis that the function f is only called with a positive argument. Using
the control file, the first-stage can constrain the search to only those cases when
a > 0. In this case, Cascade can verify that the assertion cannot be violated.
The code and control file for this example are shown below.



Cascade: C Assertion Checker and Deductive Engine 169

Table 1. Control file example

<ControlFile>
<SourceFile>
<Name>~/ex/f.c</Name><FileId>1</FileId>
</SourceFile>

1 intx £(int a) { <Run><StartPosition><Position>
2 int *p, *x, *y; <FileId>1</FileId><LineNum>1</LineNum>

2 Pl . . </Position><Command>
3 x - (1nt*.<) malloc(sizeof (int)); <CascadeFunction>cascade_assume
g }i,fzagggl)” </CascadeFunction>
6 e <Argument>a>0</Argument>
; els}e) 5 </Command></StartPosition>
8 . <EndPosition><Position>
o i <FileId>1</FileId><LineNum>9</LineNum>
10 rIe)turn’pr </Position><Command>
1} ’ <CascadeFunction>

cascade_check_valid_address
</CascadeFunction>
<Argument>p</Argument>
</Command></EndPosition></Run>
</ControlFile>

4 Conclusion
Cascade has been successfully run on programs of up to a few hundred lines of

code. For a 400 line example, without any constraints in the control file, the
run-time on a P4 2GHz is less than 1 minute. We expect that with suitably
constrained control files, Cascade will scale to much larger code bases. Although
it is still under development, we hope it will be of use and interest to a broader
community. In addition, we hope to receive feedback and suggestions for fur-
ther improvement. For further information on Cascade, including downloads,
examples and documentation, see http://www.cs.nyu.edu/acsys/cascade/.
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1 Motivation

This paper presents YASM: a (yet another) software model-checker based on the
Counter-Example Guided Abstraction Refinement (CEGAR) [6] framework. A num-
ber of well-engineered software model-checkers are available, e.g., SLAM [1] and
BLAST [12]. Why build another one?

Traditional software model-checkers build over-approximating abstractions of the
programs they analyze and typically bias their analysis towards proving that a (safety)
property of interest holds (verification). On the other hand, since model-checkers are
widely known for their bug-finding abilities, they are often used for refutation. In this
case, the above approach seems unreasonable: why introduce spurious behaviour and
make it more difficult to find a real bug? For such circumstances, one would just want
to prove that the property is false (refutation). No witness for that is required.

A number of techniques for creating and combining over- and under-approximating
abstractions have been proposed, e.g., [7,9,3,15,16]. In these approaches, model-
checking yields either true or false, which are deemed to be conclusive, or maybe, in
which case the abstraction needs to be refined. While all aspects of the CEGAR frame-
work for such abstractions have been described theoretically [9,3,10,15,16], these ideas
have not yet been implemented.

In this paper, we present YASM, which we believe to be the first symbolic software
model-checker based on combining over- and under-approximating abstractions, which
we refer to as exact [11]. It can prove and disprove properties with equal effectiveness.
Our experiments [11] show that performance of the tool is comparable with standard
over-approximating model-checkers. Moreover, we found that exact abstractions can
become part of the standard CEGAR framework virtually without modifications and,
more importantly, minor modifications of the framework enable an array of useful anal-
yses, e.g., reasoning about the entire CTL, reusing previously computed abstractions,
and many others.

The rest of the paper is organized as follows: Sec. 2 describes the design and the
current state of the tool. Sec. 3 discusses the above observations. We conclude in Sec. 4.

2 Design and Implementation

YASM is based on the standard CEGAR loop.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 170-174, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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Abstractions. Following SLAM, abstractions are represented by Boolean Programs.
Unlike SLAM, the semantics of these programs is given via a variant of Mixed Transi-
tion Systems (MixTS) [7,11]. Compared to Modal and 3-valued TSs, MixTSs allow for
a monotonic refinement of abstractions, yet are simpler to encode symbolically than dis-
junctive (or hyper-) TSs [16,8]. We employ the standard technique for extracting an ab-
straction of a program by approximating weakest precondition of program statements.
However, to allow for analysis of concurrent systems, we differentiate between pro-
gram non-determinism and abstraction-induced non-determinism, both syntactically, in
the Boolean Programs, and semantically, in MixTSs [11].

Model-Checking. YASM uses a specialized BDD-based symbolic model-checker, de-
scribed in [4,3]. The May and Must transition relations of a MixTS are encoded in a
single BDD, and each 3-valued predicate is represented by two BDD variables.

Counter-examples. When a property is inconclusive, the model-checker generates a
proof of this fact that is mined for new predicates. For safety properties, this proof, de-
scribed in [10,5], can be expanded into a standard counter-example — making all stan-
dard predicate discovery techniques applicable. However, unlike standard approaches,
it does not need to be simulated in order to determine its feasibility.

Architecture and Implementation. The tool is written in Java (around 30K lines of
code not including third-party components). It makes use of several tools including:
CIL [13] for parsing and simplifying C code, CUDD BDD library [17] for decision
diagrams, and CVCLite [2] for theorem proving, and we are currently working on the
integration with Eclipse IDE.

YASM has been in operation for about a year and a half, and since that time has been
used to check C programs up to 35K lines of code: network protocols, programs from
the OpenSSH package, parts of Linux file system, etc. The tool is publicly available
fromhttp://www.cs.toronto.edu/~arie/yasm.

3 YAsM with CEGAR Framework

The main advantage of exact (or even under-approximating) abstraction is its ability
to refute properties. Consider abstracting a program shown in Fig. 1(a). Its abstraction
using predicates b1, b2, b3 (See Fig. 1(b)) is sufficient for YASM to conclude that
ERROR is reachable. However, this abstraction is insufficient for an over-approximating
model-checker: the shortest path to ERROR (line 9), the one typically found by a model-
checker, is spurious.

YASM succeeds because it partitions the abstract states into: (a) states from which
ERROR is unavoidable (A), (b) states from which ERROR is unreachable (B), and (c)
states that have a (potentially spurious) path to ERROR (C'). If the initial state belongs to
either A or B, the result is conclusive; otherwise, a path to ERROR is available to guide
the refinement process. Note that an over-approximating analysis combines A and C,
and under-approximating combines B and C'.

In the remainder of this section, we show how knowing the set A changes the dy-
namics of the CEGAR framework.

Aggressive Abstraction. Compared to an over-approximating model-checker, YASM’s
bug-detecting ability is preserved even in the face of a very aggressive abstraction.
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1: int pl,p2,p3,x,Yy; 1: bool bl,b2,b3;

2: pl=p2=p3=x=y=5; 2: bl=b2=b3=1;

3: 1if(p3<=0) return; 3: if (b3) return;

4: 1if(y<0) 4: if(*)

5: {if (x>2){ 5: {if (%) {

6: if (y>10) 6: if (x)

7: {if (p2>0) 7: {if (b2)

8: ERROR; }} 8: ERROR; }}
(a) 9: if (p1>0) ERROR; (b) 9: if (bl) ERROR;

10: } else { 10: } else {

11: if(p2>0) 11: if(b2)

12: {if (p1>0) x = x+1; 12: {if (bl)

13: if (p2>0) x = x+2; 13: if (b2)

14: if (p3<=0) x = x+3; 14: if (b3)

15: if (x>40) 15: if (x)

16: if (p1>0) ERROR; 16: if (bl) ERROR;

17: if (p1>0) ERROR;}} 17: if (bl) ERROR;}}

Fig.1. (a) A C program. (b) An abstraction of (a) using predicates bl:{p1>0}, b2:{p2>0},
b3 :{p3<=0}.

For example, when conditions of the if-statements at lines 12—14 are abstracted away,
i.e., replaced by *, the resulting abstraction has more spurious paths, and yet YASM is
still able to conclude that ERROR is reachable. This allows us to augment the CEGAR
framework to prefer a more aggressive (and computationally cheaper) abstraction and
employ heuristics during the refinement stage to decide between increasing precision
of the abstraction and adding new predicates.

Shallow Counterexamples. If we restrict our abstraction to predicates bl and b2,
YASM can show that ERROR is unavoidable from line 4. Yet the overall analysis is in-
conclusive due to a spurious counterexample: a path to ERROR on line 9. This path can
be eliminated using new predicates y<0 and x>2. Using the fact that error is unavoid-
able from line 4, we can instead: (a) only generate the counterexample up to that line,
and (b) discover that we need the predicate b3 : {p3<=0} to finish the analysis.

Reusing Previous Results. The set A can also be reused between successive iterations
of the CEGAR loop. Once an abstraction is refined, we can check for reachability of A,
instead of ERROR. For example, after analyzing an abstraction restricted to the predicate
bl, we know that ERROR is unavoidable from A = (pc € ERROR) V (pc = 12 A
p1>0), and can use the property EF' A instead of EF(pc € ERROR) in all successive
iterations.

Note that a combination of an aggressive abstraction and reuse of previous results
achieves a similar effect to Lazy Abstraction employed by BLAST— only the parts of
the program relevant to the analysis are actively refined. Furthermore, by changing the
property at each refinement step, we can guide the refinement process to the least spu-
rious execution, instead of the shortest one.

4 Conclusion

At each step of the abstraction/refinement loop, all abstractions get refined: either by
removing possible behaviours for over-approximation, or by adding them to under-
approximation. Clearly, combining both approaches allows substantial reuse of the anal-
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ysis infrastructure and may lead to faster convergence of the analysis, since each step
improves abstraction either towards truth, or towards falsity. This interplay also leads
to many interesting analyses, some of which we’ve described in this paper.

The use of the exact abstraction further allows us to check arbitrary CTL prop-
erties. For example, we have successfully used YASM to prove non-termination (i.e.,
EG true), and response (i.e., AG(p = AFq)) properties of C programs.

Finally, exact abstractions can precisely capture non-determinism present in concur-
rent programs. We have used YASM to check properties of the Bakery mutual exclusion
protocol and error detection in RAX [14]. Our experiments look promising, yet more
work is required to make YASM applicable to real-life concurrent programs written in
fully-fledged programming languages such as C or Java.
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Abstract. We present a SAT-based algorithm for assisting users of Symbolic
Trajectory Evaluation (STE) in manual abstraction refinement. As a case study,
we demonstrate the usefulness of the algorithm by showing how to refine and
verify an STE specification of a CAM.

1 Introduction

Symbolic Trajectory Evaluation (STE) [12] is a well-known simulation-based model
checking technique. It combines three-valued simulation (using the standard values O
and 1 together with the extra value X, “unknown”) with symbolic simulation (using
symbolic expressions to drive inputs). STE has been extremely successful in
verifying properties of circuits containing large data paths (such as memories, fifos,
floating point units) that are beyond the reach of traditional symbolic model checking
[1,11,7].

In STE, specifications are assertions of the form A = C, where A is called the
antecedent and C' the consequent. Both A and C' are formulas in a restrictive tempo-
ral logic, in which only statements about a finite number of time points can be made.
The only variables in the logic are time-independent Boolean variables, called symbolic
variables.

The power of STE comes from the use of abstraction. The abstraction is induced
by the antecedent of the assertion; when the antecedent does not specify a value for a
certain node, the value of the node is abstracted away by using the unknown value X.
Thus, the antecedent plays two different roles in STE; it is the logical antecedent as well
as a specification of what abstraction should be used in the verification. Because of the
abstraction, the values of circuit nodes during simulation can be represented by BDDs in
terms of the symbolic variables occurring in the assertion, providing an efficient means
of checking an STE assertion.

A drawback of STE is that the user needs to spend time on finding the right abstrac-
tion. Often, just the right mix between symbolic variables and X’s has to be used to
make sure that the property holds in the abstraction induced, and the BDDs used in the
verification do not blow up.

Abstraction Refinement. A common initial result in an STE verification attempt is
that the model-checker cannot prove the assertion because the simulation using the
antecedent yields X’s at nodes that are required to have a particular Boolean value by

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 175-189, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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the consequent. This indicates that the used abstraction was too coarse, leading to a
so-called spurious counter-model. In contrast, a real counter-model is a simulation run
that satisfies the antecedent but yields a O for a node for which the consequent requires
a 1, or vice-versa. A model of an assertion is a simulation run that satisfies both the
antecedent and the consequent.

When an STE model-checking run produces spurious counter-models but no real
counter-models, we say that the result of the verification is unknown. In this case, the
assertion must be refined (usually by introducing more symbolic variables in the an-
tecedent) until the property is proved, or until a real counter-model is found. Often, a
great deal of time is spent on such manual abstraction refinement [14,2].

Contribution. We have invented the concept of a strengthening, which is a particular
piece of useful information that can help STE-users with manual abstraction refine-
ment; given an STE assertion and a circuit, a strengthening indicates which extra inputs
of the circuit need to be given a Boolean (non-X) value in order for relevant outputs
to also get a Boolean value. We have also designed a SAT-based algorithm that cal-
culates strengthenings, which we have implemented in a tool called STAR (SAT-based
Tool for Abstraction Refinement in STE). STAR has two modes; the first mode calcu-
lates strengthenings that satisfy the assertion (corresponding to models), and the sec-
ond mode calculates strengthenings that contradict the assertion (corresponding to real
counter-models).

By inspecting a weakest satisfying strengthening, the user can gain intuition about
how to refine the assertion by introducing a minimal number of extra symbolic variables.
On the other hand, a weakest contradicting strengthening gives a minimal set of reasons
for the failure of the assertion, which can be used to gain intuition about why the circuit
does not satisfy the assertion. In the next section, we look at examples of satisfying and
contradicting strengthenings in more detail.

Related Work. There exists a large body of work in the field of automatic abstraction
refinement for model-checking techniques for hardware other than STE, for an overview
see for example [S]. Most of these abstractions are state-based, focusing on how to
represent the state space of a circuit, which is not applicable to STE. In [6] an algorithm
providing an easy interface to abstraction in STE is described. The algorithm does,
however, not help in finding a right abstraction.

In another paper [13] presented at this conference, the tool AutoSTE is described.
This tool can automatically refine STE assertions that result in a spurious counter-
model, until either the assertion is proved, a real counter-model is found (or resources
are exhausted). We believe that STAR and AutoSTE are complementary, in the fol-
lowing sense. AutoSTE can automatically find certain refinements of a specific kind
(namely where some nodes become driven by fresh symbolic variables under certain
conditions). STAR assists the user in manually finding refinements of a much more
general kind, for example when sophisticated symbolic indexing schemes [6,7] are
needed. We show, for instance, in the next section, how the method can be used
to derive a symbolic indexing scheme for the verification of Content-Addressable
Memories.
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2 A Case Study

Content-Addressable Memories (CAMs) are hardware implementations of lookup ta-
bles. A CAM stores a number of fags, each of which is linked to a specific data-entry.
The basis of a CAM circuit consists usually of two memory blocks, one containing tag
entries, and the other the same number of corresponding data entries, see Fig. 1. Given
an input tag, the associative-read operation consists of searching all tags in the CAM to
determine if there is a match to the input tag, and if so sending the associated data-entry
to the output. Verifying this operation is non-trivial [7].

TAGS DATA

tagmem[0] [0]
[1] d [1]

aread ——Pp|
—» out
tagin ————p»|

[15. d [15]

Fig. 1. A Content-Addressable Memory Circuit

What follows is a constructed, but realistic, account of how a verification engineer
might use our method to derive an STE assertion for verifying the associative-read
operation of a CAM. How to verify CAMs using STE is now well-known [7]. The STE
assertion needed for the verification is however quite complex. We show how a user who
is ignorant of the above mentioned work on CAM verification can derive the required
assertion with help of the STAR-tool. We believe that this convincingly illustrates the
usefulness of our method.

In the case-study, we assume that the verification engineer uses the BDD-based STE
model-checker in Intel’s verification toolkit Forte[4]. The CAM under verification is
taken from Intel’s GSTE tutorial.

An obvious way of verifying the associative-read operation using STE is to introduce
symbolic variables for each tag- and data-entry. When doing so, the antecedent of the
assertion specifies that each tag-entry tagmem|i] has symbolic value tagmem,, and
each data-entry datmem{[i] has symbolic value datmem,;. The consequent checks that,
for each 7, when the input-tag is equal to tagmem, the output is equal to datmem;.

(areadis 1) and (tagin is tagin)

and (tagmem|0] is tagmem,) and ... and (tagmem[15]is tagmem, )
and (datmem|0] is datmemo) and ... and (datmem[15] is datmems)
— (M

((tagin = tagmem,) — (outis tagmem,))

and ((tagin = tagmem,5) — (outis tagmem;y))
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Warning: Consequent failure at time 0 on node out[63]
Current value:data[63] + X(!data[63])

Expected value:datal[63]

Weak disagreement when:!data[63]

----WARNING: Some consequent errors not reported

data[l6]l&datal2l]&datal[6l]&data[34]&datal2]&datal7]&datal47]&datal[52]&data[20]&
data[60]&data[33]&data[38]&data[6]&datal46]&datal[51l]&datall9]&data[59]&datal[56]&
data[24]&data[32]&data[29]&data[37]&data[5]&data45]&datall3]&datal42]&datal53]&
dataf[l0]l&data[50]&datall8]&data[58]&data[l5]&datal26]&datal55]&datal23]&datal63]&
data[31l]&data[28]&datal[39]&datal36]&datal43]&datal44]&datal40]&datall2]&dataldl]&
data[27]&datal[49]&datal[l7]&data[57]&data[l4]&data[25]&datal[54]&datal22]&datal[62]&
data[30]&datal[9]&data[35]&data[3]&data[4]&data[0]&datal[ll]&datall]l&datal[8]&data[48]

Fig. 2. Forte Output for Assertion 2

This assertion, however, cannot be handled by a BDD-based STE-model checker. The
large number of symbolic variables leads to an immediate BDD-blow up.

Suppose that, instead, the user tries to verify the operation by using symbolic index-
ing [6]. When doing so, a vector of symbolic variables, index, is created to index over
the potentially matching tag-entries. The antecedent states that the indexed tag-entry
has symbolic value tagin and the indexed data-entry has value data. So, only variables
for the content of the indexed data-entry and tag-entry are created, instead of variables
for all tag- and data-entries. This greatly reduces the number of required symbolic vari-
ables. Using symbolic indexing, the user could arrive at the following assertion.

(areadis 1) and (tagin is tagin)
and ((index = 0000) — ((tagmem][0] is tagin) and (datmem]0] is data)))
and ((index = 0001) — ((tagmem[1] is tagin) and (datmem([1] is data)))
: : : @
and ((index = 1111) — ((tagmem([15] is tagin) and (datmem[15] is data)))
_—
out is data

When the user tries to verify this assertion with the model-checker, the result is “un-
known”. The output of the model-checker is given in Fig. 2: the simulated value for
node out[63] is (data[63] + (X & —data[63])), while the required value is data[63)].
When the symbolic variable data[63] has value 0, the simulated value of out[63] evalu-
ates to X, indicating a spurious counter-model. The expression data[16]&....& data[48]
indicates that only when the data-entry consists of only high bits no spurious counter-
model exists. So, the STE model-checker does not give much help with refining the
assertion. This is where our tool STAR comes in.

STAR can be used to calculate a weakest contradicting strengthening of Assertion 2,
see Fig. 3. The table presents an assignment of the symbolic variables, and a weakest
strengthening of the antecedent that together contradict the consequent. Here, only bold-
faced values (0 or 1) in the table represent strengthened nodes. A normal-faced 0 or
1 represents a node that has received the value 0 or 1 because it was required by the
(original) antecedent. For instance, tagmem[12] is required to have value 00000000 by
the antecedent, but tagmem([1] is required to have the same value by the strengthening.
To increase readability, X’s are represented by a dash —; entries for which all values are
X have been left out of the table completely. The table states that
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Symbolic Variables

index = 1100

tagin = 00000000

data =111111111111111111111111111111171111111111111171111111111111111100
Inputs at time 0

aread =1

tagin = 00000000

Initial Values

tagmem[1] = 00000000

tagmem([12] = 00000000

datmem[l] = —--—-m oo 1-
datmem([12] = 1111111111111111111111111111111111111111111111111111111111111100
Outputs

out =1111111111111111111111111111111111111121111111111111111111111111~

Fig. 3. A Weakest Contradicting Strengthening of Assertion (2)

— the value of index vector is 1100, so, tag- and data-entry 12 are indexed,
— not only the indexed tag 12 is equal to the input tag tagin but also tag 1,
— data-entry 1 differs from the indexed data-entry 12, at the second-last position;
data-entry 1 has value 1 at this position, while the indexed data-entry has value 0,
— the value of the output of the CAM at the second-last position is 1 instead of O as
required by the consequent.
From this, the user can deduce that the assertion in fact does not hold for the circuit
because the assertion does not consider the case in which two tag-entries are equal to
the input tag. Also, the user can conclude that, apparently, the CAM contains a bus that,
when given both a 0 and 1 value, chooses the 1 value over the 0 value.

An obvious way of circumventing this problem is to introduce symbolic variables
for all tag-entries, and to add the constraint that there is at most one tag-entry equal to
the input tag. To do so, many extra symbolic variables are needed; one for each bit of
each tag-entry. Therefore, it is not surprising that the resulting assertion yields, again, a
BDD blow-up.

To obtain an intuition on how to, instead, refine the assertion by introducing a very
small number of extra symbolic variables, the user can calculate a weakest satisfying
strengthening of the assertion. The user knows from the output of the model-checker
that when all of the data-entries have value 1 no spurious counter-model exists. There-
fore, the constraint that at least one of the data-entries has value 0 is given to STAR as
well.

In Fig. 4, a weakest satisfying strengthening calculated by STAR is given. In this
strengthening, for each non-indexed tag-entry either (1) the tag-entry differs at one
position from the input tag, or (2) the tag-entry consist only of X’s (tag-entries 5 and
11), and the corresponding data-entry contains a zero at the position where the indexed
data-entry has a zero, and X’s at each of the positions where the indexed data-entry
contains a 1.

This can be explained as follows. There are two ways of making sure that a non-
indexed data-entry does not corrupt the output: (1) making the tag-entry differ at at-least
one position from the input tag, or (2) as the bus in the CAM favors a 1 over a 0, for
each tag that potentially matches, having a 0 in the data-entry at each position where
the indexed data-entry contains a 0.
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Symbolic Variables

index = 0000

tagin = 00000010

data = 0100000000000000000000000000000000000000000000000000000000000000
Inputs at time 0

aread =1

tagin = 00000010

Initial Values

tagmem[0] = 00000010

tagmem(1l] = 1-------

tagmem([2] = 1-------

tagmem(3] = --1-----

tagmem([4] = ------ 0-

tagmem([5] = --------

tagmem([6] = -1------

tagmem(7] = --1-----

tagmem(8] = -1------

tagmem[9] = 1-----—--

tagmem([10] = 1-------

tagmem(11] = —--—--—-

tagmem([12] = ---1----

tagmem([13] = ----1---

tagmem(14] = —----—- 0-

tagmem([15] = -1------

datmem[0] = 0100000000000000000000000000000000000000000000000000000000000000
datmem[5] = 0-00000000000000000000000000000000000000000000000000000000000000
datmem([11] = 0-00000000000000000000000000000000000000000000000000000000000000

Fig. 4. A Weakest Satisfying Strengthening of Assertion (2)

As for the verification of the associative read property, no assumptions on the content
of the data-entries in the CAM are wanted, the user can ask STAR to generate a weakest
satisfying strengthening of Assertion (2) that does not strengthen the requirements on
the values of data-entries. This strengthening, given in Fig. 5, makes each non-indexed
tag-entry differ at one position from the input tag.

Inspired by this strengthening, the user can modify the assertion by introducing, for
each tag-entry ¢, a vector of symbolic variables p; that specifies at which position the
tag-entry differs from the input tag when the tag-entry is not indexed. The formula
expressing that tag ¢ differs from the input tag tagin at the position encoded by p; is:

mismatch(i) = ((pi = 000) — (tagmem[¢][0] is —tagin]0]))

and ((p; = 001) — (tagmem[i][1] is —tagin[1]))

and ((p; = 111) — (tagmem[i][7] is ~tagin[7]))

The formula expressing that each of the non-indexed tag-entries differs at at-least one
place from tagin is:

A = ((index # 0000) — mismatch(0))
and ((index # 0001) — mismatch(1))

al.ld ((index ;A 1111) — mismétch(lS)))
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Symbolic Variables

index = 1111

tagin 11111110

data 0100000000000000000000000000000000000000000000000000000000000000
Inputs at time
aread

tagin

Initial Values
tagmem[0] =
tagmem([1] =
tagmem[2] =

tagmem([3] =

tagmem([4] =

tagmem([5] =

tagmem([6] =

tagmem(7] = 0-------

<>

1
11111110

tagmem|8]
tagmem[9]
tagmem|[10]
tagmem([11]
tagmem[12]
tagmem|[13]
tagmem|[14]
tagmem|[15]
datmem([15] = 0100000000000000000000000000000000000000000000000000000000000000

Fig. 5. A Weakest Satisfying Strengthening of Ass. (2) without extra assumptions on data-entries.

The assertion obtained by adding A’ to the antecedent of assertion (2) is exactly the
assertion described in [7] and is easily proved by an STE model-checker.

3 STE-Theory Revisited

Here, we briefly revisit the STE-theory needed to describe the algorithm in STAR.

Circuits and Values. A circuit is modeled by a set of node names A connected by
logical gates and delay elements. S C N is the set of output nodes of delay elements.
In STE, we abstract away from specific Boolean values of a node taken from the set
B = {0, 1}, by using the value X, which stands for unknown. Furthermore, the over-
constrained value T is introduced; a node assumes value T when it is both required
to take on value 0 and value 1, leading to the set of quaternary signal values, denoted
V = {0,1,X, T}. On this set an information-ordering < is introduced. The unknown
value X contains the least information, so X < 0 and X < 1, while 0 and 1 are incompa-
rable. The overconstrained value T contains the most information,so0 < Tand1 < T.
If v < w it is said that v is weaker than w.

A circuit state, written s : State, is a function from A to V, assigning a value from
V to each node in the circuit. A sequence o : N — State is a function from points
in time to circuit states, describing the behaviour of a circuit over time. The set of all
sequences o is written Seq. The set of sequences that do not assign the overconstrained
value T to any node at any time-point is written Seqs.

Trajectory Evaluation Logic. STE assertions have the form A = C'. Here A and C'
are formulas in Trajectory Evaluation Logic (TEL). The only variables in the logic are
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time-independent Boolean variables taken from the set V' of symbolic variables. The
language is given by the following grammar:

f o=mnis0 | nisl | frand fo | P— f | Nf

where n € A/ and P is a Boolean propositional formula over the set of symbolic vari-
ables V. The notation n is P, where P is a Boolean formula over the set of symbolic
variables V, is used to abbreviate the formula: (-P — nis0) and (P — nisl).
The depth of a TEL-formula f is the maximal degree of nestings of N in f. The depth
of an STE-assertion A = C' is the maximum of the depth of A and the depth of C'.
The meaning of a TEL formula is defined by a satisfaction relation that relates val-
uations of the symbolic variables and sequences to TEL formulas. Here, the following
notation is used: The time shifting operator o' is defined by o' (¢)(n) = o(t + 1)(n).
Standard propositional satisfiability is denoted by =py.p. Satisfaction of a TEL-formula
/, by asequence o € Seq, and a valuation ¢ : V' — B (written ¢, 0 |= f) is defined by

¢,0 Enisb = b<o0)(n) , be{0,1}
¢1U':f1 and f2 = ¢7U':f1 and ¢7J):f2
oo EP—f = ¢ Eprop P implies ¢,0 = f
¢,0 =Nf = ¢0' Ef

Trajectories. In STE, three abstractions are used: (1) the value X can be used to ab-
stract from a specific Boolean value of a circuit node, (2) information is only propagated
forwards through the circuit (i.e. from inputs to outputs of gates) and through time (i.e.
from time ¢ to time ¢ 4 1), (3) the initial value of all delay elements is assumed to be X.
Given a circuit ¢, a trajectory is a sequence that meets the constraints of the circuit c,
taking these abstractions into account. How to obtain the set of trajectories of a circuit
c is described, for instance, in [10,8,9,6,1,12].

A circuit ¢ satisfies a trajectory assertion A = C, written ¢ | A = C' iff for
every valuation ¢ € V' — B of the symbolic variables, and for every trajectory 7 of ¢
such that 7 € Seqy, itholds that: ¢, 7 = A = ¢, 7 = C.

STE-Model Checking. The theory of STE guarantees that for every TEL-formula A,
circuit ¢ and valuation ¢, there exists an unique weakest trajectory that satisfies A. This
trajectory is called the defining trajectory of A w.r.t. ¢, written ¢[[ A ). Furthermore,
for every TEL-formula C, and valuation ¢ there exists an unique weakest sequence that
satisfies C. This sequence is called the defining sequence of C w.r.t. ¢, written [ C'].

The Fundamental Theorem of STE states that in order to check that an assertion is
true, only the defining trajectories of the antecedent need to be considered (instead of all
trajectories). That is, to check that ¢ = A = C, we only need to check that for every
valuation of the symbolic variables ¢, such that ?[[ A ]| € Seqs, holds ?[C] < 2[ A .

Given a circuit description and an STE-assertion, an STE-simulator calculates a sym-
bolic representation of the set of defining trajectories of the antecedent of the assertion.
In BDD-based STE, BDDs are used to represent the defining trajectories. In SAT-based
STE, non-canonical Boolean expressions are used. In both cases a dual-rail encoding is
used to encode a quaternary value by two Boolean values [12].

After simulation, it is checked whether the symbolic representation of the defining
trajectories of the antecedent satisfies the requirements of the consequent. In BDD-
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based STE this check is trivial because of the canonicity of BDDs. In SAT-based STE,
a SAT-solver is called to perform this check.

4 Finding Satisfying and Contradicting Strengthenings

The job of the main algorithm in STAR is to, given a circuit and an STE-assertion, find
a weakest satisfying strengthening (respectively weakest contradicting strengthening)
of the assertion. In order to do so, the algorithm employs an STE-simulator on Boolean
expressions. After simulation, a SAT-problem is generated whose solutions represent
all satisfying (respectively contradicting) strengthenings of the assertion. Finally, an
incremental SAT-solver [3] is iteratively called to find a weakest such strengthening.
Before describing the algorithm in more detail, we make the concept of strengthenings
more precise.

4.1 Satisfying Strengthenings

A strengthening of an STE-assertion gives extra Boolean requirements on nodes of the
circuit over time. The set of the nodes and corresponding time-points that potentially
can be strengthened is called the set of strengthening candidates, written SC C N x N,
Given an assertion of depth d, the set of strengthening candidates commonly consists
of the input nodes Z of the circuit over time-points {0, ..., d} and the initial values of
delay elements. That is, in that case: SC = ({0,...,d} x Z) U ({0} x S). However,
sometimes, we might want to restrict the set of strengthening candidates as we did in
the case-study.

Given a set of strengthening candidates, a strengthening is a function
v : SC — {0,1,X} from nodes and time points to the values 0, 1, and X, giving
extra requirements on the nodes of a circuit. For example, if v(0,p) = 1, v(2,q) = 0,
and 7y (t,n) = X for all other ¢ and n, then node p is strengthened to have value 1 at
time-point 0, and node q is strengthened to value O at time-point 2.

A strengthening can easily be transformed into a TEL-formula with the same mean-
ing, denoted by TEL(+), which is defined to be the conjunction of all N*(n is v(t,n))
with (¢,n) € SC and for which v(¢,n) # X. For example, if v is defined as in
the above example, then TEL(y) = ((pis1) and N?(qis0)). The TEL-formula
(A and TEL(7)) is called the strengthening of A w.r.t. 7y, and is written Str(A, ).

Given a circuit ¢ and an assignment of symbolic variables ¢ : V' — {0, 1}, a satis-
fying strengthening of an assertion A = (' is a strengthening ~ such that simulating
using v and A does not yield overconstrained nodes and makes the consequent true, i.e.
#[ Str(A,7) ] € Seqs and ¢, ¢[ Str(4,7) ] - C.

Strengthenings can be compared by extending the information order < point-wise
to functions, arriving at the concept of a weakest satisfying strengthening, which is a
satisfying strengthening weaker than all other satisfying strengthenings of an assertion.
Note that weakest strengthenings are not unique; there can for example be several, but
incomparable, weakest satisfying strengthenings.
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4.2 Generation of the SAT-Problem

A SAT-problem consists of a set of variables W and a Boolean formula P. An assign-
ment is a mapping a : W — {0,1}. A SAT-problem S is satisfied by an assignment a,
written a = S, if @ makes P evaluate to 1.

For calculating a strengthening of an STE-assertion of depth d, only the first d time-
points of the simulation matter. Therefore, the concept of a truncated sequence is intro-
duced, which is a function from the time-points {0, .., d} to circuit states.

We will define a SAT-problem for all satisfying strengthenings, written SS(A —>
C, ¢, SC), whose solutions represent precisely those truncated sequences o, valuations
¢, and strengthenings ~y such that v is a satisfying strengthening of A = C' w.r.t. ¢.

For an STE-assertion of depth d, the SAT-problem contains a SAT-variable v for
each variable v in the set of symbolic variables V. Furthermore, for each node n in the
set of nodes NV of the circuit ¢, and for each time point 0 < ¢t < d two SAT-variables
are introduced, written nY and n}. The two variables n? and n} encode the value of
node n at time ¢ using a standard dual-rail encoding; the function mapping a dual-rail
encoded quaternary value to the quaternary value itself, written quat, is defined by:
quat(0,0) = X, quat(1,0) = 0, quat(0,1) = 1, and quat(1,1) = T.

Finally, for each time-point/node pair (¢, n) in the set of strengthening candidates SC,
the SAT-problem contains a pair of SAT-variables 79 and 7} representing a possible
requirement of a strengthening on node n at time ¢. Again, the dual-rail encoding is
used; if 7Y and 7} are both 0, there is no requirement on node n at time ¢, if Y = 1 and
fif = 0 the node is required to have value 0, if 7Y = 0 and 71} = 1 the node is required
to have value 1. The SAT-problem is constructed such that 70 and 72} are not allowed to
both have value 1.

A satisfying assignment a of the SAT-problem can thus be mapped to a assignment
of symbolic variables ¢, defined by ¢,(v) = a(v), to a truncated sequence o, defined
by 04(t)(n) = quat(a(n?),a(n})), and to a strengthening 7, defined by 7,(t,n) =
quat(a(n), a(i)).

Constructing the SAT-Problem. The SAT-problem for all satisfying strengthenings
SS(A = (C,¢,8C) is defined as the conjunction of two SAT-problems: (1) A SAT-
problem that restricts the sequences o, assignments ¢ and strengthenings ~y such that
o is the defining trajectory of Str(A,~) w.r.t. ¢, and (2) A SAT-problem that restricts
the sequences o and assignments ¢ such that they together satisfy the consequent C'.
Below, we define both SAT-problems.

However, first we need to define the SAT-problem for the defining trajectory of a
TEL-formula. It is well-known how to use an STE-simulator on Boolean expressions to
generate a SAT-problem whose satisfying assignments correspond to the set of defining
trajectories of the antecedent of the assertion [8,9,2,14]. We denote this SAT-problem
by DTA(A, ¢, d), and we assume that its solutions represent exactly those valuations ¢
and truncated sequences o such thato = ¢[[ A] | {0, ..,d} and o € Seqs.

SAT-Problem for the Antecedent. We now define the SAT-problem for the defining
trajectory of a symbolically strengthened antecedent, written DTSA(A, ¢, d, SC) whose
solutions represent precisely those truncated sequences o, valuations ¢, and strength-
enings ~y such that o is the (truncated) defining trajectory of Str(A, ) w.r.t. ¢.
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In order to do so, we first introduce the concept a symbolically strengthened an-
tecedent, written SymStr(A, SC). The symbolically strengthened antecedent contains
for each time-point/node pair in the set of strengthening candidates SC a pair of sym-
bolic variables 7Y and 7}, representing a possible requirement of strengthening v on
node n at time ¢, and is defined by:

SymStr(A4,SC) = A and (and;,)esc N'(7) — nis0 and A; — nis1))

The SAT-problem for the defining trajectory of the symbolically strengthened
antecedent is defined by: DTSA(A, ¢, d, SC) = DTA(SymStr(A, SC), ¢, d).

SAT-Problem for the Consequent. The SAT-problem for satisfaction of a consequent
C, written SAT (C), is constructed such that its set of solutions contains precisely those
sequences o and assignments of the symbolic variables ¢ that together satisfy conse-
quent C. (i.e. ¢, 0 = C).

In order to build this SAT-problem, we need to define the concept of defining formula.
Given a consequent C, a node name n, a Boolean value b € B, and a time point ¢, we
can construct a propositional formula that is true exactly when C' requires the node n to
have value b at time point ¢. This formula is called the defining formula of n = b at t,
and is denoted by (C')(¢)(n = b).

For example, if the consequent C' is defined as (a Ab) — p is 0, then (C)(0)(p = 0)
is the formula a AD, since only when aAb holds, does C require node p to be 0. However,
(C)(0)(p = 1) is the false formula 0, since C' never requires the node p to be 1.

The defining formula is defined recursively as follows:

- _ 1, fm=nb =bandt=0
{m s b)(t)(n =) _{07 otherwise

(fi and f2)(t)(n =b) = (f1)(t)(n = b) V (f2)(t)(n = b)
(P = f)t)n=20) =P {H{t)(n=0)

(Nf)(t)(n =) :{<f>(t—1)(n:b),ift>o

0, otherwise

Note that for an antecedent of the form f; and f5 to require that a node n has a value b,
it is enough that only one of the formulas f; or fs requires that n is b. The SAT-problem
for the satisfaction of the consequent is now defined by:

SAT(C)= A\ (O)®)(n=0)—=nf) A (C)(B)(n = 1) —n})
(n,t)eC
Here, (n,t) € C means that C' refers to node n at time-point ¢.

SAT-Problem for All Satisfying Strengthenings. Given an assertion A — C of
depth d for a circuit ¢ and a set of strengthening candidates SC, the SAT-problem for all
satisfying strengthenings, written SS(A = C, ¢, SC), is defined by:

SS(A = C,¢,SC) = DTSA(A, SC, ¢,d) A SAT(C)

The solutions to the above SAT-problem represent exactly those valuations ¢ and
strengthenings ~y such that v is a satisfying strengthening of A = C' w.r.t. ¢.
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4.3 Finding a Weakest Assignment

Calling a SAT-solver on the SAT-problem for all satisfying strengthenings,
SS(A = C, ¢, 8C), yields a satisfying strengthening (if one exists). This satisfying
strengthening, however, is not necessarily a weakest satisfying strengthening. To find
a weakest satisfying strengthening, iteratively “blocking constraints” are added to the
SAT-problem that block the last found strengthening and allow only strictly weaker
strengthenings. This process is repeated until the SAT-problem becomes unsatisfiable;
the last found satisfying strengthening is then guaranteed to be a weakest satisfying
strengthening. As said earlier, weakest strengthenings are not neccessarily unique; the
result of this process is an arbitrary weakest satisfying strengthening.

Given a strengthening v : SC — {0, 1}, the blocking constraint consists of four
parts: (1) for every node n that is assigned value X at time ¢ by v, we require that it is
assigned value X in any weaker strengthening, (2) any node that is assigned value 0 at
time ¢ is allowed to assume values 0 and X in a weaker strengthening, but not value 1,
(3) any node that is assigned value 1 at time ¢ is allowed to assume values 1 and X in a
weaker strengthening, but not value 0, and (4) at least one of the nodes should change
value. This yields the following blocking constraint B(~):

B(v)= ( Aun )=X
/\( /\(t,n)ESC;y(t,n):O
AC A mesctny=1 "4
A (Vo tmy=o ~18) V

The solutions to the SAT-problem B(+y) represent exactly those strengthenings 4 such
that v’ < ~. This finishes the description of the algorithm for finding a weakest satisfy-
ing strengthening.

4.4 Contradicting Strengthenings

Given a circuit ¢ and an assignment of symbolic variables ¢ : V' — {0, 1}, a contradict-
ing strengthening of an assertion A = (C'is a strengthening ~y such that such that there
exists a node n, time-point ¢, and Boolean value b, such that simulating using v and A
yields b for n at time ¢ (i.e. 2] Str(A,~) ]|(t)(n) = b), but the consequent requires n to
be b (i.e. ?[ C'](t)(n) = —b). Again, we require that the strengthened antecedent does
not yield overconstrained nodes, i.e. ¢[[ Str(A,v) ]| € Seqs.

The SAT-problem for finding a weakest contradicting strengthening has the same
structure as the SAT-problem for the weakest satisfying strengthening; one part for the
antecedent, and one part for the consequent. The SAT-problem for the contradiction of
a consequent C, written CON(C), is constructed such that at least one node differs in
its Boolean value from what is required by C":

CON(C) = \/ ((O)YBD)(n=0)Any) vV ((C)(t)(n = 1) Anf)
(n,t)yeC
The SAT-problem for all contradicting strengthenings, written CS(A = C,¢,SC)
is defined by: CS(A = C,¢,SC) = DTSA(A,SC,c,d) A CON(C). We find an
actual weakest contradicting strengthening in exactly the same way as described in the
previous subsection.
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5 Discussion

We have introduced the novel concept of strengthenings, that can greatly assist in per-
forming manual abstraction refinement for STE. Furthermore, we have developed a
SAT-based algorithm for finding weakest strengthenings using an incremental SAT-
solver to minimise the strengthening. We have implemented the algorithm in a tool
called STAR, and have shown how it can be used to assist in abstraction refinement in a
non-trivial case-study.

10000

(a) Calculation of a weakest satisfying strengthening
(b) SAT-based Verification -------
(c) BDD-based Verification --------

1000 | g

wof 1

0.01 L

32 64 128 256 512
number of entries in the cam

Fig. 6. Experimental results for CAMs with a tag-width of 16 bits, a data-width of 64 bits, and a
varying number of entries, using a PC with a Pentium IV processor at 3GHz and 2GB of memory

As far as we believe, the information provided by our method cannot be calculated
by BDD-based techniques, because too many BDD-variables would be needed.

Scalability. We believe that our method scales well. To illustrate this, we compare
the running times' of three different experiments for CAMs with a varying number of
entries” in Fig. 6: (a) finding a weakest satisfying strengthening of CAM assertion 2
using STAR, (b) proving the corrected assertion using a SAT-based STE model-checker
(as described in [9]), and (c) proving the corrected assertion with BDDs using Forte.
As the figure shows, when the right abstraction has been found, BDD-based STE
is superior over SAT-based STE for proving properties. As discussed before, finding

! For the SAT-based methods we only show the time spent by SAT-solving. Overhead in sim-
ulating the circuit is not counted since this was implemented inefficiently. Efficient symbolic
simulators (like the one in Forte) can perform symbolic simulation with Boolean expressions
in negligible time.

2 We provide the netlists of the CAMs used at http://www.cs.chalmers.se/ jwr/CAV2006.
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the right abstraction is, however, highly non-trivial. Here, STAR can help by finding
weakest strengthenings. The graph shows that this can be done in reasonable time.

Another Application. In practical uses of STE, often the first step in a verification
attempt is the wiggling phase [1]. The goal of this phase is to find out what minimal set
of inputs and initial values of registers should be driven to make non-X values appear at
designated circuit outputs. Commonly, wiggling is performed by using the STE-model
checker as a scalar (that is, non-symbolic) simulator; the simulator is iteratively fed with
vectors of Boolean values and X’s, in the hope that, by trial-and-error, a minimal set of
nodes to be driven can be found. Our method provides a more systematic approach to
wiggling; the STAR tool can be asked to provide a weakest strengthening such that a
given set of output nodes takes on non-X values. The adaption needed to the algorithm
presented in the previous section is trivial. We have used this “wiggling”’-mode of STAR
on several different kinds of circuits (CAMs, memories, and arithmetic circuits), always
quickly obtaining a weakest strengthening making a set of given outputs non-X.

Future Work. We would like to investigate whether we can use the presented tech-
nique for automatic discovery of symbolic indexing schemes [6].
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Abstract. Symbolic Trajectory Evaluation (STE) is a powerful technique for
model checking. It is based on 3-valued symbolic simulation, using 0,1 and X
(’unknown”). The X value is used to abstract away parts of the circuit. The ab-
straction is derived from the user’s specification. Currently the process of ab-
straction and refinement in STE is performed manually. This paper presents an
automatic refinement technique for STE. The technique is based on a clever se-
lection of constraints that are added to the specification so that on the one hand
the semantics of the original specification is preserved, and on the other hand, the
part of the state space in which the “unknown” result is received is significantly
decreased or totally eliminated. In addition, this paper raises the problem of vacu-
ity of passed and failed specifications. This problem was never discussed in the
framework of STE. We describe when an STE specification may vacuously pass
or fail, and propose a method for vacuity detection in STE.

1 Introduction

Symbolic Trajectory Evaluation (STE) [11] is a powerful technique for hardware model
checking. STE is based on combining 3-valued simulation with symbolic simulation.
It is applied to a circuit M, described as a graph over nodes (gates and latches). The
specification consists of assertions in a restricted temporal language. The assertions
are of the form A = C, where the antecedent A expresses constraints on nodes 7 at
different times ¢, and the consequent C expresses requirements that should hold on such
nodes (n,t). STE computes a symbolic representation for each node (n, t). The size of
this representation depends on the size of A, rather than on the circuit size. Abstraction
in STE is derived from the specification by initializing all inputs not appearing in A
to the X (“unknown’) value. A forth value, L, represents a contradiction between the
constraint of A on some node (n,t) and its actual behavior. A refinement amounts to
changing the assertion in order to present nodes values more accurately.

STE assertions may either pass or fail on M. In [5], a 4-valued truth domain {0, 1, X,
1} is defined for the temporal language of STE, corresponding to the 4-valued domain
of the values of the circuit nodes. The motivation for a 4-valued semantics is to dis-
tinguish between different causes for the pass or fail of an STE assertion. The X truth
value distinguishes the case in which the STE assertion fails due to partial information
about the state space from the case in which it is actually violated by M. In the latter

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 190-204, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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case a counterexample is produced, representing an execution of M that satisfies A but
contradicts C. The X truth value stems from a too coarse antecedent which underspeci-
fies the circuit. The L truth value indicates that the STE assertion passes vacuously due
to a contradiction between A and M.

Generalized STE (GSTE) [19] is a significant extension of STE that can verify all w-
regular properties. Manual refinement methods for GSTE are presented in [18]. In [16],
SAT-based STE is used for manual refinement of GSTE assertion graphs.

(G)STE has been in active use in the industry, and has been very successful in
verifying huge circuits containing large data paths [12,10,17]. Its main drawback, how-
ever, is the need for manual abstraction and refinement, which can be very labor-
intensive.

Our Contribution. We propose a technique for automatic refinement of assertions in
STE. In our technique, the initial abstraction is derived, as usual in STE, from the given
specification. The refinement is an iterative process, which stops when a truth value
other than X is achieved. In case of a O truth value, a counterexample is presented to
the user. Our automatic refinement is applied when the STE specification results with
X. We compute a set of input nodes, whose refinement is sufficient for eliminating
the X truth value. We further suggest heuristics for choosing a small subset of this
set.

Selecting a right” set of inputs has a crucial role in the success of the abstraction
and refinement process: selecting too many inputs will add many variables to the com-
putation of the symbolic representation, and may result in memory and time explosion.
On the other hand, selecting too few inputs or selecting inputs that do not affect the
result of the verification will lead to many iterations with an X truth value.

We point out that, as in any automated verification framework, we are limited by
the following observations. First, there is no automatic way to determine whether the
provided specification is correct. Therefore, we assume it is, and we make sure that our
refined assertion passes on the concrete circuit iff the original assertion does. Second,
bugs cannot automatically be fixed. Thus, counterexamples are analyzed by the user.

Abstraction-Refinement is a well known methodology in model checking [4,6] for
fighting the state explosion problem. In [3], it is shown that the abstraction in STE is an
abstract interpretation via a Galois connection. [9] presents a SAT-based algorithm to
assist in manual refinement of STE assertions. However, automatic refinement has never
been suggested before for STE. The work that is closest to ours is [15], which suggests
an automatic abstraction-refinement for symbolic simulation. However, the suggested
heuristics are significantly different from ours.

Another important contribution of our work is identifying that STE results may hide
vacuity. This possibility was never raised before. Hidden vacuity may occur since an
abstract execution of M on which the truth value of the specification is 1 or 0, might
not correspond to any concrete execution of M. In such a case, a pass is vacuous, while
a counterexample is spurious. We propose a method for detecting these cases.

We implemented our automatic refinement technique within Intel’s Forte environ-
ment [12]. We ran it on two nontrivial circuits with several assertions. Our experimen-
tal results show success in automatically identifying a set of inputs that are crucial for
reaching a definite truth value. Thus, a small number of iterations were needed.
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2 Basic Definitions

A circuit M consists of a set of nodes A/, connected by directed edges. The nodes
consist of inputs and internal nodes. Internal nodes consist of latches and combinational
nodes. Each combinational node is associated with a Boolean function. We say that a
node n; enters a node ng if there exists a directed edge from n; to ny. The nodes
entering a certain node are its source nodes, and the nodes to which a node enters are
its sink nodes. The value of a latch at time ¢ can be expressed as a Boolean expression
over its source nodes at times ¢ and ¢ — 1, and over the latch value at time ¢ — 1. The
directed graph induced by M may contain loops but no combinational loops.
Throughout the paper we refer to a node n at a specific time ¢ as (n, t).

The bounded cone of influence (BCOI) of a node (n,t) contains all nodes (n',t)
with ¢’ < ¢ that may influence the value of (n, t), and is defined recursively as follows:
the BCOI of a combinational node at time ¢ is the union of the BCOI of its source nodes
at time ¢, and the BCOI of a latch at time ¢ is the union of the BCOI of its source nodes
at times ¢ and ¢ — 1 according to the latch type.

Usually, the circuit nodes receive

Boolean values. In STE, a third value, AND/X|0/1]1 ORX|0)1]L NOT

X (“unknown”), is introduced. At- X (X0xXjL XXX X |X
taching X to a certain node repre- 0 10]0j0]L 0 |X|0|1|L 0 |1
sents lack of information regarding the L X0 L 1jrjrjrt 110
truth value of that node. A forth value, R N RN R EN RN RN R L]L

1, is added to represent the over-
constrained value, in which a node is
forced both to 0 and to 1. This value indicates that contradiction exists between external
assumptions on the circuit and its actual behavior. The set of values Q = {0,1, X, L}
forms a complete lattice with the partial order 0 C X, 1 C X, | C O0and L C 1. This
order corresponds to set inclusion, where X represents the set {0, 1}, and L represents
the empty set. As a result, the greatest lower bound T corresponds to set intersection
and the least upper bound U corresponds to set union. The Boolean operations AND,
OR and NOT are extended to the domain Q as shown in Figure 1.

A state s of the circuit M is an assignment of values from Q to all circuit nodes,
s : N — Q. Given two states s1, S2, we say that 51 C so < ((In € N : s1(n) =
L)V (Yn € N': s1(n) C s2(n))). A state is concrete if all nodes are assigned with
values out of {0, 1}. A state s is an abstraction of a concrete state s, if s. C s.

A sequence o is any infinite series of states. We denote by o (i),i € N, the state
at time 4 in o, and by o(i)(n),7 € N,n € N, the value of node n in the state o (z).
o',i € N, denotes the suffix of o starting at time 5. We say that oy C 0o <= ((3i >
0,n e N :01(i)(n) = L)V (Vi>0:01(i) C 02(i))). Note that we refer to states
and sequences that contain L values as least elements w.r.t C.

Let V be a set of symbolic Boolean variables over the domain {0, 1}. A symbolic
expression over V' is an expression consisting of quaternary operations, applied to V' U
Q. A symbolic state over V is a mapping which maps each node of M to a symbolic
expression. Each symbolic state represents a set of states, one for each assignment to the
variables in V. A symbolic sequence over V' is a series of symbolic states. It represents
a set of sequences, one for each assignment to V. Given a symbolic sequence ¢ and

Fig. 1. Quaternary operations
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an assignment ¢ to V', ¢(o) denotes the sequence that is received by applying ¢ to all
symbolic expressions in ¢. Given two symbolic sequences 01,02 over V, we say that
o1 C o9 if for all assignments ¢ to V, ¢(o1) C ¢(02).

A Trajectory Evaluation Logic (TEL) formula is defined recursively over V' as fol-
lows:

fu=nisp| fiNfalp— fINS

where n € N, p is a Boolean expression over V and N is the next time operator.
Note that TEL formulas can be expressed as a finite set of constraints on values of
specific nodes at specific times. N denotes the application of ¢ next time operators.
The constraints on (n, t) are those appearing in the scope of N*. The maximal depth of
a TEL formula f, denoted depth(f), is the maximal time ¢ for which a constraint exists
in f on some node (n, t), plus 1.

Usually, the satisfaction of a TEL formula f on a symbolic sequence o is defined
in the 2-valued truth domain [11], i.e., f is either satisfied or not satisfied. In [5], Q is
used also as a 4-valued truth domain for an extension of TEL. Our 4-valued semantics
definition is different from [5] w.r.t L values. In [5], a sequence o containing L values
could satisfy f with a truth value different from L. In our definition this is not allowed.
We believe that our definition captures better the intent behind the specification w.r.t
contradictory information about the state space. Given a TEL formula f over V, a sym-
bolic sequence o over V, and an assignment ¢ to V', we define the satisfaction of f as
follows:

(o= fl=1L <« Fi>0,neN:¢(0)(i)(n) = L. Otherwise:

[¢ |=ﬂlsp] 1 = ¢(0)(0)(n) = ¢(p)

[cb,U Fnisp] =0 < ¢(0)(0)(n) # ¢(p) and ¢(c)(0)(n) € {0,1}

[ oEnispl =X < ¢(0)0)(n)=X  dokE=p—f=(29(p)VeokEf)
):fl/\fQ ( U):fl/\d)a ':fQ) ¢’0':Nf:¢701):f

Note that given an assignment ¢ to V', ¢(p) is a constant (0 or 1). In addition, the L truth
value is determined only according to ¢ and o, regardless of f. It is proven in [5] that
the satisfaction relation is monotonic, i.e., for all TEL formulas f, symbolic sequences
o1, 09 and assignments ¢ to V, if ¢(o2) C ¢(oq) then [¢, 02 | f] C [@, 01 = f]. This
also holds for our satisfaction definition. We define the truth value of o |= f as follows:

[0 =f]=0 < Jo:[p0=f]=0
cE=fl=X < Vo:[po=fl#0and 3¢ : [p,0 = f]|=X
[cEfl=1 < VYo:[p0 f]¢{0,X}and3¢: [p,0 = f] =1
Efl=L <V lpokfl=1

It is proven in [5] that every TEL formula f has a defining sequence, which is a
symbolic sequence o/ so that [0/ = f] = 1 and for all o, [¢ = f] € {1, L} iff
o C of. For example, 07~ (" 1S P) is the sequence S(n,qp) S Sz Sz Where g, o)
is the state in which n equals (¢ — p) A (g — X)), and all other nodes equal X, and
s, is the state in which all nodes equal X. o/ may be incompatible with the behavior
of M. A (symbolic) trajectory 7 is a (symbolic) sequence that is compatible with the
behavior of M [8]: let val(n, t) be the value of a node (n,t) as computed according to
its source nodes values in 7. It is required that for all nodes (n,t), 7(t)(n) C val(n, t)
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(strict equality is not required in order to allow external assumptions on nodes values to
be embedded into 7). A trajectory is concrete if all its states are concrete. A trajectory
7 is an abstraction of a concrete trajectory 7. if 7. C 7.

The defining trajectory 7/ of M and f is a symbolic trajectory so that [7/ = f] €
{1, 1.} and for all trajectories 7 of M, |7 |= f] € {1, L}iff 7 C 7/ (Similar definitions
for o/ and 7/ exist in [11] w.r.t a 2-valued truth domain). Given o/, 7/ is computed as
follows: Vi, 7/ (i) is initialized to o/ (i), and the nodes values from time 7 and 7 — 1 are
propagated forward to nodes at time ¢ until no new values are derived. The M operator
is used to incorporate a propagated value into the current value of a node (n, ).

STE assertions are of the form A = C, where A (the antecedent) and C' (the
consequent) are TEL formulas. A expresses constraints on circuit nodes at specific
times, and C' expresses requirements that should hold on circuit nodes at specific times.
M E (A = Q) iff for all concrete trajectories m of M and assignments ¢ to V/,
[¢,m | A] = 1 implies that [¢, 7 = C] = 1.

A natural verification algorithm for an STE asser-
tion A = (' is to compute the defining trajectory
74 of M and A and then compute the truth value of
7 = C.If [r* = C] € {1, L} then it holds that
M = (A= O).1f [t |= C] = 0 then it holds that
M [ (A= O).If [r* | C] = X, then it cannot
be determined whether M = (A = (). The case
in which there is ¢ so that ¢(7*) contains L is known
as an antecedent failure. The default behavior of most
STE implementations is to consider antecedent failures
as illegal, and the user is required to change A in order to eliminate any L values.
For lack of space, in the rest of the paper, we take the same approach. The alternative
approach of STE implementations that supports occurrences of | in 74 is described
in [13]. Note that although 7 is infinite, it is suffice to examine only a bounded prefix
of length depth(A) in order to detect L in 7. The first L in 74 is the result of the 1 op-
eration on some node (n, t), where both operands have contradicting assignments 0 and
1. Since Vi > depth(A) : 0 (i) = s,, it must hold that t < depth(A). In order to com-
pute 74 |= C (assuming 74 does not contain 1), 74 is compared to ¢, the defining
sequence of C. If 74 C ¢, then [74 = C] = 1. If there are ¢,7 > 0,n € A so that
¢(r4) (@) (n) & ¢(c)(i)(n) and ¢(7)(i)(n) 2 $(c)(i)(n), then [4 = C] = 0.
Otherwise, [t = C] = X. Note that although 74 and ¢© are infinite, it is suffice to
examine only a bounded prefix of length depth(C'), since Vi > depth(C) : ¢ (i) = s,.

Fig. 2. A Circuit

Example 1. Consider the circuit M in Figure 2, containing three inputs In1, In2 and In3,
two OR nodes N1 and N2, two AND nodes N3 and N6, and two latches N4 and N5. For
simplicity, the latches clocks were omitted and at each time ¢ the latches sample their
data source node from time ¢ — 1. Note the negation on the source node In2 of N2. Also
consider the STE assertion A = C, where A = (Inl is 0) A(In3 is v1) A(N3 is 1), and
C = N(N6is 1). Figure 3 describes the defining trajectory 74 of M and A, up to time
1. It contains the symbolic expression of each node at time 0 and 1. The state 74 (4) is
represented by row i. The notation v1?1 : X stands for ”if v1 holds then 1 else X”. ¢¢
is the sequence in which all nodes at all times are assigned X, except for node N6 at
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time 1, which is assigned 1. [ |= C] = 0 due to those assignments in which v; = 0.
We will return to this example in Section 5.

STE implementations use a specific [Timelln1In2[In3IN1] N2 |N3[N4[N5IN6
encoding called dual rail in order 0 |0 X |v | X|on?l:X| 1| X[X|X

to represent the nodes (n,t) in se- T (XX |X|X] X [X|1|o|o
quences. The dual rail of a node
(n,t) in 4 consists of two func- Fig. 3. The Defining Trajectory 7

tions defined from V to {0, 1}: f}

and fgyt, where V is the set of variables appearing in A. For each assignment ¢ to V/,
if £}, A =f0, holds under ¢, then (n,t) equals 1 under ¢. Similarly, ~f, , A f0,,
~fL A=f2, and fL A £9, stand for 0, X and L under ¢, respectively. Likewise, g} ,
and gy , is the dual rail representation of (n, ¢) in 0. Note that ;. , A g5 , never holds,
since we always assume that C' is not self-contradicting. '

3 Choosing Our Automatic Refinement Methodology

Intuitively, the defining trajectory 7 of a circuit M and an antecedent A is an ab-
straction of all concrete trajectories of M on which the consequent C' is required to
hold. This abstraction is directly derived from A. If [r4 = C] = X, then A is too
coarse, that is, contains too few constraints on the values of circuit nodes. Our goal is to
automatically refine A (and subsequently 74') in order to eliminate the X truth value.

In this section we examine the requirements that should be imposed on automatic
refinement in STE. We then describe our automatic refinement methodology, and for-
mally state the relationship between the two abstractions, derived from the original and
refined antecedent. We refer only to STE implementations that compute 7. We assume
that antecedent failures are handled as described in Chapter 2.

Traditionally, the abstraction and refinement process in STE works as follows: the
user writes an STE assertion A = C for M, and receives a result from STE. If
[4 = O] = 0, then the set of all ¢ so that [¢, 74 |= C] = 0 is provided to the user.
This set, called the symbolic counterexample, is given by the Boolean expression over
ViVinnec (@i A=Fa e AR OV (9o o A fa g A=) Tt stems from either an illegal
behavior of the circuit, or an erroneous specification. The user decides which of these
possibilities the counterexample displays. If [7“ = C] = X, then the set of all ¢ so
that [¢, 7! = O] = X is provided to the user. This set, called the symbolic incomplete
trace, is given by: \/(,, yco((9ne V 9n.¢) A = fay A =S5 ). The user decides how to
refine the specification in order to eliminate the partial information that causes the X
truth value. Otherwise, [7# = C] = 1 and the verification completes successfully.

As mentioned before, we must assume that the given specification is correct. Thus,
automatic refinement of A must preserve the semantics of A = C: Let A,,c,p =— C
denote the refined assertion. Let runs(M) denote the set of all concrete trajectories of
M. We require that A,,.,, => C holds on runs(M) iff A = C holds on runs(M).

In order to achieve the above preservation, we chose our automatic refinement as
follows. Whenever [1# |= C] = X, we add constraints to A that force the value of
input nodes at certain times (and initial values of latches) to the value of fresh symbolic
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variables, that is, symbolic variables that do not already appear in V. By initializing
an input (in,t) with a fresh symbolic variable instead of X, we represent the value
of (in,t) accurately and add knowledge about its effect on M. However, we do not
constrain input behavior that was allowed by A, nor do we allow input behavior that
was forbidden by A. Thus, the semantics of A is preserved. In Section 4, a small but
significant addition is made to our refinement technique.

We now formally state the relationship between the abstractions derived from the
original and the refined antecedents. Let A be the antecedent we want to refine. Let A,
be the original antecedent written by the user. Let V., be a set of symbolic variables
so that V N Vyewo = 0. Let PI,.; be the set of inputs at specific times, selected for
refinement. Let A,,.,, be a refinement of A over V' U V, ., Where A,,.,, is received
from A by attaching to each input (in,t) € Pl,.; a unique variable v;y, ; € Vyey and
adding conditions to A as follows: Ay, = A A /\(m’t)emmf Nt(p — (inis vint)),
where p = —q if (in,t) has a constraint N*(¢ — (inis €)) in A4 for some Boolean
expressions ¢ and e over V, and p = 1 otherwise ((in,t) has no constraint in A, ).
The reason we consider A, is to avoid a contradiction between the added constraints
and the original ones, due to constraints in A4 of the form ¢ — f.

Let w4nev be the defining trajectory of M and A, over V U V.. Let ¢ be an
assignment to V. Then runs(Ayew, M, ¢) denotes the set of all concrete trajectories 7
for which there is an assignment ¢’ to Vj,e,, so that (¢ U ¢')(m“4new) is an abstraction
of 7. Since for all concrete trajectories 7, [(p U ¢'), 7 | Apew] = 1 <= 7 C
(¢ U ¢')(mAnew), we get that runs(Apew, M, ¢) are exactly those 7 for which there is

¢’ sothat (¢ U ¢'), 7 = Apew] = 1.

Theorem 1. [. For all assignments ¢ to V, runs(A, M, ¢) = runs(Anew, M, ¢).
2. If[rAnew (= O] = 1 then V¢ it holds that ¥V € runs(A, M, ¢) : [¢,7 = C] = 1.
3. If there is @' 10 Vyew and @ € runs(Anew, M, U @) so that [(¢ U @), 7 |=
Apew] = 1but [(¢pU¢"), 7 = C] = 0thenn € runs(A, M, ¢) and [¢, 7 = A] =1
and [¢, 7 = C] = 0.

Theorem 1 implies that if A,,.,, = C holds on all concrete trajectories of M, then so
does A = C. Moreover, if A,,.,, = C' yields a concrete counterexample ce, then ce
is also a concrete counterexample w.r.t A = C.

4 Selecting Inputs for Refinement

In this section we describe how exactly the refinement process is performed. We assume
that [ = C] = X, and thus automatic refinement is activated. Our goal is to add a
small number of constraints to A forcing inputs to the value of fresh symbolic variables,
while eliminating as many assignments ¢ as possible so that [¢, 74 = O] = X. The
refinement process is incremental - inputs (in, t) that are switched from X to a fresh
symbolic variable will not be reduced to X in subsequent iterations.

Choosing Our Refinement Goal. Assume that [t = C] = X, and the symbolic in-
complete trace is generated. This trace contains all assignments ¢ for which [¢, 74 |=
C] = X. For each such assignment ¢, the trajectory ¢(7*) is called an incomplete
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trajectory. In addition, this trace may contain multiple nodes that are required by C to a
definite value (either O or 1) for some assignment ¢, but equal X . We refer to such nodes
as undecided nodes. We want to keep the number of added constraints small. There-
fore, we choose to eliminate one undecided node (n,t) in each refinement iteration,
since different nodes may depend on different inputs. A motivation for eliminating only
part of the undecided nodes is that an eliminated X value may be replaced in the next
iteration with a definite value that contradicts the required value (a counterexample).
We suggest to choose an undecided node (n,t) with minimal number of inputs in its
BCOI. Out of those, we choose a node with minimal number of nodes in its BCOI. Our
experimental results support this choice. The chosen undecided node is our refinement
goal and is denoted (root, tt). We also choose to eliminate at once all incomplete tra-
jectories in which (root, tt) is undecided. These trajectories are likely to be eliminated
by similar sets of inputs. Thus, by considering them all at once we can considerably
reduce the number of refinement iterations, without adding too many variables.

The Boolean expression (= £, o1 1A voor 11N (oot itV 9000t 1)) TEPrEsents the set
of all ¢ for which (root, tt) is undecided in ¢(7). Our goal is to add a small number
of constraints to A so that (root, tt) will not be X whenever (g, ¢ 1 V 9ooor.1¢) holds.

Eliminating Irrelevant Inputs. Once we have a refinement goal (root, tt), we need to
choose inputs (in, t) for which constraints will be added to A. Naturally, only inputs in
the BCOI of (root, tt) are considered, but some of these inputs can be safely eliminated.
Consider an input (in, ), an assignment ¢ to V and the defining trajectory 7. We
say that (in,t) is relevant to (root,tt) under ¢, if there is a path of nodes P from
(in,t) to (root,tt) in M, so that for all nodes (n,t') in P, ¢(74)(t')(n) = X. (in,t)
is relevant to (root, tt) if there exists ¢ so that (in, t) is relevant to (root, tt) under ¢.
For each (in,t), we compute the set of assignments to V' for which (in,t) is rel-
evant to (root, tt). The computation is performed recursively starting from (root, tt).
(root, tt) is relevant when it is X and is required to have a definite value: (= f,,; ;; A
= froot.tt N (Groot.tt V Gooot.tt))- A source node (n,t) of (root, tt) is relevant when-
ever (root,tt) is relevant and (n,t) equals X. Let out(n,t) return the sink nodes
of (n,t) that are in the BCOI of (root, tt). Proceeding recursively, we compute for
each node (n,t) the set of assignments relevant,, ; given by the Boolean expression
(V .ty cout(n.r) TeleVanty, o) A= fo A= fy ,, until we reach the input nodes (in, t).
For all ¢ that are not in relevant;,, ;, changing (in,t) from X to 0 or to 1 in ¢(74)
can never change the value of (root, tt) in ¢(7*) from X to O or to 1. Thus, if (in, t) is
chosen for refinement, a possible optimization is to constrain it to a fresh symbolic vari-
able only when relevant;,, ; holds, as follows: relevant;,, ; — N®(in is vy, ¢). If (in, )
is chosen in a subsequent iteration for refinement of a new refinement goal (root’, tt'),
then the previous constraint is extended by disjunction to include the condition under
which (in,t) is relevant to (root’,tt"). Theorem 1 holds also for the optimized re-
finement. Let PI be the set of inputs of M. The set of all inputs that are relevant to
(root,tt) is Plirootr) = {(in,t) | in € PI Arelevanty, ; # 0}. Adding constraints
to A for all relevant inputs (in, t) will result in a refined antecedent A,,¢,,. In Anew it
is guaranteed that (root, tt) will not be undecided. Note that PI(,.,.¢,+¢) is sufficient but
not minimal for elimination of all undesired X values from (root, tt). Namely, adding
constraints for all inputs in PI(,,.¢,:+) Will eliminate all cases in which (root, tt) is
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undecided. However, adding constraints for only a subset of PI(;40t,¢¢) may still elim-
inate all such cases. The set Pl(,, 1) may be valuable to the user even if automatic
refinement does not take place, since it excludes inputs that are in the BCOI of (root, tt)
but will not change the verification results w.r.t (root, tt).

Heuristics for Selection of Important Inputs. We now propose heuristics for select-
ing a subset of Pl(.o0 ¢4 for refinement. A motivation for this is that a 1 or 0 truth
value may be reached even without adding constraints for all relevant inputs.

We apply the following heuristics: each node (n, t) selects a subset of P, (root,tt) a8
candidates for refinement. The final set of inputs for refinement is selected out of the
candidates of (root,tt). Each input in PI(,,0 ) selects itself as a candidate. Other
inputs have no candidates for refinement. sourceCand,; denotes the sets of candi-
dates of the source nodes of a node (n, t), excluding the source nodes that do not have
candidates. The candidates of (n, ¢) are determined as follows:

1. If there are candidate inputs that appear in all sets of sourceCand,, ¢, then they are
the candidates of (n,t).

2. Otherwise, if (n, ¢) has source nodes that can be classified as control and data, then
the candidates of (n, ¢) are the union of the candidates of its control source nodes,
if this union is not empty. For example, a latch has one data source node and at
least one control source node - its clock. The identity of control source nodes is
automatically extracted from the netlist representation of the circuit.

3. If none of the above holds, then the candidates of (n,t) are the inputs with the
largest number of occurrences in sourceCand,, ;.

We prefer to refine inputs that affect control before those that affect data since the
value of control inputs has usually more affect on the verification result. Moreover, the
control inputs determine when data is sampled. Therefore, if the value of a data input is
required for verification, it can be restricted according to the value of previously refined
control inputs. In the final set of candidates, sets of nodes that are entries of the same
vector are treated as one candidate. Since the heuristics could not prefer one entry of the
vector over the other, then probably only their joint value can change the verification
result. Additional heuristics choose a fixed number of [ candidates out of the final set.

5 Detecting Vacuity and Spurious Counterexamples

In this section we raise the problem of hidden vacuity and spurious counterexamples
that may occur in STE. This problem was never addressed before in the context of STE.

In STE, A functions both as determining the level of the abstraction of M, and as
determining the trajectories of M on which C'is required to hold. An important point is
that the constraints imposed by A are applied (using the 1 operator) to abstract trajec-
tories of M. If for some node (n,t) and assignment ¢ to V, there is a contradiction be-
tween (o) (t)(n) and the value propagated through M to (n, t), then ¢(7)(t)(n) =
1, indicating that there is no concrete trajectory  so that [¢, 7 = A] = 1.

In this section we point out that due to the abstraction in STE, it is possible that for
some assignment ¢ to V, there are no concrete trajectories 7 so that [¢, 7 = A] = 1,
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but still ¢(74) does not contain | values. This is due to the fact that an abstract tra-
jectory may represent more concrete trajectories than the ones that actually exist in M.
Consequently, it may be that [¢, 7 |= C] € {1,0}, and there is no indication that this
result is vacuous, i.e., for all concrete trajectories 7, [¢, 7 = A] = 0. Note that this
problem may only happen if A contains constraints on internal nodes of M. Given a
constraint @ on an input, there always exists a concrete trajectory that satisfies a (unless
a itself is a contradiction, which can be easily detected). This problem exists also in
STE implementations that do not compute 74, such as [8].

Example 2. We return to Example 1 from Section 2. Note that the defining trajectory
74 does not contain L. In addition, [74 = C] = 0 due to the assignments to V in
which v; = 0. However, A never holds on concrete trajectories of M when v; = 0,
since N3 at time 0 will not be equal to 1. Thus, the counterexample is spurious, but
we have no indication of this fact. The problem occurs when calculating the value of
(N3,0) by computing X M1 = 1. If A had contained a constraint on the value of In2 at
time 0, say (In2 is v2), then the value of (N3,0) in 74 would have been (1 Avg) M1 =
(v1 Avg?1 : 1), indicating that for all assignments in which v; = 0 or vo = 0, 7 does
not correspond to any concrete trajectory of M.

Vacuity may also occur if for some ¢ to V, C under ¢ imposes no requirements. This
is due to constraints of the form p — f where ¢(p) is 0.

An STE assertion A = C'is vacuous in M if for all concrete trajectories 7w of M
and assignments ¢ to V/, either [¢, 7 = A] = 0, or C' under ¢ imposes no requirements.
This definition is compatible with the definition in [1] for ACTL.

We say that A = C passes vacuously on M if A — C' is vacuous in M and
[74 |= C] € {1, 1}. A counterexample 7 is spurious if there is no concrete trajectory
7. of M so that m. C . Given 74, the symbolic counterexample ce is spurious if for
all assignments ¢ to V in ce, ¢(m*) is spurious. A = C fails vacuously on M if
[74 = C] = 0 and ce is spurious.

As explained before, vacuity detection is required only when A constrains internal
nodes. It is performed only if [7* = C] € {0,1} (if [ = C] = L then surely
A = C passes vacuously). In order to detect non-vacuous results in STE, we need to
check whether there exists an assignment ¢ to V' and a concrete trajectory 7 of M so
that C' under ¢ imposes some requirement and [¢, 7 |= A] = 1. In case [74 |= C] = 0,
we also require that [¢, 7 = C] = 0. Since A can be expressed as an LTL formula, we
can translate A and M into a Bounded Model Checking (BMC) [2] problem. Note that
in this BMC problem we search for a satisfying assignment for A, not for its negation.
Additional constraints should be added to the BMC formula as follows.

For detection of vacuous pass, the BMC formula is constrained as follows: Recall
that (g, ,, g5 ;) denotes the dual rail representation of (n, t) in ¢©. The Boolean expres-
sion g} , Vv gy ; represents all assignments ¢ to V' under which C' imposes a requirement
on (n,t). Thus, V(ntyec n,t V 9o Tepresents all assignments ¢ under which C' im-
poses some requirement, and is added as an additional constraint to the BMC formula.
A satisfying assignment to the resulting formula constitutes a witness for A = C'.

For detection of vacuous fail, the BMC formula is constrained by conjunction with
the symbolic counterexample ce = \/(n’t)ec((g}m/\—|fiﬁt/\f,?)t)\/(ggﬁt/\f}m/\—'fgﬁt)).
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ce represents all assignments ¢ for which [¢, 7 |= C] = 0. A satisfying assignment to
the resulting formula constitutes a concrete counterexample for A = C.

If BMC finds a satisfying assignment to the resulting formula, then the original truth
value of [74 |= C] is returned. Otherwise, we conclude that the STE result is vacuous.
In [13], we suggest an alternative vacuity detection algorithm that uses STE and present
an additional vacuity problem that arises in constraint-based STE [8].

6 Experimental Results

We implemented our automatic refinement algorithm AutoSTE on top of STE in Intel’s
FORTE environment [12]. AutoSTE receives a circuit M and an STE assertion A —>
C. When [r4 = C] = X, it chooses a refinement goal (root, tt) out of the undecided
nodes, as described in Section 4. Next, it computes the set of relevant inputs (in, t). The
Heuristics described in Section 4 are applied in order to choose a subset of those inputs.
In our experimental results we restrict the number of refined candidates in each iteration
to 1. A is changed as described in Section 4 and STE is rerun on the new assertion.

We ran AutoSTE on two different circuits, which are challenging for Model Check-
ing: the Content Addressable Memory (CAM) from Intel’s GSTE tutorial, and IBM’s
Calculator 2 design [14]. The latter has a complex specification. Therefore, it constitutes
a good example for the benefit the user can gain from automatic refinement in STE. All
runs were performed on a 3.2 GHz Pentium 4 computer with 4 GB memory.

Content Addressable Memory. The twrite

CAM shown in Figure 4 contains 16 ~_“4os™="1-%) !

entries, has a data size of 64 bits and __“&"="0 | TAG MEMORY T hit
a tag size of 8 bits. It contains 1152 aread —

latches, 83 inputs and 5064 combi- '

national gates. CAMs use bit fields —dwite ! dout
called tags to identify particular data Saddrlogm1. 0l PATA MENORY

entries stored in an array. The associa- om0 T

tive read operation (aread) of CAMS  gjg 4. Content Addressable Memory. Tag size=t,
consists of searching in parallel all Number of entries=n, Data size=d.

tags in the CAM tag memory to find
a match to an input tag (tagin). If a match is found, the CAM outputs the associated
data entry to dout. The verification of the aread operation using STE is described in [7].
The assertions in [7] contain assumptions on the internal state of the tag memory. The
user may want to check the aread operation after a write operation to the tag memory. In
STE such cases can be checked by bounding the time that passed between the writing
and the reading of the tag. We present the results of AutoSTE on 3 such assertions.
Figure 5 reports the final result, number of refinement iterations, run-time in seconds
and peak BDD nodes for each assertion. Table 1 reports the refinement goal and added
constraint in each refinement iteration. v,, ; denotes a fresh symbolic variable for node
(n,t). ¥, denotes a vector of fresh symbolic variables for a vector of nodes (n, t).
Assertion 1 checks that if a tag value TAG is written to an address A in the tag
memory at time 0 (where TAG and A are vectors of symbolic variables over {0,1}),
and at time 1 TAG is read, then it should be found in the tag memory and hit should
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be 1: (tagin is TAG)A(taddr is A )A(twrite is DAN((areadis])A(taginisTAG)) =
N (hitisl). Assertion 1 should pass: if at time 1 there is no write operation to the tag
memory (twrite is 0), then TAG should be found in address A. If at time 1 twrite is 1,
TAG should be found since it is writ-

ten again to the tag memory. However, [Assertion[result|Total Iter.|Time[BDD Nodes
[t &= O] = X. Since twrite and 1 pass D) 3 4768
taddr at time 1 are X, the CAM cannot 2 fail 7 20 37424
determine whether to write the value 3 fail 3 17 29006

of tagin at time 1 to the tag memory,
and to which tag entry to write it. Asa  Fig.5. Automatic Refinement Performance on
result, the entire tag memory at time 1 ~CAM Assertions

is X .Thus, hit at time 1 is X.

After two refinements, AutoSTE returns a pass result. Note that only constraints
necessary for obtaining the pass result were added. TAG # () appears in the constraint
since in this CAM implementation, the default value of the data source nodes of the tag
memory is 0. Thus, when TAG = 0, even without knowing if and to which entry a tag is
written at time 1, the CAM determines that a tag that equals O exists in the tag memory.

Assertion 2 is an extension of Assertion 1. We add a constraint to the antecedent
that at time O, datamem[ﬁ)] is D. We also add a requirement to the consequent that at
time 1, dout is . The first two refinements are the same as for assertion 1. The next
refinement goal is dout[0]. In iterations 3-4, twrite and taddr at time 1 are added to
A when TAG = 0, since they are required in order to determine the value of dout[0]
at time 1. The relevant inputs for refinement in iterations 5-7 were dwrite, daddr and
din[0], all at times O and 1, the initial values of all tag memory entries and of bit number
0 of all data memory entries. The final iteration yields a counterexample in which dwrite
at time 1 equals 1, daddr at time 1 equals taddr at time 0, and din[0] at time 1 is different
from D[0]. This counterexample stems from an erroneous specification. If new data is
written at time 1 to the data entry associated with TAG, then dout at time 1 will be equal
to the new data. Note that only constraints relevant to this counterexample were added.

Assertion 3 is as follows: (tagin is TAG) A(taddr is A)A(twrite is 1)/ (datamem|[ 4]

is D) AN((twriteis 0) A (dwriteis0)) A NZ((areadis 1) A (taginis TAG) A

Table 1. Automatic Refinement of CAM Assertions

Assertion (Iteration| Goal Added Constraint
12 1 hit, 1 N(TAG # 0 — twrite is Vswrite,1)
12 2 hit, 1 N((TAG # 0 A Vpwriten = 1) — taddr is T raddr1)
2 3 |dout[0],1 N(TAG = 0 — twrite is Uswrite,1)
2 4 |dout[0],1 N((TAG = 0 A vtwriten = 1) — taddr is T addr.1)
2 5 dout[0],1 N(dwrite iS Vgwrite,1)
2 6 dout[0],1 N(vdwrite,l = 1 — daddr is ?daddr,l)
2 7 |dout[0],1|{N(((vawrite,s = 1) A (T dadar,s = A)) — din[0] 18 vgn0),1)
3 1 dout[0],2 DI[0] # 0 — dwrite iS Vgwrite,0
3 2 dout[0],2 (D[O] ;ﬁ 0N Vdwrite,0 = 1) — daddr is Tdaddr,o
3 3 |dout[0],2 (D[0] #0A A #0) — tagmemO iS T tagmemo,0
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(twrite is 0) A (dwrite is 0)) = NZ((hitis 1) A (doutis D))). This assertion should
fail since the tag memory may already hold at time O a tag that equals TAG. Though
usually it is assumed that the CAM environment will not write the same tag to two
different entries, most CAM implementations do not assume so. AutoSTE generates a
counterexample after 3 refinement iterations. In the counterexample, tag entry 0 equals
TAG. and the address A to which TAG is written is different from 0. The data asso-
ciated with tag entry 0 appears in dout, rather than the one written to address A. This
assertion demonstrates the case in which there is a need for refinement of initial values
of latches (tagmemO at time 0). Since our heuristics prefer inputs that influence control,
the constraint on tagmemO was added after constraints were added on dwrite and daddr
at time 0.

Calculator Design. Calculator 2 design [14] shown in Figure 6 is used as a case study
design in simulation based verification. It contains 2781 latches, 157 inputs and 56960
combinational gates. The calculator supports 4 types of commands: add, sub, shift right
and shift left. none stands for no command. Any other command is invalid. It has two
internal arithmetic pipelines: one for add/sub and one for shifts. The first argument of
the command is sent at the same cycle as the command. The second argument is sent in
the next cycle. The tag is a unique identifer for each of the commands from each of the 4
ports. It is sent at the same cycle as the command. The commands may be executed out
of order. However, commands from the same port that use the same pipeline must return
in order. The response is 1 for good, 2 for underflow, overflow or invalid command, 3
for an internal error and O for no response. Reset is 1 for the first 3 cycles.
We present the results of AutoSTE on 4

. . 1k
assertions. Figure 7 reports the final result, —
number of refinement iterations, run-time in out_resp1[0:1]
reql_cmd_in[0:3] out_datal[0:31]
seconds and peak BDD nodes for each asser- i dua mo3i1] ADD/SUB Mout g0l
. .. reql_tag_in[0:1] I e
tion. For lack of space, the description of as- PIPELINE out_resp2l0:1]
. . . req2_cmd_in[0:3] I A
sertion 4 exists in [13]. Table 2 reports the gz dmmoan °“‘—da‘;2(')03“ .
. . . out_tag2[0:
refinement goal and added constraint in each =~ -l
. . . req3_cmd_in[0:3] t_resp3[0:1]
_ P e pout respi{0:1]
refinement iteration for assertions 1-3. i I | Sy prpet || oo 031
Assertion 1 checks whether after reset, if J—g—>m P out_tag3[0:1]
a port sends an add or sub command, and the req daa o311 | out_respdf0:1]
req4_tag_in[0:1] out_data4[0:31]
other ports send no command or a command E— oot gatol]

other than add and sub, then the port that
sent the add/sub command receives a good
response with the appropriate tag at the first
available time (4 cycles after the commands were sent). A vector P of symbolic vari-
ables is used to determine which port is sending the add or sub command.

In the counterexample, a data overflow occurs for an add command sent by port
1, which triggers an invalid response at cycle 7. The BCOI of out_resp1[0] contains all
command, tag and data inputs of all ports at different times. However, the set of relevant
inputs contains only all entries of reql_data_in at cycles 3 and 4. reql_data_in[31] at
cycles 3 and 4 is the minimal subset that is suffice to produce a counterexample, and is
indeed the one chosen by our heuristics.

Fig. 6. Calculator
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Assertion 2 constrains the command sent by port ¢ to add. The msb bits of the sent
data are constrained to O to avoid a possible overflow. The requirement is that the output
data for port ¢ should match the expected data. No constraints exist on the commands
sent by other ports. In the counterexample, both ports 1 and 2 send an add command.
Port 1 is answered before port 2. The assertion fails due to an erroneous specification:
since port 1 has priority over port 2, port 2 may not receive a response at the first possible
cycle. Due to the implementation of the priority queue, the value of an additional port
had to be definite. The BCOI of (out_resp2[0],7) contains cmd, data and tag inputs of all
ports at cycles 3 and 4. Out of them, only the cmd and data inputs are relevant inputs.

Assertion 3 presents the following

constraints: after reset, a port sends [Assertion|result[Total Iter.[Time[BDD Nodes
an add or sub command, followed by 1 fail 2 87 6241

an add command with a certain tag 2 fail 2 100 20134
and data arguments, while limiting the 3 fail 1 220 530733
msb of the data to 0 to avoid a possible 4 pass 11 494 17323

overflow. All other ports do not send
an add or sub command during this Fig.7. Automatic Refinement Performance on Cal-
time. The requirements are: the port culator Assertions

that sent the add command receives a

response with the appropriate tag value and expected output data. There was one refine-
ment iteration. The BCOI of resp_out1[0] includes all data and tag inputs of all ports.
However, only the tags of all ports at cycles 3-5 are relevant inputs. Our heuristics chose
the tag of port 1 at cycle 3. Choosing any other input would require additional iterations
in order to produce a counterexample. In the counterexample, the tag values of port 1
at cycles 3 and 4 are not consecutive. This counterexample stems from a planted de-
sign bug documented in [14]. There is supposed to be no restriction on tag ordering.
However, commands whose tags are out of order are treated as invalid.

Table 2. Automatic Refinement of Calculator Assertions

Assert. |Iteration Goal Added Constraint
1 1 out_resp1[0],7 N°P=1— reql_data_in[31] iS Vyeq1_data_in[31],3
out_resp1[0],7 N‘P=1— reql _data_in[31] 1S V,cq1_data_in[31],4

1 2

2 1 out_resp2[0],7 NP =2 — reql-cmd_in iS T req1_cmd_in,3

2 2 |out_resp2[0],7 Ng(l_j =2 A Ureql_emd_in,3 = (add V sub)) —
req3-cmd.in is U req3_cmd_in,3

| 3 | 1 |out_resp1[0],9

N?P =1 — reql_tagin is T reqi_tag_in.3 |
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Some Complexity Results
for SystemVerilog Assertions

Doron Bustan and John Havlicek

Freescale Semiconductor, Inc.

Abstract. SystemVerilog Assertions (SVA) is a linear temporal logic
within the recently approved IEEE 1800 SystemVerilog standard. The
complexities of the satisfiability and model-checking problems are stud-
ied for a basic subset of SVA and for extensions of the basic subset ob-
tained by adding each of the following features: local variables, regular
expression intersection, quantified variables, and property declarations
with arguments. It is shown that the complexities for the basic subset
are PSPACE-complete, while the complexities increase to EXPSPACE-
complete ! in each of the extensions. Alternating Biichi automata con-
structions provide the upper bounds, while reductions from PSPACE
and EXPSPACE tiling problems provide the lower bounds.

1 Introduction

SystemVerilog Assertions, abbreviated SVA, is the assertion sublanguage of the
recently approved IEEE 1800 SystemVerilog standard [14]. It is a linear tem-
poral logic that is intended to be used to represent correctness properties and
functional coverage events for the validation and verification of SystemVerilog
designs. Prior to revision in the IEEE P1800 committee, development of Sys-
temVerilog was carried out within the Accellera Organization, culminating in
Accellera SystemVerilog 3.1a [1]. Industrial interest in SVA has been growing, as
evidenced by its support in electronic design automation (EDA) tools, its dis-
cussion among verification engineers [19], and its deployment by semiconductor
companies.

SVA has been developed in parallel with another recently approved standard
assertion language, IEEE 1850 Property Specification Language (PSL) [15]. The
two languages share a common core based on regular expressions. The common
core includes temporal properties built using implication with regular expression
antecedent and the standard logical boolean operators. While SVA and PSL have
syntactic differences, there has been substantial work within Accellera and IEEE
committees to ensure that the languages are aligned on the semantics of the
common core. The two languages differ more substantially outside the common
core.

! EXPCACE is defined us |J, ., DSPACE(2").

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 205-218, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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PSL provides the standard LTL operators, which are not in SVA, quantified
variables, and numerous derived operators.? PSL, similar languages, such as For-
Spec, and academic simplifications have also received attention in recent liter-
ature [5,4,9,6]. However, there remain gaps in the analysis of the complexity of
these languages for model checking. SVA, on the other hand, provides local vari-
ables as one of its distinguishing features. A local variable is used to capture the
value of an expression at one point within a property and hold it for later refer-
ence, after which the local variable may be reassigned. Without local variables,
complex auxiliary state machines are often required to represent temporal prop-
erties of practical interest. This makes local variables extremely useful for an
industrially deployed temporal logic. The semantics of local variables has been
studied in the committees [10], but SVA with local variables has received little
attention in the literature and the expressiveness and complexity of the logic
have not been studied before. This theoretical deficit has resulted in a certain
amount of confusion in the industrial verification community. EDA companies
disagree on what part of SVA should be supported in model checking, and ver-
ification engineers do not know whether properties that run in simulation can
reasonably be expected to be supported in formal verification.

In this paper, we fill some of the theoretical gaps by studying the expres-
siveness and complexity of a basic subset of SVA and several of its extensions.
The basic subset is obtained from the common core by eliminating the intersec-
tion operator on regular expressions. Previous work shows that the basic subset
can express all omega-regular languages [4] and that the satisfiability and model-
checking problems for the basic subset are in PSPACE [7,8]. We prove a matching
lower bound, hence these problems for the basic subset are PSPACE-complete.

We prove that extending the basic subset of SVA with either local variables or
intersection of regular expressions increases the complexity of satisfiability and
model-checking from PSPACE-complete to EXPSPACE-complete. For each of
these extensions, we present a construction of alternating Biichi automata that
gives an algorithm with tight complexity for the satisfiability and model-checking
problems. These constructions also prove that the extensions do not increase
expressiveness. Adding both local variables and intersection, the complexity of
these problems in the combined extension remains EXSPACE-complete. We also
study extension of the basic subset with quantified variables analogous to those
in PSL. The satisfiability and model-checking problems for this extension are
EXSPACE-complete. Finally, we study extension of the basic subset with de-
clared properties and arguments. Their addition also results in EXPSPACE-
complete complexity for satisfiability and model checking. With the exception of
those involving local variables, each of the results also holds for the correspond-
ing subset of PSL.

Our lower bounds imply that, from the point of view of complexity classes,
addition to the basic subset of any one of local variables, regular expression inter-
section, quantified variables, or declared properties with arguments is not harder

2 PSL also offers a branching subset with CTL-like syntax and semantics. In this paper
we consider only the linear subset of PSL.
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than another. Statements like “local variables cannot be used in model checking”
and “local variables can be used in model checking only if they are restricted to
analogues of PSL quantified variables” are not justified by our complexity anal-
ysis. The jump from PSPACE-hard to EXPSPACE-hard is significant, though,
and model checking of arbitrary properties in these extensions is not gener-
ally considered practical. This does not mean that such features should not be
supported in model-checking tools. Consider the simple use of integer constant
parameters in operators, such as [*n] (repeat n times). This feature also makes
the model-checking problem EXPSPACE-hard because integers have logarith-
mic representation [2]. We do not conclude that parameters should be written in
unary or that declaration and instantiation of properties with arguments should
be disallowed for formal verification. Such features are considered indispensable
in industrially deployed languages. Similarly, local variables, regular expression
intersection, and quantified variables are in the standardized assertion languages
because they have proven to be very useful for writing properties in industrial
practice. By understanding how the various language features contribute to the
complexity, verification engineers can make more informed decisions about trade-
offs in coding styles for properties and can better estimate their tractability in
formal verification. Tool builders also can better target the sources of hardness
for model checking while providing a richer feature set in the property language
that is supported. Hopefully, the automata constructions from this paper will
provide a starting point for broader EDA tool support for formal verification
using SVA.

2 Preliminaries

Given a set A, A* denotes the set of finite words over A, A¥ denotes the set
of infinite words over A, and A denotes the union A* U A¥. The length of
word u € A is denoted |u|. The empty word is denoted €. The letters of u
are indicated by superscripts and are indexed consecutively beginning at zero. If
|u| > 0, then the first letter of u is denoted u?; if |u| > 1, then the second letter
of u is denoted u'; and so forth.

SVA has four language layers: boolean, sequence, property, and statement. The
boolean layer consists of boolean expressions in which each variable referenced
is either a design variable or a local variable of the assertion. X denotes the
finite alphabet of valuations of the design variables. The sequence layer consists
of regular expressions over the boolean layer. Every regular language of finite
words over X' can be represented by a suitably chosen sequence. The property
layer combines sequences to create temporal logic formulas. The statement layer
defines whether a property is to be evaluated as an obligation, an assumption,
or a coverage goal. SVA statements are not discussed further in this paper.

For simplicity, we restrict each local variable to have a single-bit, boolean
type (i.e., type bit in SystemVerilog). For a given finite set of sequences and
properties, there is a finite set V" of local variables that appear therein. The set of
valuations of these local variables is 2". It is understood that V is disjoint from
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the set of design variables. The set of semantic equivalence classes of boolean
expressions can be identified with 2* 2" The constant “true” is denoted 1, and
the constant “false” is denoted 0.

For the rest of this document we use the following notations: o denotes a letter
in X; w, x,y, z denote finite or infinite words over X'; v denotes a one-bit local
variable; b and e denote boolean expressions; R denotes a sequence; P denotes a
property; and L denotes a local variable valuation in 2¥. Primes, subscripts, and
superscripts are also added to these notations. The grammar for SVA sequences
is

R ==b| (1,v=e) | (R) | R##0R | R##1 R | Ror R |
R intersect R | R[*0] | R[*1:$]

R[*0:$] is an abbreviation for R[*0] or R[*1:$], and, for n > 0, R[*n] is
an abbreviation for the concatenation R ##1 --- ##1 R (n copies of R).
The grammar for SVA properties is

P:=R| (P)| PorP | PandP | R|->P | not P

R seq P is an abbreviation for not (R |-> (not P)). The operator seq is the
dual of |->.3

Tight Satisfaction of Sequences. Tight satisfaction is a four-way relation,
denoted w, Lo, L1 E R, that defines when a finite word w together with input
local variable valuation Lg satisfies a sequence R and yields output local variable
valuation L;. Determination of whether the relation holds can be thought of
as evaluation of R over w starting with local variable valuation Lg. As R is
evaluated, its local variables may be assigned, reassigned, and referenced at
various points. In order for the result of the evaluation to be well-defined, a
reference to a local variable must not be made unless the structure of R ensures
that the local variable holds a well-defined value at that point. There is some
subtelty to this requirement. For example, a local variable may be assigned
inconsistently in the two operands of intersect, after which a well-defined value
cannot be guaranteed.

The IEEE 1800 standard addresses this problem by restricting syntactically
the places within a sequence or property at which a given local variable can be
referenced.* These restrictions ensure that references to local variables yield well-
defined values [10]. For example, if a local variable is assigned in both operands of
an intersect, then the local variable cannot be referenced after the intersect
until it has been reassigned a well-defined value. We assume that all top-level
properties satisfy the restrictions (e.g., as checked by a compiler). This allows
us to simplify the definition of tight satisfaction from that given in [14].

For a boolean expression b and (o, L) € X x 2", let b[o, L] denote the boolean
value obtained by evaluating the expression b using the valuation (o, L) of the
design and local variables. The tight satisfaction relation is defined as follows:

3 “geq” is not an explicit operator of SVA. It is equivalent to the the follows_by operator
of ForSpec [4].

* See the recursive functions flow, sample, and block defined in Annex E of [14].
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— w, Lo, Ly E biff |lw| =1 and b[w®, Ly] = 1 and Ly = Ly.

—w,Lo, L1 E (1, v=e¢) iff lw| = 1 and L; results from Ly by assigning
e[w?, Lo] to v.

—w,Lo, L1 = (R) iff w,Lo, L1 E R.

— w, Lo, L1 E Ry ##0 Ry iff there exist z, y, z, L' such that w = zyz and
ly| =1 and zy, Lo, L' E Ry and yz, L', L1 E Rs.

— w, Lo, L1 E Ry ##1 Ry iff there exist x, y, L’ such that w = xy and
x,Lo, L' E Ry and y, L', L1 E Ra.

- U],Lo,Ll |E R1 or RQ iff either U],L(),Ll |E R1 or w,L(),Ll ‘E RQ.

— w, Lo, L1 E Ry intersect Ry iff there exist L', L such that w, Lo, L' E Ry
and w, Lo, L"” E Ry and L;(v) = L'(v) if v is assigned in Ry, and Ly (v) =
L"(v) otherwise.

— w, Lo, L1 = R[*0] iff jw| =0 and Ly = Lg.

— w, Lo, Ly |E R[*1:$] iff there exist j > 1 and Ly = Lo, w1, L1y, w2, L(2),
cowy, Ly = Ly such that w = wjwy---w; and for every ¢ such that
1 < 7 < j, wi,L(i,l),L(i) |E R.

The asymmetry of the definition of L; in the case of intersect is justified as
follows. If v is assigned in both R; and Rs, then the syntactic restrictions bar
its reference after the intersect until it is reassigned. Therefore, we are free to
let v take either the value from L’ or the value from L.

Satisfaction of Properties. Satisfaction is a three-way relation, denoted
w,L [ P, that defines when an infinite word w together with input local
variable valuation L satisfies a property P

— w, L E R iff there exist z,y, L’ such that w = 2y, || > 0, and =, L, L' E R.

—w,LE(P)iffw, L= P.

— w,L = Py or P, iff either w, L = P, or w, L |E Ps.

— w,L E Py and P, iff both w, L = P; and w, L = Ps.

—w,L = R |-> P iff for all z,y,z, L such that w = zyz and |y| = 1 and
2y, L, L' = R, yz,L' = P.

— w,L Enot Piff w,L £ P.

Let P be a top-level property. The syntactic restrictions on references to local
variables guarantee that for any L, L', w, L |= P iff w, L' = P. We write w = P
iff for some (equivalently, for all) L € 2V, w, L = P, and we let £(P) denote the
set {w € X% | w = P}. A model satisfies P iff each of its infinite computation
traces satisfies P.

An SVA property is in positive normal form (PNF) if it does not contain
any not operator. Positive normal form can be achieved by using DeMorgan’s
laws and the duality of |-> and seq to push all not operators down until they
apply only to the boolean layer, where they can be absorbed into the boolean
expressions. The case of not R is handled by using the fact that, as property, R
is equivalent to R seq 1.
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Automata. A nondeterministic finite word automaton (NFW) is a tuple N =
(X, 8,50, p, F), where X is a finite alphabet, S is a finite set of states, p C
S x X x S is a transition relation,® Sy C S is a set of initial states, and F' C S is
a set of accepting states. A sequence & = £0¢1 ... ¢+ € §* (k > 0) is a run of N
over the finite word w € X* provided k = |w|, £ € Sy, and for every 0 < i < |w],
(€, w', €71 € p. The run € is accepting if €1l € F. An NFW N accepts a word
w if there exists an accepting run of N over w. We use L(N) to denote the set
of words in X* that are accepted by N.

A nondeterministic Biichi automaton (NBW) is a tuple (X, S, So, p, F') de-
fined similarly to NFW. The automaton accepts an infinite word w iff it has an
infinite run over w which contains infinitely many accepting states.

For a given set X, let Bool™(X) be the set of positive Boolean formulas over
X (i.e., Boolean formulas built from elements in X using A and V), where we
also allow the formulas true and false. Let Y C X. We say that Y satisfies a
formula 6 € Bool(X) if the truth assignment that assigns true to the members
of Y and assigns false to the members of X \Y satisfies 6. A tree is a prefix-closed
subset X C N*.

An alternating Biichi word automaton (ABW) is a tuple B = (X, Z, 29,6, A),
where X, Z, and A are as X, S, and F' (respectively) in the definition of NFW,
20 € 7 is a single initial state, and § : Z x X' — Bool™(Z) is a transition function.
A run tree of B on an infinite word w € X% is a pair (X, 7) where X is a (possibly
infinite) tree and 7 : X — Z is a labeling function such that 7(¢) = 2y and such
that the following holds: if € X, |z| = i, 7(z) = z, and §(z, w?) = 0, then z has
E children x1,...,z; in X for some 0 < k < |Z| and {7(z1),...,7(x)} satisfies
6. The run tree (X, 7) is accepting if every infinite branch in X has infinitely
many labels in A. Note that the run tree can also have finite branches: if |z| = 1,
7(z) = 2, and 8(z,w') = true, then x need not have any children. B accepts a
word w € X* if there exists an accepting run tree of B over w. We use L(B) to
denote the set of words in X that are accepted by B.

An alternating transition system (ATS) is a tuple B = (X, Z, Zy, 6, A), where
X, Z, 6, and A are as in the definition of ABW and Z; C Z is a set of initial
states. For z € Zy, B%®) is the ABW that results from B by replacing Zy by z.

SVA Subsets. The basic subset of SVA, denoted SVA®, is obtained by limiting
the sequence operators to ##1, ##0, or, [*0], and [*1:$]. All SVA property
operators are allowed, but local variables and intersect are excluded. Every
operator in SVA? has an equivalent operator in PSL. We consider the following
extensions to the basic subset: (1) SVAY™! obtained by adding local variables;
(2) SVA*" obtained by adding the intersect operator; (3) SVA? obtained
by adding declared properties with arguments; and (4) SVA"™ obtained by
adding quantified variables analogous to those in PSL.6 SVA*™T% denotes the
extension of SVA® by adding both local variables and the intersect operator.
The quantified variables feature is defined as follows. Let P be a property with

® p can also be given as a function S x X — 2.
5 SVA does not have quantified variables, so SVA**7 is not, strictly speaking, a subset
of SVA. However, SVA*™? is equivalent to a subset of PSL.
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free variable x. Then “for x in S: and P” is equivalent to “andscsP|,s” and
“for x in S: or P” is equivalent to “orscgP|y—s”. Plz—s results from P by
replacing every occurrence of z by s.

3 Automata Constructions for SVA

In [7] it is shown how to construct an ABW for each formula from a subset of
PSL. The size of the ABW is linear in the size of the formula. Every operator in
SVA? has an equivalent operator in this subset of PSL. Thus, for every property P
in SVA® there exists an ABW with size linear in the size of P that accepts £(P).
For every property P in SVA"™ or in SVA**? there is a simple exponential
translation to a property in SVA®. Therefore, there exists an ABW with size
exponential in the size of P that accepts L(P).

The construction presented in [7] first builds particular NFWs for the se-
quences and then uses these NFWs to construct the ABW. The construction of
the ABW can take any NF'W in place of the particular ones given for sequences,
and the size of the ABW is linear in the sizes of the NFWs plus the number
of property operators. While the PSL subset considered in [7] does not include
intersection, an exponential construction for NFWs for regular expressions with
the intersect operator is given in [13]. Using this construction, it follows that for
every property P in SVA’*® there exists an ABW with size exponential in the
size of P that accepts £(P). In the rest of this section we present exponential
ABW constructions for the SVA*™ and SVA"™+ subsets.

NFW for Sequences with Local Variables. Let R be a sequence in SVA"H,
We present an inductive construction of an NFW N(R) for R. The construction
will arrange a function A\ mapping the set of states of N(R) to 2V. The base
cases are as follows.

— N(b) = (X,{0,1} x 2V, {0} x 2V, p, {1} x 2V), where p is the set of ((0, L), o,
(1, L)) such that blo, L] = 1. A((0, L)) = A((1, L)) = L.

— N(R[*0]) = (X,{0} x 2V {0} x 2V, 0,{0} x 2V). A((0, L)) = L.

— N((1,v=e)) = (2,{0,1} x 2V, {0} x 2, p, {1} x 2V), where p is the set
of ((0,L),0,(1,L") such that L’ results from L by assigning e[o, L] to v.
A0, 1)) = A(1, 1)) = L.

For the inductive cases, assume that we have constructed NFWs N(R;) =
(2,81, I, p1, F1) and N(R2)= (X, S, I, p2, F») and associated functions A1, As.
The sets S; and S are assumed to have been made disjoint.

— N((R)))=N(R1). A=\

— N(Rl ##0 RQ) = <2, SluSg,Il,mUngp, F’2>7 Wherepis the set of (8170'7 82)
such that there exist s’ € F; and s” € Iy such that (s1,0,s) € p1 and
(s",0,82) € pg and A1(s") = Aa(s”). A= A1 U Aa.

— N(R1 ##1 RQ) = <E7S1U527f7p1Up2Up, F2>, where I = [LUIL if 1 NF} # @,
I = I otherwise, and p is the set of (s1,0,s2) such that sy € I and there
exists s € Fy such that (s1,0,5") € p1 and A\1(s') = Aa(s2). A = A1 U Aa.



212 D. Bustan and J. Havlicek

- N(Rl or Rg) = <2, Sl U 52711 UIQ,,Ol UpQ,Fl UFQ). A= )\1 U )\2.

— N(Ry[*1:$]) = (X, 51, 11, p1Up, F1), where p is the set of (s, o, ") such that
s € Iy and there exists s” € I; such that (s, 0,s") € p1 and A1(s) = A\ (s”).
A=A

By N(R)|r we mean the automaton obtained from N(R) by eliminating from
the set of initial states those that are not mapped by A to L.

Lemma 1. Let R be a sequence in SVA*™, and let w € X*. w, Lo, L1 E R iff
N(R)|L, has an accepting run over w that ends in a state mapped by X to L.

Lemma 2. Let R be a sequence in SVAbH, let V be the set of local variables in R,
and let S(R) be the set of states in the NFW N(R). Then |S(R)| = O(|R|-2!V1).

ABW for Properties with Local Variables. Let P be a property in SVAPH,
We present an inductive construction of an ATS B(P) for P, which extend the
construction presented in [7]. The construction will arrange a function A mapping
the set of states of B(P) to 2" in such a way that A induces a bijection when
restricted to the set of initial states. For L € 2V, B(P)|r, is the ABW that results
from B(P) by restricting to the single initial state that is mapped by A to L.

We assume that the properties are in PNF. Wherever a sequence R other than
1 or 0 appears as a property, we understand it to be replaced by R seq 1. The
base cases of the construction are as follows.

— B(1) = (X, {0} x2V,{0} x2Y,,0), where §((0, L), o) = true. A((0,L)) =

L.
— B(0) = (X, {0}x2Y {0} x2",8,0), where §((0, L), o) = false. A((0,L)) = L.

For the inductive cases, assume that we have constructed the NFW N(R) =
(X,8,1,p, F) and function Ag for sequence R and, for ¢ = 1,2, the ATS B; =
(X, Zi, Zio, 6, A;) and function \; for property P;. Let p be given as a function
29 x ¥ — 29 where p(S’,0) = Uses/p(s,0) for §' C S. Assume also that the
state sets S, Z1, Zo have been made disjoint and are disjoint from {0} x 2V Let
Il =1In /\1_%1(L) and, for i = 1,2, let z;0,r, be the unique state of Z;p mapped
by \; to L.

— B((P)) = B(P1). A= \1.
— B(R |->P) = (2,({0} x2V)YUSU Z1,{0} x 2V, 6 U1, SU A1), where 6 is
defined over (({0} x 2V)U S) x X as follows.
e 6((0,L),0) = ANp(IlL,0) N N61(Z,0), where Z is the set of z € Zyp
such that Ai(z) € Ar(p(I|z,0) N F).
e 6(s,0) = NAp(s,0) AN N61(Z,0), where Z is the set of z € Z3¢ such that
M(2) € Ar(p(s,0) N F).
A= )N UAg U\, where M maps {0} x 2V by ((0,L)) — L.
— B(R seq P1) = (X, ({0} x 2¥) U SU Z1,{0} x 2V,6 U 61, A1), where § is
defined over (({0} x 2V)U S) x X as follows.
e 6((0,L),0) = VV p(I|L,0) V \/61(Z,0), where Z is the set of z € Zy9
such that Ai(z) € Ar(p(I|z,0) N F).
o 5(s,0) =V p(s,0) V \/61(Z,0), where Z is the set of z € Z1o such that
M(2) € Ar(p(s,0) N F).
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A= )N UAg U\, where M maps {0} x 2V by ((0,L)) — L.

— B(Pl or PQ) = <E, ({0} X 2V) UZ1UZs, {0} X 2V, 6UbUbs, Ay UAQ>7 where
8 is defined over ({0} x 2V) x X by 6((0,L),0) = 61(210,1,0) V 62(220,1, 7).
A= )N UM Ug, where X maps {0} x 2V by ((0,L)) — L.

— B(Pyand P,) = (X, ({0} x2V)UZ1UZ5, {0} x 2V, 8U81 U2, A1 UA), where
8 is defined over ({0} x 2¥) x X by 6((0,L),0) = 61(210,1,0) A 62(220,1,0).
A= XN UM Ug, where X maps {0} x 2V by ((0,L)) — L.

Lemma 3. Let P be a property in SVAY! in PNF, and let w € X¥. w, L E P
iff w e L(B(P)|1).

Lemma 4. Let P be a property in SVAY*! in PNF, let V be the set of local
variables in P, and let Z(P) be the set of states in the ATS B(P). Then |Z(P)| =
o(|P|-2!V.

The Intersect Operator. In this section we extend the construction of ABWs
for properties in SVA*™! to SVA*™*1 Assume that for the sequences Ry and R
we have constructed the NFWs Ny = (X, Sy, I1, p1, F1) with mapping A\;: S1 —
2V and Ny = (X, S5, I, p2, F2) with mapping Ay: So — 2V, respectively. We
define N(R; intersect Ry) = (X, 51 x Sa, I, p, F1 X Fy), where I = {(i1,i2) €
.[1 X IQ | )\1(i1) = )\2(22)} and

p= {((31a82)707 (5/175/2)) ‘ (31707 5/1) € P and (52707 5/2) € p2}

and we define \: S; x So — 2V by A((s1,52))(v) = A\1(s1)(v) if v is assigned in
Ry and A((s1,52))(v) = A2(s2)(v) otherwise. The following lemma extends the
result of Lemma 1 to SVAPTH,

Lemma 5. Let R be a sequence in SVA*™ and let w € %, w, Lo, L4 E Riff
N(R)|L, has an accepling run over w that ends in a state mapped by X\ to Lq.

Lemma 6. Let R be a sequence in SVAb+l+i, let V' be the set of local variables
in R, and let S(R) be the set of states in the NFW N(R). If V is non-empty,
then |S(R)| = O2IFIIVI). Otherwise |S(R)| = O(217).

Lemma 7. Let P be a property in SVAY™' ™" in PNF, let V be the set of local
variables in P, and let Z(P) be the set of states in the ATS B(P). If V is
non-empty, then |Z(P)| = 0PIV, Otherwise |Z(P)| = O(2F)).

Upper Bound Complexity. Following the automata-theoretic approach of
[17], the satisfiability and model-checking problems for linear temporal logics are
solved by representing the property by an ABW and then translating the ABW
into an exponentially larger NBW [12]. Satisfiability is solved by checking for
emptiness of the NBW, and model-checking is solved by checking for emptiness
of the product of the model with the NBW for the negation of the property.
Since the emptiness problem for NBWs is in NLOGSPACE [18], the complexity
of these problems is in PSPACE with respect to the number of states of the
ABW [17]. These observations and the automata constructions of the preceding
sections lead to the following theorem.
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Theorem 1

— The satisfiability and model-checking problems for properties in any of the
extensions SVAY? SVAP*Y SVAY* gre in EXPSPACE with respect to |P|.

— The satisfiability and model-checking problems for properties in SVA*™! are
in EXPSPACE with respect to |V| and in PSPACE with respect to |P)|.

— The satisfiability and model-checking problems for properties in SVA* T qre
in EXPSPACE with respect to |V| - |P|.

4 Lower Bounds

In this section we explore some of the “sources of hardness” of SVA satisfiability
and model-checking. In the previous section we showed that the satisfiability and
model checking problems for properties in SVA? are in PSPACE. A reduction
from the PSPACE tiling problem [20,11,16] can be used to prove the following.

Proposition 1. The satisfiability and model checking problems for properties in
SVA® are PSPACE-hard.

When SVA? is extended by local variables, regular expression intersection, de-
clared properties with arguments, or quantified variables, the complexity of the
model-checking and satisfiability problems become EXPSPACE-hard.

Theorem 2. The satisfiability and model checking problems for properties in
SVAPTL SVAPHE SVAPT and SVAYT are EXPSPACE-hard.

We present a proof sketch by outlining a reduction from a version of the EX-
PSPACE tiling problem [20,11,16] to each of the subsets. In the EXPSPACE
tiling problem, the following are given: a finite set T" of “tiles”, vertical and hor-
izontal restrictive relations V C T x T and ‘H C T x T, an initial tile 7p € T,
a final tile 7, € T, and an integer n > 0. The problem is to decide whether
there exists m > 0 such that there exists a tiling of a 2" x m grid such that the
following hold: (1) 7¢ is in the bottom left corner; (2) the first occurrence of 7,
is in the top left corner; (3) every pair of horizontally neighboring tiles is in H;
and (4) every pair of vertically neighboring tiles is in V.

Given an EXPSPACE tiling problem 7 = (T,V,H, Ty, Ta,n), we define for
each subset a property P, polynomial” in n, such that there exists an infinite
word w that satisfies P iff there exists a tiling for 7 = (T, V, H, 10, T, ). The
idea is to partition w into substrings of length n called “blocks” such that every
block represents one tile. The n letters in a block provide a binary encoding
of a number between 0 and 2™ — 1, inclusive. We refer to this number as the
counter value of the block. The blocks are enumerated in the order of increasing
counter values modulo 2", starting from 0. Pairs of consecutive blocks (except
those enumerated (2" —1,0)) must satisfied H, and pairs of blocks whose counter
values are equal and are separated by 2" — 1 intermediate blocks must satisfy V.

™ Quadratic for SVA*** and SVA?T?, linear for the other extensions.
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We construct the properties for the reductions to the different subsets in two
parts. The shared part is common to all the properties and is in SVA?. For each
subset we construct its specific part using the extending feature of the subset.

The alphabet for all properties is 2{%<:¢#} x T where & is a special signal
that marks the beginning of a block, < is a special signal that is first high one
letter after the last block of the tiling, ¢ is a one-bit signal used to represent
the counter value of the block, and z is an auxiliary variable used to represent
the carry over when incrementing the counter value. We use the convention that
the value of ¢ in the first (resp., last) letter of a block is the least (resp., most)
significant bit of the counter value. The set T of tiles is of constant size. The
T component of a letter is referenced by the signal ¢t. The tile represented by a
block is understood to be the value of ¢ in its last letter.

For lack of space, we do not present the shared part. It is obtained by creating
properties in SVA® of size O(n) requiring that (1) a prefix of w be partitioned
into blocks of length n, the first letter of each being indicated by é&; (2) the
counter values of the blocks increment modulo 2™ starting at 0; (3) < appear for
the first time after a block with counter value 2™ — 1 and mark the first letter
after the end of the prefix; (4) the first block’s tile value be 79; (5) the tile value
of the first block in the last row be 7,; and (6) every two consecutive blocks in the
same row be in H. It remains to construct for each of the extensions the specific
part of the property requiring that a pair of blocks with the same counter value
that are separated by 2™ — 1 intermediate blocks be in V.

For the local variable extension, we let R.», denote a sequence that is tightly
satisfied by a block iff the counter value of the block is different than the binary
value represented by the local variables vy, v1,...,v,—1. Such a sequence can be
created with size O(n). Also, we let R.—, denote the sequence

c==vg ##1 c==v; ##1 ... ##1 c==0v,_1,
which is tightly satisfied by a block iff the counter value of the block is equal to

the binary value represent by vy, v1,...,v,_1. The specific part P\l, for the local
variable extension is as follows:

(1[*n] ##0 t'=7,) [*0:$] ##1

(1,vg=c) ##1 (1,v1=c) ##1 --- ##1 (1,v,_1=c) ##0 t'=7, |->

and, er (t==71 |-> 1 ##1 R, [*1:$] ##1 R._, ##0 ||V(n,72)t==7'2)
After any number of blocks with tile other than 7,, the counter value is stored
in vg,v1,...,0,—1. Then a conjunction over 7y € T of implications whose an-
tecedents test t==71; ensures that (71,72) € V, where 7 is the tile of the next
block at which the counter value equals the binary value saved in vy, vy, ..., vp—1.
The size of P}, is O(n).

The specific part for the extension by quantified variables is similar:

for vg,...,Up—1 in bit: and

(1[*n] ##0 t!'=71,) [%0:$] ##1 R._, ##0 {'=7, |->

and, er (t==71 |-> 1 ##1 R, [*1:$] ##1 R._, ##0 ||V(n,72)t==7'2)
Instances of properties with arguments can be used to universally quantify
the arguments. In this way, we can adapt the specific part with quantified
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variables to serve as the specific part using declared properties with arguments.
Here is an example to illustrate. Let P(a, b, ¢) be a declared property with argu-
ments. Define P;(b,c¢) = P(1,b,¢) and P(0,b,¢), P»(c) = Pi(1,¢) and P;(0,¢),
P; = P5(1) and P»(0). The property Ps is equivalent to YaVbVc : P(a, b, c). The
adaptation involves n declared properties, each of size O(n), so the specific part
is of size O(n?).

For the specific part using intersect, we assume that the following auxiliary
sequences of size O(n) have been constructed. For 0 < ¢ < n—2, R; is a
sequence that is tightly satisfied by a series of two or more blocks provided
the ith bits of the counters of the first and last blocks are equal. R,_1 is a
sequence that is tightly satisfied by a series of two or more blocks provided the
(n—1)st bits of the counters of the first and last blocks are equal and, in addition,
counter bit n — 1 changes its value exactly twice in the intermediate blocks. The
minimum number of intermediate blocks is 2" 7', and the maximum number is
3-2"~1 4 2. Inside these boundaries, distinct blocks have distinct counter values.
The sequence Ryiles in v is tightly satisfied by a series of blocks provided the pair
formed by the tiles of the first and last blocks is in V. From these auxiliary
sequences, we construct Ryexy = Ro intersect --- intersect R, _1, which is
tightly satisfied by a series of blocks provided the first and last blocks have the
same counter value and there are exactly 2" — 1 intermediate blocks. Ryext is of
size O(n?). The specific part P, is as follows:

(1[*n — 1] ##1 t'=7,)[*0:$] ##1 1 |->
(1[*n — 1] ##1 t==71,) or (Ruext intersect Rijles in V)

The consequent is tightly satisfied by a series of two or more blocks provided
that either the tile of the first block is 7, or the first and last blocks have the
same counter value, their tiles are in 1V, and there are exactly 2" — 1 intermediate
blocks. The property Pf; requires the consequent for every block before 7, occurs.

5 Conclusions and Related Work

There has been some prior work on the complexity of satisfiability and model
checking of PSL and similar languages. In [4], the complexity of the ForSpec
language is shown to be PSPACE-complete. In [3] there is a discussion of the
complexity of the reset operator in Sugar and ForSpec. Symbolic verification of
PSL properties restricted to negated sequences is explored in [6]. A construction
of alternating Biichi automata for a large subset of PSL is presented in [7]. The
automata from this construction run over both finite and infinite words, and the
construction accounts for the neutral semantic variant for finite words.

In this paper we have explored the complexity of SVA. We have shown that
when features like local variables, regular expression intersection, and declared
properties with argument are used, the complexity of the language becomes
EXPSPACE-complete. These results invite further investigation of the practical
usage of these features and the performance of model-checking algorithms that
support them. Other theoretical gaps in the complexity analysis remain. For
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example, the expressiveness and complexity of SVA with recursive properties
and the complexity of checking SVA in simulation are still open.
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